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Abstract

Reducing management costs and improving the availability of
large-scale distributed systems require automatic replica re-
generation, i.e., creating new replicas in response to replica
failures. A major challenge to regeneration is maintaining con-
sistency when the replica group changes. Doing so is partic-
ularly difficult across the wide area where failure detection is
complicated by network congestion and node overload.

In this context, this paper presents Om, the first read/write
peer-to-peer wide-area storage system that achieves high avail-
ability and manageability through online automatic regenera-
tion while still preserving consistency guarantees. We achieve
these properties through the following techniques. First, by uti-
lizing the limited view divergence property in today’s Internet
and by adopting the witness model, Om is able to regenerate
from any single replica rather than requiring a majority quo-
rum, at the cost of a small (10−6 in our experiments) probabil-
ity of violating consistency. As a result, Om can deliver high
availability with a small number of replicas, while traditional
designs would significantly increase the number of replicas.
Next, we distinguish failure-free reconfigurations from failure-
induced ones, enabling common reconfigurations to proceed
with a single round of communication. Finally, we use a lease
graph among the replicas and a two-phase write protocol to
optimize for reads, and reads in Om can be processed by any
single replica. Experiments on PlanetLab show that consistent
regeneration in Om completes in approximately 20 seconds.

1 Introduction

Replication has long been used for masking individual
node failures and for load balancing. Traditionally, the
set of replicas is fixed, requiring human intervention to
repair failed replicas. Such intervention can be on the
critical path for delivering target levels of performance
and availability. Further, the cost of maintenance now
dominates the total cost of hardware ownership, mak-
ing it increasingly important to reduce such human in-
tervention. It is thus desirable for the system to automat-

ically regenerate upon replica failures by creating new
replicas on alternate nodes. Doing so not only reduces
maintenance cost, but also improves availability because
regeneration time is typically much shorter than human
repair time.

Motivated by these observations, automatic replica re-
generation and reconfiguration (i.e., change of replica
group membership) have been extensively studied in
cluster-base Internet services [12, 34]. Similarly, auto-
matic regeneration has become a necessity in emerging
large-scale distributed systems [1, 10, 20, 25, 30, 33, 35].
One of the major challenges to automatic regeneration
is maintaining consistency when the composition of the
replica group changes. Doing so is particularly difficult
across the wide-area where failure detection is compli-
cated by network congestion and node overload. For ex-
ample, two replicas may simultaneously suspect the fail-
ure of each other, form two new disjoint replica groups,
and independently accept conflicting updates.

The focus of this work is to enable automatic regen-
eration for replicated wide-area services that require
some level of consistency guarantees. Previous work
on replica regeneration either assumes read-only data
and avoids the consistency problem (e.g., CFS [10]
and PAST [33]), or simply enforces consistency in a
best-effort manner (e.g., Inktomi [12], Porcupine [34],
Ivy [25] and Pangaea [35]). Among those replication
systems [1, 6, 20, 30, 37] that do provide strong consis-
tency guarantees, Farsite [1] does not implement replica
group reconfiguration. Oceanstore [20, 30] mentions
automatic reconfiguration as a goal but does not detail
its approach, design or implementation. Proactive re-
covery [6] enables the same replica to leave the replica
group and later re-join, but still assumes a fixed set of
replicas. Finally, replicated state-machine research [37]
typically also assumes a static set of replicas.

In this context, we present Om, a read/write peer-to-peer



wide-area storage system. Om logically builds upon
PAST [33] and CFS [10], but achieves high availabil-
ity and manageability through online automatic regener-
ation while still preserving consistency guarantees. To
the best of our knowledge, Om is the first implementa-
tion and evaluation of a wide-area peer-to-peer replica-
tion system that achieves such functionality.

Om’s design targets large, infrastructure-based hosting
services consisting of hundreds to thousands of sites
across the Internet. We envision companies utilizing
hosting infrastructure such as Akamai [2] to provide
wide-area mutable data access service to users. The data
may be replicated at multiple wide-area sites to improve
service availability and performance. We believe that
our design is also generally applicable to a broader range
of applications, including: i) a totally-ordered event no-
tification system, ii) distributed games, iii) parallel grid
computing applications sharing data files, and iv) con-
tent distribution networks and utility computing envi-
ronments where a federation of sites deliver read/write
network services.

We adopt the following novel techniques to achieve our
goal of consistent and automatic replica regeneration.

1. Traditional designs for regeneration require a ma-
jority of replicas to coordinate consistent regener-
ation. We show that by taking advantage of the
limited view divergence property in today’s Internet
and by adopting the witness model [40], Om is able
to regenerate from any single replica at the cost of a
small probability of violating consistency. As a re-
sult, Om can deliver high availability with a small
number of replicas, while traditional designs would
significantly increase [42] the number of replicas in
order to deliver the same availability. When strict
consistency is desired, Om can also trivially replace
the witness model with a simple majority quorum
(at the cost of reduced availability) to provide strict
consistency.

