
Quorum: Flexible Quality of Service for Internet Services
Josep M. Blanquer, Antoni Batchelli, Klaus Schauser and Rich Wolski

Department of Computer Science, University of California Santa Barbara
{blanquer,tbatchel,schauser,rich}@cs.ucsb.edu

Abstract
In this paper we describe Quorum, a non-invasive approach to
scalable quality-of-service provisioning that uses traffic shap-
ing, admission control, and response monitoring at the border
of an Internet site to ensure throughput and response time guar-
antees.

We experimentally compare an implementation of Quorum
both to hardware over-provisioning and to leading software ap-
proaches using real world workloads. Our results show that
Quorum can enforce the same QoS guarantees as either of the
compared approaches, while achieving better resource utiliza-
tion than over-provisioning and without the application rewrit-
ing overhead required by intrusive software approaches. We
also demonstrate that our implementation can successfully han-
dle extreme situations such as sudden traffic surges, application
misbehavior and node failures. Furthermore, we demonstrate
the flexibility of Quorum by providing QoS guarantees for a
complex and heterogeneous Internet service that cannot be im-
plemented by other current software approaches.

1 Introduction

The current commercial importance of Internet services
makes it imperative for companies relying on web-based
technologies to offer and guarantee predictable, consis-
tent, and differentiated quality of service (QoS) to their
consumers. For example, e-commerce companies often
want to provide faster response times for purchasing than
for catalog browsing to ensure that no sale is lost due
to the perception of an unresponsive transaction. Dif-
ferentiated QoS also enables more general and flexible
application hosting environments. For example, a ser-
vice provider that hosts a personalized webmail portal
for several companies wants to guarantee different levels
of service to its customers and to ensure that these service
guarantees are provided to each customer independently,
regardless of overload or misbehavior of the others.

To meet large demand, scalable Internet services are
commonly hosted using clustered architectures where a
number of machines, rather than a single server, work

together in a distributed and parallel manner to serve re-
quests. Delivering reliable service quality guarantees in
this distributed setting is the difficult challenge that our
work addresses.

Both research and commercial Internet service com-
munities have explored hardware-based and software-
based approaches to QoS provisioning. The state-of-the-
practice in current commercial settings is to deploy in-
dependent clusters for each service (hardware partition-
ing), each of which comprises enough capacity to ser-
vice worst-case load conditions (over-provisioning). Un-
fortunately, because load fluctuations can be substantial,
hardware partitioning and over-provisioning incurs a po-
tentially high cost (sufficient resources must be available
in each partition to handle load spikes) and low resource
utilization (the extra resources are idle between spikes),
making this approach inefficient.

As a result, software-based approaches have been
proposed and developed to make better use of the re-
sources employed to host Internet services. These ap-
proaches focus on embedding QoS logic at different lev-
els of the site’s internal software, including operating
system [4, 6, 10, 37], middleware [33, 34, 41], and ap-
plication code [2, 8, 40]. It is the function of this logic to
distribute, effectively, the workload among the cluster re-
sources as a way of improving both resource utilization
and client experience. Low-level techniques have been
shown to provide a tight control on the utilization of re-
sources (e.g., disk bandwidth or processor usage) while
techniques that are closer to the application layer are
able to satisfy QoS requirements that are more directly
experienced by clients. However, these software solu-
tions require the hosted application services and/or the
hosting operating system to be customized for QoS pro-
visioning, thereby limiting flexibility and extensibility.
Furthermore, most current Internet sites include a myr-
iad of different hardware and software platforms which
are constantly evolving and changing. An invasive QoS
solution that requires the reprogramming of hosted ser-
vice code carries with it high development and testing
costs when new services are introduced, or the existing

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 159

site components (hardware and software) are reconfig-
ured, upgraded, extended, etc. More problematically, the
source code for many service components hosted at a site
may not be available for proprietary reasons. This lack
of source code makes the necessary software reprogram-
ming remarkably difficult. Thus the growing complex-
ity associated with Internet service hosting in commer-
cial settings makes intrusive software QoS strategies less
attractive as the need for extensibility and flexibility in-
creases.

To address these needs, we propose a new approach
to QoS provisioning for Internet services. Our ap-
proach offers reliable QoS guarantees at a lower cost than
state-of-the-practice techniques, while giving the service
providers the much needed flexibility that they require
to rapidly reconfigure, upgrade and extend their complex
set of services. In this paper we present Quorum, a non-
invasive software approach that treats the cluster and the
services it is hosting as a “black-box” system and uses
only feedback-driven techniques to control dynamically
which and when each of the requests from the clients is
forwarded into the cluster. Because traffic shaping and
admission control is done at the entrance of the site, and
the system uses only the observed request and response
streams for its control algorithms, new services can be
added, old ones upgraded, and resources reconfigured
without re-engineering the necessary QoS mechanisms
into the services themselves or the system software that
supports them.

We report on an implementation of Quorum and its
experimental comparison with the state-of-the-practice
(i.e., over-provisioning) and state-of-the-art (e.g., Nep-
tune [33, 34]) software solutions using realistic services,
client request traces and clustered machines. Neptune is
a research and now commercially successful middleware
system that implements QoS for Internet services, but
which requires the services themselves to be re-written to
use Neptune primitives. Using the Teoma [35] search en-
gine, which is explicitly programmed so it can use Nep-
tune, we show that Quorum can enforce the same QoS
guarantees as Neptune for Neptune-enabled services, but
without the additional engineering overhead associated
with modifying the services that it supports. Further-
more, we illustrate Quorum’s ability to handle extreme
situations such as sudden traffic surges, or internal appli-
cation misbehavior – capabilities that are necessary for
a successful deployment in large-scale, realistic settings.
We also demonstrate the flexibility of Quorum by show-
ing how it can provide QoS guarantees for complex het-
erogeneous Internet services which cannot be modified –
a capability that none of the published, pre-existing soft-
ware approaches is capable of achieving at present.

1.1 Contributions

This paper makes five main contributions:

• We present Quorum as a novel approach to QoS
provisioning for large-scale Internet services that
uses only observed input request and output re-
sponse streams to control the load within the site
so that quality guarantees are met.

• We describe a working implementation and demon-
strate its viability using a large cluster system host-
ing commercial and community benchmark Internet
services.

• We compare Quorum with the state-of-the-practice
and state-of-the-art approaches in terms of effi-
ciency and the degree to which they maintain QoS
guarantees for both throughput and response times.

• We show the robustness of Quorum in successfully
overcoming extreme situations (i.e., sudden traffic
surges, application misbehavior and node failures)
which arise in current commercial settings.

• We demonstrate that the flexibility provided by
Quorum enables more efficient deployments of
complex, heterogeneous Internet services than can
currently be supported by existing approaches.

The remainder of this paper is organized as follows.
Section 2 defines the models and assumptions employed
by our approach and formally states the terms in which
the QoS challenge is defined. Section 3 introduces Quo-
rum’s approach and further describes its architecture.
Section 4 experimentally compares Quorum to the best
of the known approaches. In Section 5 we demonstrate
the robustness of Quorum under extreme situations and
also show its flexibility in providing reliable QoS guar-
antees in complex heterogeneous services. In Section 6
we discuss related work, and we conclude in Section 7.

2 Defining the QoS Challenge

Before describing the architecture of Quorum we define
the models and assumptions employed by our approach,
as well as detail the terms by which the QoS challenge is
defined. We begin by outlining the model of Internet ser-
vice transactions we use. We treat Internet services (see
Figure 1) as a stream of requests coming from clients that
are received at the entrance of the site, computed by the
internal resources, and returned back to the clients upon
completion. In the case of system overload or internal er-
ror condition, requests can be dropped before completion
and thus may not be returned to the client. Each of the

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association160

requests that are received from the clients can be classi-
fied or grouped into different service classes according
to a combination of service type and client identity.

Figure 1: System model for Internet services.

The computation of requests is modeled by treating
the cluster as a parallel and multi-level resource system
that processes requests in a time-shared manner. More
specifically we model the cluster site as a black-box sys-
tem that has the following two properties: 1) unbiased
treatment: any request entering the cluster will be com-
puted with the same priority, and 2) time-multiplexed:
the internal computation is done in a multiplexed way
where requests interleave the usage of resources in time
intervals that are short, relative to the response time guar-
antees. The simplicity of our model allows cluster sys-
tems to be treated analytically, while remaining powerful
enough to capture the behavior of most time-shared sys-
tems and thus the majority of existing sites. Note that
these properties are defined in terms of the overall clus-
ter behavior and may not necessarily hold true for each
of the internal resources individually.

We define the QoS challenge as the ability to guar-
antee, at all times, a predefined quantitative character-
ization of the traffic in each service class as measured
at the output of the cluster. Such traffic characteriza-
tion is expressed through a QoS policy, which contains
the desired QoS guarantees for each of the participating
service classes. Such quality guarantees are defined at
the boundary of the cluster and do not extend to requests
traversing the internet back to the end users. Our goal
is not to provide end-to-end guarantees as we see net-
work QoS as a complementary function. We consider
the quality characteristics defined in the QoS policy to
be specified in terms of statistical (or soft) guarantees.

Finally, our system requires that the specified QoS pol-
icy that must be enforced is, in fact, feasible for the ex-
pected workloads and cluster capacity. A QoS policy is
feasible if the existing cluster can meet the QoS guar-
antees without requiring any QoS mechanisms (i.e., a
simple load-balancer) subject to the following two con-
ditions: 1) incoming rates for each class are always kept
below their guaranteed throughput and 2) resource de-

mands of incoming requests do not surpass their ex-
pected computation requirements. The expected com-
putation requirements for a request stream are depen-
dent on the type of service offered and must be agreed
upon, a priori, between the provider and the consumer.
In fact, feasibility is an implicit test or calculation that
any service provider must perform when dimensioning
their cluster for a given expected demand. Note feasibil-
ity has already taken into account the software and hard-
ware configuration of the cluster, as well as any possi-
ble internal bottlenecks that may occur for the expected
workloads. Since Quorum depends only on the feasibil-
ity condition, it can continue to operate correctly regard-
less of the presence of internal cluster bottlenecks.

3 The Quorum Architecture

In this section we describe the architecture of Quorum
that follows our previously stated model and assump-
tions. In Quorum, the QoS policy is specified as a list
of QoS classes describing the quality that must be en-
sured for each class of service. We define a QoS class
as a tuple that describes: 1) how to identify requests of
this class (classification rules) and, 2) what type of QoS
must be enforced (output guarantees). In the same way
as level-7 load-balancers [19, 20, 29], Quorum classi-
fies requests based on a combination of parameters such
as IP address, port, URL and path. Output guarantees
are specified in terms of guaranteed minimum through-
put and maximum response time. For example, Table 1
describes a QoS policy containing two QoS classes for
a service provider hosting webmail portals for two dif-
ferent companies. In the example, BigCorp has a much
higher guaranteed throughput due to an expected higher
traffic volume and SmallCorp requires much tighter re-
sponse time guarantees for its users. Notice that the defi-
nition of output guarantees includes both throughput and
response time requirements. While it is often possible to
meet one type of guarantee at the expense of the other,
our solution accommodates both. Additionally, Quorum
allows throughput and response time guarantees to be
expressed using either percentiles or averages since the
way in which each customer wishes to view a guaran-
tee varies. In both cases, however, the time frame over
which the average or percentile is computed is substan-
tially longer than the time required to service an individ-
ual request.

Quorum uses a single-policy enforcement engine to
intercept and control in-bound traffic at the entrance of
the site hosting the services. By tracking the responses
to requests that are served within the site, our system
automatically determines when new requests can be al-
lowed entry such that a specified set of QoS guarantees
will be enforced. No knowledge of the internals of the

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 161

Table 1: Example QoS policy for a service provider
hosting webmail portals for two different companies.

site are needed and no instrumentation is required. In
other words, to make an Internet site capable of provid-
ing QoS guarantees it is enough to deploy Quorum at its
entrance point and define the desired QoS policy to be
enforced.

Figure 2: The architecture of Quorum.

Figure 2 depicts the architecture of Quorum, consist-
ing of four different modules each of which implements
part of the functionality that is necessary to enforce a
QoS policy. The Classification module categorizes the
intercepted requests from the clients into one of the ser-
vice classes defined in the QoS class. The Load Control
module determines the pace (for the entire system and
all client request streams) at which Quorum releases re-
quests into the cluster. The Request Precedence module
dictates the proportions with which requests of different
classes are released to the cluster. The Selective Drop-
ping module drops requests of a service class to avoid
introducing work accumulation that would cause a QoS
violation. In the next sections we detail further the im-
plementation of the Quorum modules. We explicitly ex-
clude the details associated with Classification since it is
a well understood problem that has already been studied
in the literature [22].

3.1 Load Control
The Load Control module has two primary functions.
First, it prevents large amounts of incoming traffic from
overloading the internal resources of the cluster. When
the internal resources become overloaded, the internal
software (i.e., operating system, web servers, applica-
tions, etc.) will delay or drop requests without regard
for their QoS classification. Second, it maintains the re-
sources within the cluster at a high level of utilization
to achieve an overall good system performance (for the
given cluster configuration). The goal of the Load Con-
trol module is to have the cluster operate at maximum

Figure 4: Structure of Load Control module.

capacity so that the largest possible capacity guarantees
can be met, while also preventing overload conditions
that would cause response time guarantees to be violated.

Based on the previously described time-shared model,
our implementation exploits the direct correlation be-
tween the amount of work accumulation inside the clus-
ter and the time required for requests to be computed by
the hosted services. In general, more work introduced
into the cluster corresponds to longer compute times for
each service (given a fixed amount of resources) once
the number of parallel requests exceeds the number of
resources. With this in mind, the Load Control module
can directly affect the amount of time that requests take
to be computed inside the cluster (i.e., compute time) by
controlling how much traffic is “in progress” at any time.

Similar to TCP, our implementation uses a sliding win-
dow scheme that defines the maximum number of re-
quests that can be outstanding at any time (see Figure 4).
The basic operation of the Quorum engine consists of
successively incrementing the size of the window until
the compute times of the QoS class with the most re-
strictive response times approaches the limits defined by
its guarantees. Our current implementation uses a sim-
ple algorithm (see Figure 3.a) that increments (or decre-
ments) the window linearly until the currently observed
computing times are considered too high by the Selective
Dropping module (see Section 3.3 for details on how this
threshold is chosen). Our implementation updates the
window size every 500ms, a compromise between hav-
ing fast reaction times and allowing enough requests to
finish within a period such that the collected computing
times are significant. A more sophisticated (and reactive)
version of the algorithm using non-linear variation of the
window sizes is under study.

3.2 Request Precedence
The main function of Request Precedence is to virtually
partition the cluster resources among each of the service
classes. Resource isolation is a necessary functional-

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association162

(a) (b) (c)

Figure 3: Simplified pseudo-code for the algorithms of the three main modules of Quorum.

ity that allows each service class to enjoy a minimum
amount of processing capacity, independent of potential
overload or misbehavior of others. This module is able
to partition externally the service delivered by the clus-
ter, by controlling the proportions in which the input traf-
fic for each class is forwarded to the internal resources.
Thus, the goal of this module is to ensure that the frac-
tion of the overall cluster capacity devoted to each class
is large enough to satisfy its throughput guarantees at all
times.

The Request Precedence module also attempts to max-
imize performance in overload situations without allow-
ing guarantees to lapse. It reassigns unclaimed resources
to other QoS classes demanding more processing power
than they have been granted. Reassigning unutilized ca-
pacity allows the QoS engine to take full advantage of the
available cluster resources allowing some service classes
to enjoy a level of service that is higher than what they
have been guaranteed. At the same time, the Request
Precedence module ensures that those classes that are
not using their maximum allowable share of the overall
capacity none-the-less receive enough capacity to meet
their guarantees. By continually calculating and adjust-
ing the fraction of cluster capacity that is given to each
class, Quorum differs from an approach that relies on
physical partitioning of the resources where temporary
reassignment cannot be implemented.