2. We distinguish between failure-free and failure-
induced reconfiguration, enabling common recon-
figurations to proceed with a single round of com-
munication while maintaining correctness even if a
failure should occur in the middle.

3. We use a lease graph among all replicas and a two-
phase write protocol to avoid executing a consensus
protocol for normal writes. Reads in Om proceed
with a single round trip to any single replica, yield-
ing the read performance of a centralized service
but with better network locality.

Om assumes a crash (stopping) rather than Byzantine
failure model. While this assumption makes our ap-
proach inappropriate for a certain class of services, we
argue that the performance, availability, consistency, and
flexible reconfiguration resulting from our approach will
make our work appealing for a range of important appli-
cations.

Through WAN measurement and local area emulation,
we observe that the probability of violating consistency
in Om is approximately 10−6, which means that on av-
erage, inconsistency occurs once every 250 years with 5
replicas and a pessimistic 12 hours replica MTTF. At the
same time, the ability to regenerate from any replica en-
ables Om to achieve high availability using a relatively
small number of replicas [42] (e.g., 99.9999% using 4
replicas with node MTTF of 12 hours, regeneration time
of 5 minutes and human repair time of 8 hours). Under
stress tests for write throughput on PlanetLab [27], we
observe that regeneration in response to replica failures
only causes a 20-second service interruption.

We provide an overview of Om in the next section. The
following three sections then discuss the details of nor-
mal case operations, reconfiguration, and single replica
regeneration in Om. We present unsafety (probability
of violating consistency) and performance evaluation in
Section 6. Finally, Section 7 discusses related work and
Section 8 draws our conclusions.

2 System Architecture Overview

2.1 Naming and Configurations

Om relies on Distributed Hash Tables (DHTs) [32, 38]
for naming its objects. The current implementation of
Om uses FreePastry [13]. Om invokes only two common
peer-to-peer APIs [11] from FreePastry: void route(key
→ K, msg → M, nodehandle → hint) and nodehan-
dle[] replicaSet(key → K, int → max rank). We use
these APIs to determine the set of nodes that should hold
a particular object. Om does not require any change to
the FreePastry code.

DHTs do not guarantee the correctness of naming. For
example, the same key may be mapped to different nodes
if routing tables are stale. In Om, each node ultimately
determines whether it is a replica of a certain Om object.
With inconsistent routing in DHTs, user requests may
be routed to the wrong node. Instead of returning an
incorrect value, the node will tell the user that it does
not have the data.



public class Configuration {
boolean valid;
int sequenceNum;
LogicalAddr primary;
LogicalAddr[] secondary;
String consensusID;

}

Figure 1: A configuration.

Om servers are grouped into configurations (Figure 1).
Each configuration contains the set of servers holding
copies of a particular object. A physical node may be-
long to multiple configurations. Conceptually, the to-
tal number of configurations equals the number of ob-
jects in Om. However, multiple objects residing on the
same set of replicas share the same configuration, which
significantly reduces the number of configurations and
overall regeneration activity.

2.2 Two Quorum Systems for Maintaining
Consistency

Throughout this paper, we use linearizability [18] as the
definition for consistency. An access to an Om object is
either a read or a write. Each access has a start time, the
wall-clock time when the user submits the access, and
a finish time, the wall-clock time when the user receives
the reply. Linearizability requires that: i) each access has
a unique serialization point that falls between its start
time and finish time, and ii) the results of all accesses
and the final state of the replicas are the same as if the
accesses are applied sequentially by their serialization
points.

To maintain consistency, Om uses two different quorum
systems in two different places of the design. The first
is a read-one/write-all quorum system for accessing ob-
jects on the replicas. We choose to use this quorum sys-
tem to maximize the performance of read operations.
In general, however, our design supports an arbitrary
choice of read/write quorum. Each configuration has
a primary replica responsible for serializing all writes
and transmitting them to secondary replicas. The fail-
ure of any replica causes regeneration. Thus both pri-
mary and secondary replicas correspond to gold repli-
cas in Pangaea [35]. It is straightforward to add addi-
tional bronze replicas (which are not regenerated) into
our design. Distinguishing these two kinds of replicas
helps to decrease the overhead of maintaining the lease
graph, liveness monitoring and performing two-phase
writes among the gold replicas.

Reads can be processed by any replica without interact-

ing with other replicas. A write is always forwarded to
the primary, which uses a two-phase protocol to prop-
agate the write to all replicas (including itself). Even
though two-phase protocols in WAN can incur high
overhead, we limit this overhead because Om usually
needs a relatively small number of replicas to achieve
certain availability target [42] (given its single replica
regeneration mechanism).