Under Quorum, Request Precedence is implemented
by a scheduling algorithm that logically partitions the
window of outstanding requests (as dictated by the Load
Control module) according to the throughput guarantees
specified in the QoS classes. This method exploits (and
depends on) the time-shared nature of clusters which as-
sign resources equally amongst all running tasks. As a
result, it is possible to increase the share of the clus-
ter resources for a particular service class by increas-
ing the number of tasks that are devoted to computing
its requests. In particular, our model defines that each
request that is being computed in the cluster will get
1

N
th of the total utilization, when N is the number of re-

quests that are concurrently being processed in the clus-
ter. Therefore, the aggregated utilization of M requests

will amount to M

N
th of the total cluster usage. In the case

where all of the M requests belong to the same service
class, that service class is effectively enjoying a M

N
th of

the cluster’s resources.

Figure 5: Function of Request Precedence module.

To that effect, our scheduler assigns a weight Φi to
each of the QoS classes and uses this weight to par-
tition proportionally the window accordingly (see Fig-
ure 5). Instead of allocating a fixed number of slots of
the window per class, our algorithm (see Figure 3.b) uses
a dynamic method that achieves similar characteristics to
Weighted Fair Queuing disciplines [11, 17, 31] in terms
of proportional rate guarantees and reassignment of sur-
plus. However, the guarantees in our case apply to win-
dow sizes instead of service rates (i.e., throughput). The
reason for this choice is that throughput for a given ser-
vice class can only be guaranteed when the computing
requirements of the requests are known. In other words,
the capacity necessary to achieve a given throughput is
directly related to the computational complexity of the
requests. On the other hand, assigning a particular win-
dow size corresponds to guaranteeing a portion of the
cluster capacity, independent of the computing complex-
ity of the incoming request stream. Therefore, by work-
ing with a capacity measure (i.e., proportions of out-
standing requests), Quorum can provide effective isola-
tion between classes when their computing requirements
are not known a priori or can change dramatically.

Capacity can be seen as a fungible metric that links
output throughput and computing requirements such that
an increase in one can be made to force a decrease in the

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 163

other. For example, a capacity equivalent to 10 nodes
may correspond to an output throughput of 500 req/s at
a compute cost of 20ms/req, but also to 1000 req/s if the
compute cost is only 10ms/req. The internal capacity al-
located for a class is calculated from the nominal guaran-
teed throughput (as expressed in the QoS class) and the
expected computation requirements of the requests (as
agreed upon between the provider and the consumer).
In the cases where the computation complexity is vio-
lated (i.e., higher than agreed upon) for a particular class,
instead of dropping the traffic of the faulty class, Quo-
rum will gracefully degrade its throughput to maintain
the same internal capacity allocation.

3.3 Selective Dropping

The function of Selective Dropping is to discard the ex-
cessive traffic received for a QoS class in the situations
where there is not enough available capacity to fulfill its
incoming demands. A dropping module is necessary to
prevent large delays from occurring in overloaded situ-
ations where requests would otherwise accumulate un-
boundedly in the engine and violate the QoS guarantees.
The goal of the Selective Dropping module is to ensure
that the response time guarantees of each class will be
met for all requests that can be serviced.

The basic operation of the Selective Dropping mod-
ule is, in essence, very simple, since it can leverage from
properties that are already provided by the Load Control
and Request Precedence modules. The Selective Drop-
ping module independently observes each of the QoS
queues of the engine and discards the requests that have
been sitting in the queue for so long that the deadline
for their service cannot be met. In our implementation
(Figure 3.c), a request will be dropped if the time left for
meeting the deadline once it gets at the head of the queue
is less than the expected time of computation of its class.
In other words, a request will be dropped if we expect it
to miss its deadline according to how other requests of
the same class are currently performing (Figure 6). The
current computation times for a class can be considered
a reliable estimation of their expected computation since
they are stabilized by the feedback loop of the the Load
Control module.

The Selective Dropping module leverages the queu-
ing inside Quorum to absorb safely peaks of traffic dur-
ing transient overload conditions without violating the
response time guarantees. To this effect, it works closely
with the Load Control module by signaling ahead of time
when a service class is likely to become overloaded. In
our implementation we signal the Load Control mod-
ule to stop increasing the load of the cluster when the
observed computing time of the most restrictive service
class reaches half of its response time guarantee. By

Figure 6: Structure of Selective Dropping module.

closely working with the Load Control module, Selective
Dropping can ensure that there is an available queuing
time that is at least half the maximum allowed response
time. Note, however, the queuing time is independent for
each class, therefore classes with looser response time
guarantees can support longer queuing periods and thus
absorb of much larger transient peaks of traffic without
violating the guarantees. The choice of ‘half’ is a com-
promise motivated by the tradeoff between maintaining
cluster occupancy and allowing the necessary queuing
space to absorb peaks of traffic. We are currently work-
ing on an optimized version that can dynamically adapt
this threshold to allow more queuing without adversely
affecting overall system performance.

Finally, the Selective Dropping module must also en-
sure that dropping requests of a particular service class
does not incur in a violation of its throughput guarantees.
To ensure that there are no invalid drops, our module re-
lies on an important property of the Request Precedence
module which states that the forwarding rate of requests
for a class into the cluster will be no lower than its guar-
anteed throughput. This property is derived from the ca-
pacity guarantees and the windowing system of the Re-
quest Precedence module which allows a new request to
be forwarded immediately after one of the same class fin-
ishes. Therefore, this property ensures that requests will
only accumulate in the engine if the incoming rate of a
class surpasses its guaranteed throughput, in which case
drops can safely be executed since they would not violate
any throughput guarantees. Note that these properties do
not hold true for misbehaving classes where the compu-
tation requirements of incoming requests are higher than
expected. However, this is not a problem since we have
already discussed that QoS guarantees do not need to
be met for such classes, which can be penalized both
in terms of throughput and response times. The imple-
mentation of independent dropping techniques, coupled
with the guarantees given by Load control and Request
Precedence, allow this module to provide response time
guarantees and isolate one class against misbehavior of
others.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association164

Combined, the functions of all four Quorum modules
(Classification, Load Control, Request Precedence and
Selective Dropping) enable cluster responsiveness, ef-
ficient resource utilization, capacity isolation and delay
differentiation, thus guaranteeing capacity and response
times for each independent service class.

4 Experimental Performance Comparison

In this section we demonstrate that the four modules of
Quorum can provide QoS guarantees under realistic con-
ditions even though they treat the cluster resources and
Internet services as a “black-box”. We have performed
extensive studies of each of the presented modules, both
in isolation as well as operating together. Due to space
constraints we do not include them in this paper, but the
details of these studies can be found in [12]. Instead, in
this section we focus on examining the performance of
Quorum as a complete system, and study how it com-
pares to the best of the known approaches. Our investi-
gation is empirical and is based on the deployment of an
Internet search service used by Teoma [35] using a 68-
CPU cluster. We analyze how five different techniques
(representing both state-of-the-practice and state-of-the-
art) offer differentiated quality to distinct groups of cus-
tomers using generated message traffic based on web-
search traces. We then quantify the observed quality of
service delivered by each method.

4.1 Experimental Methodology
Our experimental setup consists of several client ma-
chines accessing a cluster system through an interme-
diate gateway/load-balancer machine. Accessing the
services through a load balancer machine is the most
commonly used architecture in current Internet services.
For example, Google [21] funnels traffic through sev-
eral Netscaler [29] load-balancing systems to balance
the search load presented to each of its internal web
servers [23].