The second quorum system is used during reconfigura-
tion to ensure that replicas agree on the membership of
the new configuration. In wide-area settings, it is pos-
sible for two replicas to simultaneously suspect the fail-
ure of each other and to initiate regeneration. To main-
tain consistency, the system must ensure a unique con-
figuration for the object at any time. Traditional ap-
proaches for guaranteeing unique configuration require
each replica to coordinate with a majority before regen-
eration, so that no simultaneous conflicting regeneration
can be initiated.

Given the availability cost of requiring a major-
ity [42] to coordinate regeneration, we adopt the witness
model [40] that achieves similar functionality as a quo-
rum system. In the witness model, quorum intersection
is not always guaranteed, but is extremely likely. In re-
turn, a quorum in the witness model can be as small as
a single node. While our implementation uses the wit-
ness model, our design can trivially replace the witness
model with a traditional quorum system such as majority
voting.

2.3 Node Failure/Leave and Reconfiguration

The membership of a configuration changes upon the
detection of node failures or explicit reconfiguration re-
quests. Failures are detected in Om via timeouts on mes-
sages or heartbeats. By definition, accurate failure detec-
tion in an environment with potential network failure and
node overload, such as the Internet, is impossible. Im-
proving failure detection accuracy is beyond the scope
of this paper.

There are two types of reconfigurations in Om: failure-
free reconfiguration and failure-induced reconfigura-
tion. Failure-free reconfiguration takes place when a
set of nodes gracefully leave or join the configuration.
“Gracefully” means that there are no node failures or
message timeouts during the process. On the other hand,
Om performs failure-induced reconfiguration when it
(potentially incorrectly) detects a node failure (in either
normal operation or reconfiguration).

Failure-free reconfiguration is lightweight and requires



only a single round of messages from the primary to
all replicas, a process even less expensive than writes.
Failure-induced reconfiguration is more expensive be-
cause it uses a consensus protocol to enable the replicas
to agree on the membership of the next configuration.
The consensus protocol, in turn, relies on the second
quorum system to ensure that the new configuration is
unique among the replicas.

Under a denial of service (DoS) attack, all reconfigu-
rations will become failure-induced. One concern is
that an Om configuration must be sufficiently over-
provisioned to handle the higher cost of failure-induced
reconfiguration under the threat of such attacks. How-
ever, the reconfiguration functionality of Om actually
enables it to dynamically shift to a set of more powerful
replicas (or expand the replica group) under DoS attacks,
making static over-provisioning unnecessary.

2.4 Node Join and Reconfiguration

New replicas are always created by the primary in the
background. To achieve this without blocking normal
operations, the primary replica creates a snapshot of the
data and transfers the snapshot to the new replicas. Dur-
ing this process, new reads and writes are still accepted,
with the primary logging those writes accepted after cre-
ating the snapshot. After the snapshot has been trans-
ferred, the primary will send the logged writes to the
new replicas, and then initiate a failure-free reconfigura-
tion to include them in the configuration. Since the time
needed to transfer the snapshot tends to dominate the
total regeneration time, Om enables online regeneration
without blocking accesses.

Each node in the system maintains an incarnation
counter in stable storage. Whenever a node loses its state
in memory (due to a crash or reboot), it increments the
incarnation number. After the node rejoins the system,
it should discard all messages intended for older incar-
nations. This is necessary for a number of reasons: For
example, otherwise a primary that crashes and then re-
covers immediately will not be able to keep track of the
writes in the middle of the two-phase protocol.

3 Normal Case Operations

Given the overall architecture described above, we now
discuss some of the complex system interactions in Om.
Despite the simplicity of the read-one/write-all approach
for accessing objects, failures and reconfigurations may
introduce several anomalies in a naive design. Below we
describe two major anomalies and our solutions.

The first anomaly arises when replicas from old con-
figurations are slow in detecting failures, and continue
servicing stale data after reconfiguration (initiated by
other replicas). We address this scenario by leverag-
ing leases [17]. In traditional client-server architectures,
each client holds a lease from the server. However, since
Om can regenerate from any replica, a replica needs to
hold valid leases from all other replicas.

Requiring each replica to contact every other replica for
a lease can incur significant communication overhead.
Fortunately, it is possible for a replica to sublease those
leases it already holds. As a result, when a replica A
requests a lease from B, B will not only grant A a lease
for B, it can also potentially grant A leases for other
replicas (with a shorter lease expiration time, depending
on how long B has been holding those leases).