To perform our experiments in the most realistic pos-
sible manner, we have deployed a commercial-grade In-
ternet service on a 68-CPU cluster system and replayed
real traffic traces from its commercial operation [33].
The service deployed is the index search component of
the Teoma commercial search service [35]. The in-
dex search component consists of traversing an index
database and retrieving the list of URLs that contain
the set of words specified in the search query. The to-
tal size of the index database used is 12GB and is fully
replicated at each node. The index search application
from Teoma is specifically built for the Neptune mid-
dleware [34], a cluster-based software infrastructure that
provides replication, aggregation and load balancing for

Figure 7: Experimental test-bed used for our bench-
mark using Teoma’s search service.

network-based services. The version of Neptune we use
also provides QoS mechanisms allowing the specifica-
tion of proportional throughput guarantees and response
times constraints through the definition of yield func-
tions [33]. As it is the case with commercial search
engines, our system accesses the service through a set
of front-end machines that transform the received URLs
into internal queries that are then forwarded to the mid-
dleware servicing the search database for processing.
To mimic the environment at Teoma, we implement the
front-end with an Apache web server [3] and a custom-
built Apache module that interfaces with the Neptune in-
frastructure. This module is necessary to utilize the mid-
dleware functionality to locate other Neptune-enabled
nodes and appropriately balance the requests based on
the current load of the available servers. The cluster
configuration used in our experiments is depicted in Fig-
ure 7. The hardware configuration of the cluster consists
of 2.6 MHz Intel Xeon processors each with 3 gigabytes
of main memory organized into nodes with either two
or four processors per node. The network interconnect
between processors is switched gigabit Ethernet and the
host operating system is RedHat Linux/ Fedora Core re-
lease 1, using kernel version 2.4.24.

Our gateway node is a 4-CPU dedicated machine
that can function in two different modes: as a load-
balancer or as the Quorum engine. When running in
load-balancer mode, the machine is configured to imple-
ment the typical (Weighted) Round Robin and maximum
connections options available in most commercial hard-
ware [19, 20, 29]. When running as Quorum engine, the
gateway is configured to enforce the QoS policy defined
for the experiment. Both the load-balancer and Quorum
engine are entirely implemented in user-level software.
The gateway is implemented as an event-driven Java ap-
plication which makes extensive use of the new libraries
for improved I/O performance [24]. We use Sun’s 1.5
Java virtual machine with low-latency garbage collection
settings. Our performance tests show that our imple-
mentation can achieve a peak performance of 12Kreq/s
(i.e., around 70K packets/sec) for certain client work-

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 165

Table 2: QoS guarantees and traffic workload of the
Teoma search engine benchmark.

loads. Thus the performance of our base-level system
is high enough to be used in load levels that are com-
parable to current commercial systems (e.g. Google re-
ports around 2500 req/sec [23], Ask Jeeves around 1000
req/sec [5]). Both our implementation of a load-balancer
and the Quorum engine are based on the same core soft-
ware for fielding and forwarding HTTP requests.

For this experiment our methodology consists of us-
ing the previously described test-bed to recreate search
traffic and to explore the effectiveness with which five
different approaches can enforce a particular QoS policy
for a single service with multiple client groups. The five
compared approaches are:

Load Balancer The gateway machine is configured as
a load balancer and tuned to match common high
performance settings of Internet sites. Specifically,
we configure it to use the least connections load-
balancing algorithm and limit the maximum num-
ber of open connections for each front-end to match
their configured maximum (i.e., 250 processes for
Apache server and 150 for the Tomcat engine).

Physical Partitioning A separate group of machines are
dedicated for each of the existing QoS classes. We
configure the load-balancer to forward requests of a
particular class only to its restricted set of reserved
nodes.

Overprovisioning The size of each physical partition is
increased such that the resulting capacity and re-
sponse time guarantees can be achieved as specified
by the QoS policy (possibly at the expense of under
utilized resources).

Neptune QoS The gateway is configured as a load bal-
ancer and the QoS mechanisms of Neptune are en-
abled to implement the QoS policy under study.

Quorum QoS The gateway runs the Quorum engine
which implements QoS and the internal cluster re-
sources implement only the Internet service. (i.e.,
QoS functionality in Neptune is disabled)

In order to benchmark Quorum and the other con-
sidered QoS methodologies, client requests are replayed

Table 3: Experimental results for Teoma search engine.

from a request trace supplied by Teoma that spans 3 dif-
ferent days of commercial operation [33]. We also use
Teoma-supplied traces of word sequences to generate
real search queries. The levels of incoming traffic are de-
signed so that the input demands of the different clients
are far below (class A), far above (class B) and coincid-
ing with (class C) the capacity constraints specified in
their respective QoS classes. Clients for each QoS class
use different inter-arrival times, corresponding to one of
the three different days of the original traces. Table 2
further depicts the details of the QoS policy and input
workload used in the experiment, including the capacity
and response time guarantees for each QoS class.

4.2 QoS Results

Figure 8 presents the results in terms of achieved average
throughput and average response times for the five QoS
methodologies using the same input request streams. The
upper portion of the figure shows how the totality of in-
coming traffic for a class (represented by the height of a
bar) has been divided into traffic that is served and traffic
that is dropped. Horizontal marks delimit the minimum
amount of traffic that has to be served if the QoS guaran-
tees are met. Note that a resulting throughput below the
horizontal marks still meets the QoS guarantee for a class
if the totality of its incoming traffic is successfully served
(i.e., the system cannot serve more traffic than it has re-
ceived). The lower part of Figure 8 presents the results
in terms of response times. For response times, we use
horizontal marks to denote the maximum response times
allowed by the QoS policy and denote with a darker color
the classes that do not meet the guarantees. We present
these response time results using a logarithmic scale for
better visual comparison since the delays differ substan-
tially. Table 3 summarizes these results in tabular form
(including standard deviations in parenthesis) to further
aid their comparison.

We begin by analyzing the quality of the service
achieved by a load-balancer-only technique. Throughput
results show that the amounts of traffic served in this case
are directly dependent on the levels of incoming traffic

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association166

Figure 8: Experimental comparison of current approaches and Quorum, using Teoma’s search engine.

rather than driven by the specified QoS policy, thus iso-
lation between classes is not achieved. In this case we see
that the dominance of class B traffic induces drops in A
and C, even though the demands for these classes are al-
ways below (in the case of class A) or never exceed (for
class C) the guaranteed capacity for each class. At the
same time, the large response times shown in the lower
figure, demonstrate that simple connection limiting tech-
niques employed by the load-balancer are not enough to
prevent large delays in response times (e.g. up to 14 sec-
onds per request), rendering this technique inadequate to
provide QoS guarantees.

When resources are physically dedicated through
Physical Partitioning, the system is able to serve the ex-
pected amount of traffic for each of the classes and drop
requests only in the cases when the demands of incoming
traffic exceed the allocated capacity. Throughput guaran-
tees are met, however, if we observe the results in terms
of response time, we see that the overloaded partition B
experiences a delay more that 30 times higher than the
maximum allowed by the QoS policy. Thus while phys-
ically partitioning resources is able to provide capacity
guarantees, it fails to ensure response times constraints
for arbitrary incoming demands. It is worth noting that
the reason for partition B serving more throughput than
its guarantee is that the raw performance of the partition
is slightly higher than the QoS guarantee defined in the
policy.

When each of the partitions is augmented with enough
resources (i.e., over-provisioning) all requests are suc-
cessfully served. The response times are also reduced be-
low the maximum allowed delay. In this case, class B and
class C require an additional 10 and 2 CPUs respectively
in order to meet the specified response time guarantees.
Thus over-provisioning is the first of the techniques that
can successfully provide both throughput and response
time guarantees. However, meeting the QoS guarantees
through over-provisioning comes with a high cost. In

our experiment, the increase in cost of overprovisioning
was 60% (i.e., from 20 to 32 CPUs) with resource uti-
lization declining to 80%. Further, these numbers rep-
resent the minimum amount of over-provisioning that al-
lowed us to achieve the QoS goals. In general, between
load spikes the extra resources needed to serve surges in
load lay idle. Thus, given the wide load fluctuations that
most commercial Internet services can experience (i.e.,
3-10 times the normal amount [16]), we expect the re-
source utilization of over-provisioned systems in situ to
be worse than what we observe in this experiment.

Neptune QoS and Quorum both meet the specified
throughput and response time guarantees. Both tech-
niques serve at least the necessary amount of traffic and
are able to keep response time below the maximum de-
lays associated with each guarantee. Furthermore, both
techniques are able to successfully reassign the capacity
not utilized by class A to the greedy clients of class B. We
observe that direct control of the resources and services
in the cluster (due to its invasiveness) allows Neptune to
achieve a slightly better throughput than Quorum (i.e.,
3%). This slight performance penalty can be seen as the
cost that an external solution such as Quorum has to pay
for not modifying any of the software internals. How-
ever, given the completely non-invasive nature of Quo-
rum, we were surprised by how closely it matched the
performance achieved by the invasive and commercially
developed Neptune system. Figure 8 also shows that
the resulting response times from Neptune are somewhat
lower than Quorum. This difference is because Quorum
is only designed to enforce maximum delay constraints
and it is not concerned about minimizing the overall de-
lay of service times. We are currently working on a pro-
totype that can both ensure response time constraints and
lower response delays when possible.

Summarizing, this experiment demonstrates the effec-
tiveness of Quorum empirically, using a commercial In-
ternet service and commercial traffic levels. Quorum in

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 167

this setting is competitive with the best of the current
approaches in its ability to enforce both response time
and throughput QoS guarantees. In particular, Quorum
has less cost and achieves better resource utilization than
over-provisioning techniques due to its ability to reassign
unutilized capacity to those service classes that need it.
At the same time, it achieves comparable QoS guaran-
tees to an integrated and commercially available system
such as Neptune, incurring only a small performance cost
(i.e., 3%). In the next section (Section 5.4) we illustrate
its flexibility by showing how it can provide reliable QoS
guarantees in a complex and heterogeneous site running
three different services.

5 Robustness under Extreme Conditions

In this section we investigate the robustness of Quo-
rum and its QoS enforcement capabilities under scenar-
ios that emulate the extreme conditions experienced by
many current Internet services. To do so, we first study
the reaction of Quorum to three circumstances: sudden
traffic fluctuations (Section 5.1), sudden changes in com-
puting requirements (Section 5.2) and node failures and
recoveries (Section 5.3). We then present a larger-scale
experiment in which we detail its response to the same
conditions in a substantially more complex Internet host-
ing scenario (Section 5.4).

To conduct the initial set of isolated robustness studies
we use two service classes: A and B. Service class A is
a misbehaving class that begins with an input load that
can be fully serviced with its allocated capacity, and then
changes its demands to surpass the capacity required to
meet its guarantees as well as to drive the overall sys-
tem into overload. Service class B is a well-behaved
class that receives a constant demand of traffic that is al-
ways below the traffic level that can be serviced under its
guarantees. For each of the experiments, we detail how
well Quorum insulates the quality of service experienced
by the well-behaved class B from the fluctuations intro-
duced by class A. We also investigate how the quality of
service given to class A degrades gracefully during the
periods when its demands exceed the capacity allocated
to meet its guarantees. In particular, our goal is to pro-
vide as much capacity to A as possible without violating
the guarantees made to either A or B. As described in
subsection 3.2, however, the capacity allocated to A and
B is fungible and constantly adjusted by Quorum as it
responds to changes in load conditions.

To run these experiments we use a system consisting
of 4-CPUs for client machines accessing a 16-CPU clus-
ter through a gateway machine implementing the Quo-
rum engine. Each of the servers runs the Tomcat appli-
cation server [36], providing a “CPU-loop service” con-
sisting of a servlet that loops a number of times so that

it utilizes a certain amount of CPU (as specified in the
HTTP parameters of each incoming request). This artifi-
cial emulation of a true web service allows precise con-
trol of the CPU load requirements associated with each
request. Requests received from the clients are classified
into QoS classes according to the host field name found
in the HTTP header of the request (i.e., host: A or B).

Table 4: QoS policy used in the studies.

The QoS policy defined for the experiments allocates
the same guarantees for both classes of service (Ta-
ble 4). Note that unlike the previous experiments, the
response time guarantees are expressed in terms of 95th
percentiles and not averages – a much more challenging
but potentially more desirable metric to enforce, espe-
cially given the range of conditions to which we subject
the cluster. All figures in this section depict the resulting
average of the observed throughput (upper graph) and the
95th percentile of response times (lower graph) over two-
second sampling intervals.

5.1 Sudden Traffic Fluctuations

In this experiment we show how Quorum manages wide
fluctuations of incoming traffic. To demonstrate this
property we subject the service for class A to a sudden-
but-sustained impulse of incoming traffic that is four
times its normal rate. This sudden increase in demand
is enough to bring the cluster to full utilization. Figure 9
shows the results from the experiment. In the Figure, the
traffic fluctuation (labeled as “Input Class A”) increases
instantly from 600 req/s to 2400 req/s 120 seconds af-
ter the experiment has begun. Despite the sudden and
sustained increase in A’s traffic the degree to which ser-
vice class B meets its guarantees is isolated from the
change in input conditions. B’s throughput is virtually
unaffected and its response times, while they climb, are
always kept below the maximum guaranteed delay. In
response to the traffic surge, Quorum quickly shifts any
uncommitted resources to class A. Strictly speaking, it
is consistent with the guarantee given to class A simply
to cap throughput at 900 req/s for that class. However,
by automatically sensing the degree to which it can slow
down B’s response times (without violating B’s guaran-
tees) and committing additional resources to A, Quorum
is able to give A as much throughput as can be spared
while remaining within the constraints of both guaran-
tees.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association168

 0

 500

 1000

 1500

 2000

 2500

A
vg

. T
hr

ou
gh

pu
t (

re
qs

/s
)

Min. Guaranteed

Input Class A

Class A
Class B

 0

 100

 200

 300

 400

 500

 80 100 120 140 160 180 200 220 240

95
th

%
 R

es
po

ns
e

Ti
m

e
(m

s)

Time (sec)

Max. Guaranteed

Figure 9: Quorum’s reaction to extreme fluctuation
of incoming traffic.

We should note that the slight spike in response times
occurring in second 120 appears a consequence of our
short sampling period. We wish to depict circumstances
that stress the capabilities of Quorum and as such, we
calculate the percentiles with a two-second periodicity.
In practice, it is unlikely that a commercial system will
need to ensure QoS guarantees on such a fine-grained
time scale, especially when using percentiles to specify
guaranteed performance levels.

5.2 Computing Requirements Overload

In this experiment we investigate how Quorum handles
wide variations in the computing requirements associ-
ated with a request stream. These types of variations can
occur in situations such as application misbehavior (e.g.,
software bugs that cause excessive resources to be used
in computing a request) or changes in the workload char-
acteristics (e.g., requests incurring in unusually long and
expensive database queries). We induce this anomaly
by suddenly increasing the computing requirements for
class A from 8ms to 40ms of exclusive CPU time. Again,
the goal is to protect the performance of class B while de-
grading the throughput given to class A to a level that is
both maximal and consistent with the guarantees for both
classes. To better observe the expected service for class
A we include the throughput guarantees normalized to its
incoming computing requirements (i.e., the normalized
throughput is five times lower than the nominal when re-
quests are five times more difficult to compute).

Results from the experiment are depicted in Figure 10.
As in the previous experiment the throughput given to
class B remains virtually unaffected by the increase in
computing requirements (seconds 120-180), and its re-
sponse times are always kept below the guarantees. At
the same time, in response to the increase in computing
demands for the misbehaving class A, Quorum immedi-

 0

 200

 400

 600

 800

 1000

 1200

A
vg

. T
hr

ou
gh

pu
t (

re
qs

/s
)

Min. Guaranteed

A’s requirements increase 5x
Normalized Guarantee
for Class A

Class A
Class B

 0

 100

 200

 300

 400

 500

 80 100 120 140 160 180 200 220 240

95
th

%
 R

es
po

ns
e

Ti
m

e
(m

s)

Time (sec)

Max. Guaranteed

Figure 10: Behavior of Quorum when requests of class
A suddenly require five times more resources for their
computation.

ately decreases A’s throughput. Although degraded, A’s
throughput is always maintained above the normalized
guarantee corresponding to the internal capacity alloca-
tion Quorum made for this guarantee.