Following we abstract the problem by considering repli-
cas to be nodes in a lease graph. If a node A directly re-
quests a lease from node B, we add an arc from B to A in
the graph. A lease graph must be strongly connected to
avoid stale reads. Furthermore, we would like the layers
of recursive subleasing to be as small as possible because
each layer of sublease decreases the effective duration of
the lease. Define the diameter of a lease graph to be the
smallest integer d, such that any node A can reach any
other node B via a directed path of length at most d.
In our system, we would like to limit d to 2 to ensure
the effectiveness of subleasing. Overhead of lease re-
newal is determined by the number of arcs in the lease
graph. It has been proven [16] that with n ≥ 4 nodes, the
minimal number of arcs to achieve d = 2 is 2(n − 1).
For n ≥ 5, we can show that the only graph reaching
this lower bound is a star-shaped graph. Thus, our lease
graphs are all star-shaped, with every node having two
arcs to and from a central node. The central node does
not have to be the primary of the configuration, though
it is in our implementation.

A second problem results from a read seeing a write that
has not been applied to all replicas, and the write may
be lost in reconfiguration. In other words, the read ob-
serves temporary, inconsistent state. To avoid this sce-
nario, we employ a two-phase protocol for writes. In the
first prepare round, the primary propagates the writes to
the replicas. Each replica records the write in a pending
queue and sends back an acknowledgment. After receiv-
ing all acknowledgments, the primary will start the sec-
ond commit round by sending commits to all replicas.
Upon receiving a commit, a replica applies the corre-
sponding write to the data object. Finally, the primary
sends back an acknowledgment to the user. A write be-
comes “stable” (applied to all replicas) when the user
receives an acknowledgment. The lack of an acknowl-



edgment indicates that the write will ultimately be seen
by all or none of the replicas. A user may choose to
re-submit an un-acknowledged write, and Om performs
appropriate duplicate detection and elimination.

After a failure-induced reconfiguration and before a new
primary can serialize any new writes, it first collects all
pending writes from the replicas in the new configura-
tion and processes the writes again using the normal
two-phase protocol. Each replica performs appropriate
duplicate detection and elimination in this process. Such
design solves the previous problem because if any read
sees a write, then the write must be either applied or in
the pending queue on all replicas.

4 Reconfiguration

Each configuration has a monotonically increasing se-
quence number, increased with every reconfiguration.
For any configuration and at any point of time, a replica
can only be in a single reconfiguration process (either
failure-free or failure-induced). It is however, possible
that different replicas in the same configuration are si-
multaneously in different reconfiguration processes.

Conceptually, a replica that finishes reconfiguration will
try to inform other replicas of the new configuration
by sending configuration notices. In failure-free re-
configurations, only the primary does this, because the
other replicas are passive. In failure-induced reconfigu-
rations, all replicas transmit configuration notices to aid
in completing reconfiguration earlier. In many cases,
most replicas do not even need to enter the consensus
protocol—they simply wait for the configuration notice
(within a timeout).

4.1 Failure-free Reconfiguration

Only the primary may initiate failure-free reconfigura-
tion. Secondary replicas are involved only when i) the
primary transmits to them data for creating new repli-
cas; and ii) the primary transmits configuration notices.

The basic mechanism of failure-free reconfiguration is
straightforward. After transferring data to the new repli-
cas in two stages (snapshot followed by logged writes as
discussed earlier), the primary constructs a configuration
for the new desired membership. This new configuration
will have a new sequenceNum by incrementing the old
sequenceNum. The consensusID of the configura-
tion remains unchanged.

The primary then informs the other replicas of the new

// A snapshot of the current configuration must be passed in.
void shrink(Configuration dupconf)

throws InterruptedException {
//Stop granting leases for current configuration.
current configuration.valid = false;

newmember = set of replicas I can reach in dupconf;
newconf = new Configuration(newmember);
newconf.sequenceNum = dupconf.sequenceNum + 2;
newconf.consensusID = dupconf.name + “ ” +

newconf.sequenceNum;

decision = consensus(newconf, dupconf.consensusID);
leaseManager.waitForLeaseExpire(dupconf);

Block writes and configuration notices;
if (current configuration.sequenceNum <

decision.sequenceNum) {
current configuration = decision;
send configuration notices;
if (I am primary in decision) applyPendingWrites();

}
// If not, then configuration notice received.
// dupconf is no longer current and reconfig is obsolete.
Unblock writes and configuration notices;

}

Figure 2: Failure-induced reconfiguration.

configuration and waits for acknowledgments. If time-
out occurs, a failure-induced reconfiguration will follow.

4.2 Failure-induced Reconfiguration

In contrast to failure-free reconfigurations, failure-
induced reconfigurations can only shrink the replica
group (potentially followed by failure-free reconfigura-
tions to expand the replica group as necessary). Doing
this simplifies design because failure-induced reconfig-
urations do not need to create new replicas and request
them to participate in the consensus protocol. Failure-
induced reconfigurations can take place during normal
operations, failure-free reconfigurations or even failure-
induced reconfigurations.

A replica initiates failure-induced reconfiguration (Fig-
ure 2) upon detecting a failure. The replica first disables
the current configuration so that leases can no longer be
granted for the current configuration. This reduces the
time we need to wait for lease expiration later. Next,
it will perform another round of failure detection for all
members of the configuration. The result (a subset of the
current replicas) will be used as a proposal for the new
configuration. The replica then invokes a consensus pro-
tocol, which returns a decision that is agreed upon by all



replicas entering the protocol. When invoking the con-
sensus protocol, the replica needs to pass a unique ID
for this particular invocation of the consensus protocol.
Otherwise, since nodes can be arbitrarily slow, different
invocations of the consensus protocol may interfere with
one another.

Before adopting a decision, each replica needs to wait
for all leases to expire with respect to the old config-
uration. Finally, the primary of the new configuration
will collect and re-apply any pending writes. When re-
applying pending writes, the primary only waits for a
certain timeout. If a subsequent failure were to take
place, the replicas will start another failure-induced re-
configuration.

One important optimization to the previous protocol is
that after a replica determines newmember, it checks
whether it has the smallest ID in the set. If it does not,
the replica will wait (within a timeout) for a configura-
tion notice. With this optimization, in most cases, only a
single replica enters the consensus protocol, which can
significantly improve the time complexity of the ran-
domized consensus protocol (see Section 5.3).

When a failure-induced reconfiguration is invoked in the
middle of a failure-free reconfiguration, they may inter-
fere with each other and result in inconsistency. Such
issue is properly addressed in our complete design [42].

5 Single Replica Regeneration

Failure-induced reconfigurations depend on a consensus
protocol to ensure the uniqueness of the new configu-
ration and in turn, data consistency. Consensus [22]
is a classic distributed computing problem and we can
conceptually use any consensus protocol in Om. How-
ever, most consensus protocols such as Paxos [21] rely
on majority quorums and thus cannot tolerate more than
n/2 failures among n replicas. To reduce the number of
replicas required to carry out regeneration (as a desirable
side-effect, this also reduces the overhead of acquiring
leases and of performing writes), we adopt the witness
model [40] to achieve probabilistic consensus without
requiring a majority.

5.1 Probabilistic Quorum Intersection without
Majority

The witness model [40] is a novel quorum design that
allows quorums to be as small as a single node, while
ensuring probabilistic quorum intersection. In our sys-
tem, for each new configuration, the primary chooses

m× t witnesses and communicates their identities to all
secondary replicas. Witnesses are periodically probed
by the primary and refreshed as necessary upon failure.
This refresh is trivial and can be done in the form of a
two-phase write. If failure occurs between the first and
the second phase, a replica will use both old and new
witnesses in the consensus protocol. The primary may
utilize a variety of techniques to choose witnesses, with
the goal of choosing witnesses with small failure corre-
lation and diversity in the set of network paths from the
replicas to individual witnesses. For example, the pri-
mary may simply use entries from its finger table under
Chord [38].

For now, we will consider replicas that are not in sin-
gleton partitions, where a single node, LAN, or perhaps
a small autonomous system is unable to communicate
with the rest of the network. Later we will discuss how
to determine singleton partitions. We say that a replica
can reach a witness if a reply can be obtained from the
witness within a certain timeout. The witness model uti-
lizes the following limited view divergence property:

Consider a set S of functioning randomly-placed wit-
nesses that are not co-located with the replicas (e.g., not
in the same LAN). Suppose one replica A can reach the
subset S1 of witnesses and cannot reach the subset S2

of witnesses (where S1 ∪ S2 = S). Then the probabil-
ity that another replica B cannot reach any witness in
S1 and can reach all witnesses in S2 decreases with in-
creasing size of S.

Intuitively, the property says that two replicas are un-
likely to have a completely different view regarding the
reachability of a set of randomly-placed witnesses. The
size of S and the resulting probability are thoroughly
studied in [40] using the RON [4] and TACT [41] traces.
Later we will also present additional results based on
PlanetLab measurements.

The validity of limited view divergence can probably
be explained by the rarity [9] of large-scale “hard par-
titions”, where a significant fraction of Internet nodes
are unable to communicate with the rest of the net-
work. Given that witnesses are randomly placed, if the
two replicas have completely different views on the wit-
nesses, this tends to indicate a “hard partition”. Further,
the more witnesses, the larger-scale the partition would
have to be to result in entirely disjoint views from the
perspective of two independent replicas.

To utilize the limited view divergence property, all repli-
cas logically organize the witnesses into an m × t ma-
trix. The number of rows, m, determines the probabil-
ity of intersection. The number of columns, t, protects
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Figure 3: Two replicas and 3 × 4 witnesses.

against the failure of individual witnesses, so that each
row has at least one functioning witness with high prob-
ability. Each replica tries to coordinate with one wit-
ness from each row. Specifically, a replica uses the first
witness from left to right that it can reach for each row
(Figure 3). The set of witnesses used by a replica is its
quorum. Now consider two replicas A and B. The de-
sirable outcome is that A’s quorum intersects with B’s.
It can be shown that if the two quorums do not inter-
sect, with high probability (in terms of t), A and B have
completely different views on the reachability of m wit-
nesses [40].