Recall from Section 3.2 that the Request Precedence
module guarantees enough resources to class A to ful-
fill the nominal throughput guarantee of 900 req/s as-
suming 8ms of computing time. When the computing
requirements increase to 40ms/req the throughput must
be lowered to 180 req/s to preserve enough capacity for
B’s guarantees. Thus we expect the system to enforce
a throughput guarantee of 180 req/s for class A during
the period in which its requests require 40ms of CPU
time, as shown by the normalized guarantee line. How-
ever, between seconds 120 and 180 of the experimental
period, class A is receiving a throughput of 280 req/s,
which includes a surplus of 100 req/s corresponding to
the resources that class B is not utilizing. If B’s require-
ments were to suddenly increase, Quorum would reduce
A’s throughput to 180 req/s and and change the propor-
tion of B’s requests admitted to reallocate more resources
to B. Note also that this constant allocation and realloca-
tion of capacity is sensed by the Quorum engine auto-
matically based on the observed responses leaving the
cluster, and not based on predefined parameters or in-
strumentation describing the CPU requirements for each
type of request. As is the case with the previous experi-
ment, the short time scale over which each percentile is
computed causes a single “spike” in response time dur-
ing the two-second interval spanning second 120.

5.3 Node Failures and Recoveries

In this experiment, we depict Quorum’s response to sig-
nificant node failures and recoveries. At second 120, we
induce the failure of 2 out of the 8 nodes and then recover

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 169

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

A
vg

. T
hr

ou
gh

pu
t (

re
qs

/s
)

Min. Guaranteed

Cluster loses 2 of 8 nodes Class A
Class B

 0

 100

 200

 300

 400

 500

 80 100 120 140 160 180 200 220 240

95
th

%
 R

es
po

ns
e

Ti
m

e
(m

s)

Time (sec)

Max. Guaranteed

Figure 11: Quorum’s reaction to a failure of 2 nodes.

the nodes 60 seconds later. To introduce these failures
we program our load-balancer module to stop forward-
ing traffic to the “failed” nodes. We have also increased
the incoming traffic rate for class A to 1300 req/s in order
to make the resulting change in throughput more visible.

We show the results of the experiment in Figure 11.
When the nodes fail, Quorum rapidly reduces the
throughput given to class A to its 900 req/s guarantee.
Notice that this adjustment, again, does not violate the
quality of the service guarantees given to class B. As
with the previous two experiments, the throughput for
B is unaffected while the response times grow to a level
well below their maximum guaranteed delay.

We should note that in this example it was possible
to enforce the QoS policy, even under the degraded op-
eration, because there was enough spare capacity that B
was not utilizing which could successfully be reassigned
to A. In the cases where there are not enough resources
to fulfill the guarantees across all classes (i.e., QoS pol-
icy is not feasible), Quorum reacts by degrading the ser-
vice of each class proportionally to the guarantee associ-
ated with that class. For example, if the input demands
for class B had been above the guaranteed 900 req/s,
the Quorum would have evenly assigned a throughput
of 700 req/s for each class since the degraded capacity of
the system would support 1400 req/sec in total, and the
guarantees for both A and B are the same. We believe
that other non-proportional mechanisms for reapportion-
ing fungible capacity when QoS policies become infea-
sible are highly desirable and we plan to investigate them
further in our future work.

5.4 Complex Heterogenous Services

Through the previous set of controlled experiments we
have shown that Quorum can both enforce service iso-
lation as well as gracefully degrade the service of mis-
behaving classes even under extreme operating condi-

Figure 12: Setup of the complex, heterogeneous Internet site.

Table 5: QoS policy for the complex and
heterogeneous Internet site.

tions. We now show how Quorum reacts to the same
three severe circumstances for a larger-scale and substan-
tially more complex Internet site that hosts three differ-
ent services. Additionally, this experiment illustrates the
flexibility of Quorum’s “black-box” approach: its abil-
ity to provide QoS guarantees using heterogeneous hard-
ware configurations and multi-tiered software architec-
tures where the source code of the applications cannot
be modified. At present, we know of no other published
infrastructure that can provide QoS for this complex In-
ternet hosting scenario.

To perform this experiment we host the Teoma search
and CPU-loop services (described previously) together
with a third service called RUBiS [32] using shared set of
cluster resources. RUBiS is a publicly available auction
site modeled after eBay that has been used by several re-
searchers for evaluating application server performance
scalability [14, 15]. We use the version of RUBiS that
is implemented using Enterprise Java Beans (EJB) de-
ployed on top of JOnAS application server (v3.3.6) and
Tomcat (v4.1) servlet engine. The Tomcat servers are
configured with session replication and the JOnAS ap-
plication server is configured to balance the execution of
EJBs across each of its nodes according to their respec-
tive loads. The auction data is stored using a mySQL
database with the same configuration and size as the
benchmark described in [15]. Traffic for the RUBiS auc-
tion is generated by the client emulator supplied with

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association170

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

A
vg

. T
hr

ou
gh

pu
t (

re
qs

/s
)

Teoma Guaranteed

RUBiS Guaranteed

CPU-Loop Guaranteed

CPU-Loop Input

Sudden Traffic Fluctuation
Computing

Requirements Overload Node Failure

1 Teoma Node Fails

Teoma Search
CPU-Loop Servlet

RUBiS

 0

 1000

 2000

 3000

 100 200 300 400 500 600

95
th

%
 R

es
po

ns
e

Ti
m

e
(m

s)

Time (sec)

Teoma Guaranteed

CPU-Loop Guaranteed

RUBiS Guaranteed

Figure 13: QoS results for a complex, heterogeneous Internet site.

the RUBiS software which performs typical actions of an
auction user such as browsing, bidding or buying items.
This type of service also allows us to illustrate the effi-
ciency of Quorum when providing QoS guarantees un-
der highly variable workloads. In this particular case
the distribution of computation requirements resulted in
(median=101, mean=149, 95

th%=457, max=3088)ms
which can be approximated with a two-phase hyper-
exponential with the first mode on the mean.

Figure 12 depicts the hardware and software configu-
ration used for this experiment. Notice that we include
both nodes that are dedicated to a single service as well
as nodes that are shared by more than one service. In
particular, the CPU-loop service shares 7 of the 8 nodes
used by the Search component of Teoma, and also with 2
of the 5 nodes running the RUBiS auction. Our intention
is to capture both the fluid sharing of cluster resources as
well as the static capacity planning that we believe will
always be present in a commercial system.

Also for this experiment we program our Quorum en-
gine with the QoS policy defined in Table 5, deploy it at
the entrance of the site (with no other information than
the QoS policy), and observe how well it performs in re-
sponse to the same three types of changes explored in
the previous subsections. Similarly, we generate three
types of input load. For the Teoma service, we introduce
incoming traffic that exceeds what can be completely
serviced under the constraints of its guarantee. Alter-
natively, for the RUBiS service, we keep the incoming
traffic load below the maximum serviceable level. We
then vary the input for the CPU-loop service to create

a peak of demand during the period from seconds 140
to 220 and to increase its computing requirements from
8ms to 40ms during the period between seconds 300 and
420. Finally we kill one of the Teoma back-end nodes at
second 475 and restart it 120 seconds later.

Figure 13 shows the evolution of throughputs (above)
and response times (below) for each of the three different
services during the 11 minute run, in which a total of 1.1
million requests were served. Vertical lines separate the
three different conditions (input increase, computation
increase, node failure) to which Quorum must respond.
Throughput guarantees are again normalized to the ex-
pected computing requirements. Only CPU-loop service
shows a deviation form the nominal throughput guaran-
tees since it is the only service that suffers a change in its
computation requirements. From the first segment of the
figure, it is evident that Quorum protects the RUBiS ser-
vice and also reassigns the the available resources such
that the two overloaded classes during the peak period
are served according to the QoS policy. As we observed
in Section 5.1, the amount of surplus service received by
Teoma during the peak period, is given back to the CPU-
loop service so that both classes can operate at their lim-
its of throughput and response times.