Replicas behind singleton partitions will violate limited
view divergence. However, if the witnesses are not co-
located with the replica, then the replica behind the parti-
tion will likely not be able to reach any witness. As a re-
sult, it cannot acquire a quorum and will thus block. This
is a desirable outcome as the replicas on the other side
of the partition will reach consensus on a new configu-
ration that excludes the node behind the singleton parti-
tion. To better detect singleton partitions, a replica may
also check whether all reachable witnesses are within its
own LAN or autonomous system.

5.2 Emulating Probabilistic Shared-Memory

We intend to substitute the majority quorum in tra-
ditional consensus protocols with the witness model,
so that the consensus protocol can achieve probabilis-
tic consensus without requiring majority. To do this
however, we need a consensus protocol with “good”
termination properties for the following reason. Non-
intersection in the witness model is ultimately translated
into the unsafety (probability of having multiple deci-
sions) of a consensus protocol. Unsafety in turn, means
violation of consistency in Om. For protocols with mul-
tiple rounds, unsafety potentially increases with every
round. This precludes the application of protocols such
as Paxos [21] that do not have good termination guaran-
tees.

To address the previous issue, we first use the witness

For Replicas:
static int version = 0;
int[] access(String arrayname, int newvalue) {

Record[][] replies = new Record[m][];
replies[1..m] = null; version++; j = 1;
while ((∃ i, replies[i] == null) and ( j ≤ t)) {

send (myindex, version, newvalue) to all witness[i][j]
where (replies[i] == null);

wait until all replies received or time out;
replies[i] = the reply from witness[i][j];
j++;

}

if (replies[1..m] == null) block;
int[] result = new int[n]; // combine all replies
for (int k = 1; k ≤ n; k++)

result[k] = replies[i][k].value, where replies[i][k]
has the largest version in replies[1..m][k]

return result;
}

For Witnesses:
Record[] processAccess(String arrayname, int index,

int version, int newvalue) {
let record[1..n] be the array corresponding to arrayname;
if (record[index].version < version) {

record[index].version = version;
record[index].value = newvalue;

}
return record;

}

Figure 4: Emulating shared-memory under the witness
model.

model to emulate a probabilistic shared-memory, where
reads may return stale values with a small probability.
We then apply a shared-memory randomized consensus
protocol [36], where the expected number of rounds be-
fore termination is constant and thus helps to bound un-
safety.

To reduce the message complexity of the shared-
memory emulation, we choose not to directly emu-
late [40] the standard notion of reads and writes. Rather,
we define an access operation on the shared-memory to
be an update to an array element followed by a read of
the entire array. The element to be updated is indexed by
the replica’s identifier. The witnesses maintain the array.
Upon receiving an access request, a witness updates the
corresponding array element and returns the entire array.
Such processing is performed in isolation from other ac-
cess requests on the same witness. Figure 4 provides the
pseudo-code for such emulation.



// Shared data: The ith iteration uses two arrays,
// proposed[i] and check[i]. Each array has n entries,
// one for each replica. All entries initialized to null.
int randCons(int proposal) {

i = 0; myvalue = proposal;
while (true) {

i++;
prop view = access(proposed[i], myvalue);
if (different proposals appear in prop view)

check view = access(check[i], ‘disagree’);
else

check view = access(check[i], ‘agree’);

if (check view only contains ‘agree’)
return myvalue; //this is the decision

if (check view only contains ‘disagree’)
myvalue = a random element in prop view

indexed by coinFlip();
if (check view has both ‘agree’ and ‘disagree’)

myvalue = prop view[q],
∀ q, where check view[q] == ‘agree’;

}
}

Figure 5: Randomized consensus protocol for shared-
memory.

While the access primitive appears to be a simple wrap-
per around reads and writes, it actually violates atomic-
ity and qualitatively changes the semantics of the shared-
memory. It reduces the message (and time) complexity
of the shared-memory emulation in [40] by half. More
details are available in [42].

5.3 Application of Shared-memory Random-
ized Consensus Protocol

With the shared-memory abstraction, we can now apply
a previous shared-memory consensus protocol [36] (Fig-
ure 5). For simplicity, we assume that the proposals and
decisions are all integer values, though they are actually
configurations. In the figure, we already substitute the
read and write operations in the original protocol with
our new access operations. We implement coinFlip()
using a local random number generator initialized using
a common seed shared by all replicas. Such implementa-
tion is different and simpler than the design for standard
shared-memory consensus protocols, and it reduces the
complexity of the protocol by a factor of θ(n2). See [42]
for details on why such optimization is possible.

The intuition behind the shared-memory consensus pro-
tocol is subtle and several textbooks have chapters de-
voted to these protocols (e.g., Chapter 11.4 of [8]). Since
the protocol itself is not a contribution of this paper, we

only enumerate several important properties of the pro-
tocol. Proofs are available in [42].

• The protocol proceeds in successive iterations, each
iteration has two accesses. Each access requires
one round of communication (between the replicas
and the witnesses), and needs to coordinate with a
quorum. Non-intersection for any access may re-
sult in unsafety.

• Each iteration has a certain probability of terminat-
ing. The number of iterations before termination is
a random variable.

• With two distinct proposals, the expected time
complexity of the protocol is below 3.1 iterations
(6.2 rounds).

• If all replicas entering the protocol have the same
proposal (or if only one replica enters the protocol),
the protocol terminates (deterministically) after one
iteration. With the optimization in Section 4.2, this
will be the situation when the new primary does not
crash in the middle of reconfiguration.

6 Experimental Evaluation

This section evaluates the performance and unsafety of
Om. Availability of Om and the benefit of single replica
regeneration is studied separately [42]. Om is written
in Java 1.4, using TCP and nonblocking I/O for com-
munication. All messages are first serialized using Java
serialization and then sent via TCP. The core of Om uses
an event-driven architecture.

6.1 Unsafety Evaluation

Om is able to regenerate from any single replica at the
cost of a small probability of consistency violation. We
first quantify such unsafety under typical Internet condi-
tions.

Unsafety is about rare events, and explicitly measuring
unsafety experimentally faces many of the same chal-
lenges as evaluating service availability [41]. For in-
stance, assuming that each experiment takes 10 seconds
to complete, we would need on average over four years
to observe a single inconsistency event for an unsafety
of 10−7. Given these challenges, we follow the method-
ology in [41] and use a real-time emulation environment
for our evaluation. We instrument Om to add an artificial
delay to each message. Since the emulation is performed
on a LAN, the actual propagation delay is negligible. We



determine the distribution of appropriate artificial delays
by performing a large-scale measurement study of Plan-
etLab sites. For our emulation, we set the delay of each
message sent across the LAN to the delay of the corre-
sponding message in our WAN measurements.

Our WAN sampling software runs with the same com-
munication pattern as the consensus protocol except that
it does not interpret the messages. Rather, the repli-
cas repeatedly communicate with all witnesses in par-
allel via TCP. The request size is 1KB while the re-
ply is 2KB. We log the time (with a cap of 6 minutes)
needed to receive a reply from individual witnesses.
The sampling interval (time between successive sam-
ples) for each replica ranges from 1 to 10 seconds in
different measurements. Notice that we do not neces-
sarily wait for the previous probe’s reply before send-
ing the next probe. All of our measurements use 7 wit-
nesses and 15 replicas on 22 different PlanetLab sites.
To avoid the effects of Internet2 and to focus on the
pessimistic behavior of less well-connected sites, we lo-
cate the witnesses at non-educational or foreign sites:
Intel Research Berkeley, Technische Universitat Berlin,
NEC Laboratories, Univ of Technology, Sydney, Copen-
hagen, ISI, Princeton DSL. Half of the nodes serving as
replicas are also foreign or non-educational sites, while
the other half are U.S. educational sites. For the results
presented in this paper, we use an 8-day long trace mea-
sured in July 2003. The sampling interval in this trace
is 5 seconds, and the trace contains 150, 000 intervals.
Each interval has 7 × 15 = 105 samples, resulting in
over 15 million samples.

6.2 Unsafety Results

The key property utilized by the witness model is
that Pni (probability of non-intersection) can be quite
small even with a small number of witnesses. Earlier
work [40] verifies this assumption using a number of ex-
isting network measurement traces [4, 41]. In the RON1
trace, 5 witness rows result in 4 × 10−5 Pni, while it
takes 6 witness rows to yield similar Pni under the TACT
trace.

Given these earlier results, this section concentrates on
the relationship between Pni and unsafety, namely, how
the randomized consensus protocol amplifies Pni into
unsafety under different parameter settings. This is im-
portant since the protocol has multiple rounds, and non-
intersection in any round may result in unsafety.

Unsafety can be affected by several parameters in our
system: the message timeout value for contacting wit-
nesses, the size of the witness matrix and the number of
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Figure 6: Pni for different time-out values.
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replicas. Since a larger t value in the witness matrix is
used to guard against potential witness failures and wit-
nesses do not fail in our experiments, we use t = 1 for
all our experiments. Witness failures between accesses
may slightly increase Pni, but a simple analysis can
show that such effects are negligible [42] under practi-
cal parameters. Larger timeout values decrease the pos-
sibility that a replica cannot reach a functioning witness
and thus decrease Pni. Figure 6 plots Pni for different
timeout values. In our finite-duration experiments, we
cannot observe probabilities below 10−7. This is why
the curves for 5 and 15 second timeout values drop to
zero with seven witnesses. The figure shows that Pni

quickly approaches its lowest value with the timeout at
5 seconds.