In the second segment of the figure, the computing re-
quirements of CPU-loop service increase to 5 times their
original levels. In this case we induce a change in the
computing requirements that it is more gradual than the
sharp change shown in Section 5.2 to better emulate how
a true Internet site might degrade. Quorum reassigns
capacity not needed to meet Teoma’s guarantees to the

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 171

CPU-loop service while maintaining the guarantees for
RUBiS. Also, the CPU-loop service suffers a degrada-
tion in throughput that is inversely proportional to the
increase in its computing requirements, thus maintaining
the fungible capacity described by its guarantee. In this
case, there are no extra resources to be used in aiding the
overloaded CPU-loop class, thus its resulting throughput
is capped exactly at its normalized guarantee.

In the third segment of the experiment the dedicated
search back-end from the Teoma service fails. In this
case we induce a true failure by killing the server process
of Neptune and use the fail-over and recovery capabili-
ties of the middleware to detect the change. Note that
the failure of the node only has an effect in reducing the
spare capacity that Teoma service is enjoying. Both the
throughput and response times of CPU-loop and RUBiS
are, once more, unaffected.

The results from these experiments illustrate several
important points. First, our prototype implementation of
Quorum is able to provide robust QoS guarantees even
in the presence of the extreme conditions which service
providers are currently facing. Second, the QoS guaran-
tees are provided in very fine-grained time scales even
when using a strict metric such as the 95th percentile of
the response times. Third, Quorum is a flexible QoS so-
lution that can provide performance guarantees in hetero-
geneous Internet sites without requiring any prior knowl-
edge of their internal hardware architecture or software
configuration. Forth, Quorum is capable of handling
complex service types which can exhibit wide (legiti-
mate) variations in the computation requirements of their
requests (e.g., RUBiS auction). In summary, our empir-
ical evaluation shows that Quorum is a viable solution
to QoS provisioning for Internet services, that has the
robustness and flexibility that current service providers
seek without requiring the modification of any of the ex-
isting software infrastructure of the sites.

6 Related work

There are many approaches to providing QoS for Inter-
net services, but relatively few that combine flexibility
and extensibility with response time and throughput per-
formance. In this section we briefly introduce some of
the most relevant work and compare it to the Quorum
approach.

QoS for network communication is typically defined
in terms of reliable communication between two end-
points with performance guarantees. Protocols such
as diffserv [9] and intserv [13] or trunk reservation
schemes [28] leverage the existing routing infrastruc-
ture and network knowledge to provide bandwidth al-
location and packet delay guarantees over the Internet.
At a higher level, approaches such as Content Distribu-

tion Networks [1] provide similar features by appropri-
ately managing an overlay network to content closer to
the end-user. These approaches focus on the communi-
cation component and do not address the computational
requirements associated with the servicing of Internet re-
quests. In contrast Quorum works at the boundary of the
cluster hosting the services and, as such, complements
approaches that ensure quality of network service be-
tween the client and the cluster.

Load balancers [19, 20, 29] are perhaps one of the
the most closely related approaches to Quorum. Properly
tuned, load-balancers can greatly enhance the overall
quality of the service offered by a cluster system. Prod-
ucts such as Packeteer [30] offer traffic shaping function-
ality such that minimum bandwidth guarantees can be
allocated to distinct clients or applications. More sophis-
ticated products such as Netscaler [29] apply intelligent
connection management that protects the internal cluster
nodes from overload in response to large bursts of incom-
ing traffic. However, existing solutions are not aimed
at providing throughput and response time guarantees,
but are mainly designed to enhance the overall system
performance. Futhermore, these techniques rely on the
proper configuration of the load-balancers by an expert
operator who knows and understands the internal opera-
tion of the site to be protected. As such, these are static
configurations that are highly tuned for specific settings
and that must be repeated for any change occuring in the
site’s internals. Quorum differs from these approaches in
that it guarantees QoS in terms of both throughput and
response times. At the same time Quorum does not need
to be configured explicitly or tuned by an expert for the
specifics of the hardware or software of the site.

At the operating systems level, the QoS challenge is
typically addressed in terms of resource management.
Many research operating systems [6, 10, 37] achieve
tight control on the utilization of resources as a way
of enforcing capacity isolation between service classes.
Although these techniques have proven to be effective
in terms of capacity isolation, they are not designed to
provide response time guarantees. Furthermore, these
techniques control the resources within a single machine
and thus cannot be easily extended to clustered environ-
ments. One notable exception is Cluster Reserves [4] – a
single-node approach that has been scaled to span clus-
tered resources. Although this technique is shown to pro-
vide resource isolation at the cluster level, like its single-
machine counterparts, it does not provide response time
guarantees. Quorum is also a cluster-wide QoS solution
that provides both capacity and response time isolation as
well as throughput and response time guarantees. It also
differs from systems such as Cluster Reserves in that it
does not require customization of the operating system
used by the cluster’s internal nodes.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association172

Middleware systems such Neptune [34, 33] or Appli-
cation Server [38, 7] include QoS functionality as part
of a distributed and potentially scalable infrastructure.
By programming the applications to use these primi-
tives it is possible to construct distributed services that
offer cluster-wide QoS guarantees. However in order
for these frameworks to be effective each of the con-
stituents of a service must be integrated with the middle-
ware infrastructure. This often poses a very restrictive
constraint given the heterogeneity and proliferation of
current Internet services. Similar approaches that embed
the QoS logic directly at the application level have also
been proposed. For example, the approach presented in
SEDA [40] advocates the use of a specific framework for
constructing well-conditioned scalable services and [39]
shows the effectiveness of this framework when explicit
QoS mechanisms are built to prevent overload in busy In-
ternet servers. Rather than building an application with
QoS support, other work has modified existing applica-
tions to include QoS capabilities [2, 26]. For example,
the work done in [2] shows how it is possible to modify
the popular Apache web server to provide differentiated
services without the use of resource management prim-
itives at the operating system level. However, as is the
case with middleware approaches, the large cost of mod-
ifying the application code to include QoS mechanisms is
only effective if the entirety of the software deployment
is able to function in a concerted way towards providing
QoS. With Quorum, the applications hosted in an Inter-
net site do not need to be modified or designed for any
particular operating system or middleware infrastructure
and can directly be used in their native non-QoS state.

Some recent work has investigated resource man-
agement techniques using non-invasive approaches.
Façade [27] is a prototype implementation of a storage
controller that throttles I/O requests to a (black-box) disk
array. Similar to Quorum, it provides response time
isolation (but no throughput isolation) for different I/O
streams. However, response time guarantees can only
be enforced as long as the total incoming load is below
the capacity of the disk array (i.e., no dropping mecha-
nism is implemented). In [25], Jin et al. analyze the ef-
fectiveness of several share-based scheduling techniques
for differentiating service quality in networked servers.
Some of the project goals are similar in nature to Quo-
rum, however the analysis is done only through simula-
tion, focuses only on storage server facilities and does
not include a performance study in dynamic scenarios.
Furthermore, the devised method is somewhat invasive
since it requires offline profiling of the workload and
more importantly assumes that the cost of every single
request can be known at scheduling time. Other work
such as Gatekeeper [18] proposes a proxy system, much
like Quorum, that implements admission control for e-

commerce applications. However, Gatekeeper is not de-
signed to provide any QoS guarantees, but targeted to
reduce the overall response times and improve the per-
formance of the system. Furthermore, it has only been
tested in reduced size systems, it targets database back-
ends and relies on extensive profiling of the service ap-
plications.

7 Conclusions and Future Work

Commercial Internet service provisioning depends in-
creasingly on the ability to offer differentiated classes
of service to groups of potentially competing clients. In
addition, the services themselves may impose minimum
QoS requirements for correct functionality. However,
providing reliable QoS guarantees in large-scale Internet
settings is a daunting task. Simple over-provisioning and
physical partitioning of resources can be effective but in-
efficient. Invasive software approaches overcome the in-
efficiency problem but at the expense of reprogramming
and/or re-engineering of the services within a site to im-
plement QoS functionality.

In this paper we present an alternative, non-invasive
software approach called Quorum that provides efficient
QoS provisioning for Internet services while allowing
new levels of flexibility that current service providers re-
quire. The presented system functions at the border of an
Internet site and uses traffic shaping, admission control,
and response feedback to treat the site as a “black-box”
control system. Quorum intercepts the request and re-
sponse streams entering and leaving a site to gauge how
and when new requests should be forwarded to the hosted
services to ensure throughput and response time guaran-
tees.

We demonstrate the capabilities of our Quorum im-
plementation by experimentally comparing it to the
best state-of-the-practice and state-of-the-art approaches.
Our results show that, despite being non-invasive, Quo-
rum can enforce the same QoS guarantees as either of the
compared techniques, while achieving better resource
utilization than over-provisioning and without the appli-
cation rewriting overhead required by intrusive software
approaches. We also demonstrate that our implementa-
tion can successfully handle extreme situations such as
sudden traffic surges, application misbehavior or node
failures. Further, we also demonstrate the powerful flexi-
bility of Quorum by providing QoS guarantees for a com-
plex and heterogeneous Internet service that suffers the
same type of harmful conditions. At present, we know
of no other published infrastructure that can provide QoS
under these challenging conditions. Encouraged by the
performance of our results we are currently working on
both enhancing the performance and scalability of the
Quorum engine as well as improving our algorithms with

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 173

more sophisticated control mechanisms. Also we are in-
terested in deploying Quorum on a wider array of Inter-
net services including real commercial sites.

Acknowledgements

This research was supported by the National Science
Foundation (grant ITR-0220139), University of Califor-
nia MICRO (grant 02-067) and Sun Microsystems.

References
[1] Akamai Technologies, Inc. Content Delivery Network.

http://www.akamai.com.

[2] J. Almeida, M. Dabu, A. Manikutty, and P. Cao. Providing Dif-
ferentiated Quality-of-Service in Web Hosting Services. In Pro-
ceedings of the First Workshop on Internet Server Performance,
June 1998.

[3] Apache HTTP server. http://httpd.apache.org.

[4] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster Reserves: A
Mechanism for Resource Management in Cluster-based Network
Servers. In Proceedings of the ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, Santa Clara,
California, June 2000.

[5] Ask Jeeves Search Engine. http://www.ask.com.

[6] G. Banga, P. Druschel, and J. Mogul. Resource Containers: A
New Facility for Resource Management in Server Systems. In
Proceedings of the Third Symposium on Operating Systems De-
sign and Implementation, 1999.

[7] BEA Weblogic Server. http://www.bea.com.

[8] N. Bhatti and R. Friedrich. Web Server Support for Tiered Ser-
vices. IEEE Network, September 1999.

[9] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services. RFC
2475, Dec. 1998.

[10] J. Blanquer, J. Bruno, E. Gabber, M. Mcshea, B. Özden, and
A. Silberschatz. Resource Management for QoS in Eclipse/BSD.
In Proceedings of the First FreeBSD Conference, Berkeley, Cali-
fornia, Oct. 1999.

[11] J. Blanquer and B. Özden. Fair Queuing for Aggregated Multiple
Links. In Proceedings of the ACM SIGCOMM, San Diego, CA,
August 2001.

[12] J. M. Blanquer, A. Batchelli, K. Schauser, and R. Wolski. Quo-
rum: Providing Flexible Quality of Service for Large-Scale In-
ternet Services. In UCSB Computer Science, Technical Report
TR-2004-27, 2004.

[13] R. Braden, D. Clark, and S. Shenker. Integrated Services in the
Internet Architecture: An Overview. RFC 1633, July 1994.

[14] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and
W. Zwaenepoel. Performance Comparison of Middleware
Architectures for Generating Dynamic Web Content. In
ACM/IFIP/USENIX International Middleware Conference, Rio
de Janeiro, Brazil, Jun 2003.

[15] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and
Scalability of EJB Applications. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Seattle, Washington, Nov 2002.

[16] CNN.com Article: Internet Proves Vital Communication Tool.
http://archives.cnn.com/2001/tech/internet/09/12/attacks.internet/.

[17] A. Demers, S. Keshav, and S. Shenker. Design and Simulation
of a Fair Queuing Algorithm. In Proceedings of the ACM SIG-
COMM, Austin, Texas, September 1989.

[18] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A Method
for Transparent Admission Control and Request Scheduling in E-
Commerce Web Sites. In Proceedings of the International World
Wide Web Conference, New York, May 2004.

[19] F5 Networks. Big/IP Load Balancer. http://www.f5.com.

[20] Foundry Networks, Inc. Server Iron Internet Traffic Management.
http://www.foundrynet.com.

[21] Google. Internet Search Engine. http://www.google.com.

[22] P. Gupta and N. McKeown. Algorithms for Packet Classification.
IEEE Network Special Issue, March 2001.

[23] P. Hochmuth. Speedy Returns are Google’s
goal. Network World Fusion article, Jan 2003.
http://www.nwfusion.com/news/2003/0901google.html.

[24] Java NIO. http://java.sun.com/j2se/1.5.0/docs/guide/nio.

[25] W. Jin, J. Chase, and J. Kaur. Interposed Proportional Sharing for
a Storage Service Utility. In Proceedings of the ACM Sigmetrics
Conference on Measurement and Modeling of Computer Systems,
New York, June 2004.

[26] Y. Lu, T. F. Abdelzaher, and A. Saxena. Design, Implementa-
tion, and Evaluation of Differentiated Caching Services. IEEE
Transactions on Parallel and Distributed Systems, May 2004.

[27] C. Lumb, A. Merchant, and G. Alvarez. Façade: Virtual Stor-
age Devices with Performance Guarantees. In Proceedings of
the USENIX Conference on File and Storage Technologies, San
Francisco, CA, March 2003.

[28] D. Mitra, R. Gibbens, and B. D. Huang. State-Dependent Rout-
ing on Symmetric Loss Networks with Trunk Reservations I.
IEEE/ACM Transactions on Communications, February 1993.

[29] Netscaler, Inc. Request Switching Technology.
http://www.netscaler.com.

[30] Packeteer, Inc. Application Traffic Management System.
http://www.packeteer.com/.

[31] A. K. Parekh and R. G. Gallager. A Generalized Processor Shar-
ing Approach to Flow Control in Integrated Services Networks-
the Single Node Case. IEEE/ACM Transactions on Networking,
June 1993.

[32] RUBiS Rice University Bidding System.
http://rubis.objectweb.org.

[33] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated Resource
Management for Cluster-based Internet Services. In Proc. of the
5th USENIX Symposium on Operating Systems Design and Im-
plementation, Boston, MA, Dec. 2002.

[34] K. Shen, T. Yang, L. Chu, J. Holliday, D. Kuschner, and H. Zhu.
Neptune: Scalable Replication Management and Programming
Support for Cluster-based Network Services. In Proceedings of
the 3rd USENIX Symposium on Internet Technologies and Sys-
tems, San Francisco, CA, Mar 2001.

[35] Teoma. Internet Search Engine. http://www.teoma.com.

[36] Apache Tomcat Server. http://jakarta.apache.org/tomcat.

[37] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel Mecha-
nisms for Service Differentiation in Overloaded Web Servers. In
Proceedings of the 2001 USENIX Annual Technical Conference,
Boston, Massachusetts, June 2001.

[38] WebSphere Extended Deployment.
http://www.ibm.com/software/websphere/.

[39] M. Welsh and D. Culler. Overload Management as a Fundamental
Service Design Primitive, Saint-Emilion, France Sept 2002.

[40] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services. In Proceedings of
the Eighteenth ACM Symposium on Operating Systems Princi-
ples, Banff, Canada, Oct 2001.

[41] H. Zhu, H. Tang, and T. Yang. Demand-driven Service Differen-
tiation in Cluster-based Network Servers. In Proceedings of the
IEEE INFOCOM, Anchorage, Alaska, April 2001.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association174