Having determined the timeout value, we now use emu-
lation to measure unsafety. We first consider the simple
case of two replicas. Figure 7 plots both Pni and un-
safety for two different timeout values. Using just 7 wit-
nesses, Om already achieves an unsafety of 5 × 10−7.
With 5 replicas and a pessimistic replica MTTF of 12
hours, reconfiguration takes place every 2.4 hours. With
unsafety at 5 × 10−7, an inconsistent reconfiguration
would take place once every 500 years. In a peer-to-
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Figure 8: Latency for renewing leases based on our lease
graph.

peer system with a large number of nodes, reconfigura-
tion can occur much more frequently. For example, for a
Pastry ring with 1, 000 nodes and replication degree of 5,
each node may be shared by 5 different configurations.
As a result, reconfiguration in the entire system occurs
every 8.64 seconds. In this case, inconsistent regener-
ation will take place once every half year system-wide.
It may be possible to further reduce unsafety with addi-
tional witnesses, though the benefits cannot be quanti-
fied with the granularity of our current measurements.

The extended version of this paper [42] further discusses
the relationship between unsafety and Pni, and also gen-
eralizes the results to more than two replicas. Due to
space limitations, we will move on to the performance
results.

6.3 Performance Evaluation

We obtain our performance results by deploying and
evaluating Om over PlanetLab. In all our performance
experiments, we use the seven witnesses used before in
our WAN measurement. With single replica regenera-
tion, Om can achieve high availability with a small num-
ber of replicas. For example, our analysis [42] shows
that Om can achieve 99.9999% availability with just 4
replicas under reasonable parameter settings. Thus, we
focus on small replication factors in our evaluation.

6.3.1 Normal Case Operations

We first provide basic latency results for individual read
and write operations using 10 PlanetLab nodes as repli-
cas. We intentionally choose a mixture of US educa-
tional sites, US non-educational sites and foreign sites.
To isolate the performance of Om from that of Pastry,
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Figure 9: Latency for a write.

we inject reads and writes from the replicas, instead of
having client nodes injecting accesses via peer-to-peer
routing.

Since a read in Om is processed by a single replica (as
long as it holds all necessary leases), a read involves
only a single request/response pair. However, additional
latency is incurred when lease renewal is required. To
separate these effects, we directly study the latency of
lease renewal. However, notice that though not imple-
mented in our prototype, leases can be renewed proac-
tively, which will hide most of this latency from the crit-
ical path. Figure 8 plots the time needed to renew leases
based on our lease graph. Obviously, the primary in-
curs smaller latency to renew all of its leases. Secondary
replicas need to contact the primary first to request the
appropriate set of subleases.

Processing writes is more complex because it involves
a two-phase protocol among the replicas. Figure 9
presents the latency for writes of different sizes. In all
three cases, the latency increases linearly with the num-
ber of replicas, indicating that the network bandwidth
of the primary is the likely bottleneck for these exper-
iments. For 1MB writes, the latency reaches 10 sec-
onds for 10 replicas. We believe such latency can be
improved by constructing an application-layer multicast
tree among the replicas.

6.3.2 Reconfiguration

We next study the performance of regeneration. For
these experiments, we use five PlanetLab nodes as
replicas: bu.edu, cs.duke.edu, hpl.hp.com,
cs.arizona.edu and cs-ipv6.lancs.ac.uk.
Figure 10 shows the cost of failure-free reconfiguration.
In all cases, the two components of “finding replica set”
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and “sending configuration notices” take less than one
second. This is also the cost of failure-free reconfig-
urations when we shrink instead of expand the replica
group. The latency of “finding replica set” is deter-
mined by Pastry routing, the only place where Pastry’s
performance influences the performance of reconfigu-
ration. The time needed to transfer the data object be-
gins to dominate the overall cost with 1MB of data. We
thus believe that new replicas should be regenerated in
the background using bandwidth consumption control-
ling techniques such as TCP Nice [39].

The cost of failure-induced reconfiguration is higher.
Figure 11 plots the cost of failure-induced reconfigura-
tion as observed by the primary of the new configuration.
Using optimizations in Section 4.2, only one replica (the
one with the smallest ID, which is also the primary of
the new configuration) enters the consensus protocol im-
mediately, while other replicas wait for a timeout (10
seconds in our case). As a result of this optimization,
in all three cases, the consensus protocol terminates af-
ter one iteration (two rounds) and incurs an overhead of
roughly 1.5 seconds. The new primary then notifies the

other replicas of the resulting configuration. In Fig-
ure 11, the time needed to determine the live members
of the old configuration dominates the total overhead.
This step involves probing the old members and waiting
for replies within a timeout (7.5 seconds in our case).
A smaller timeout would decrease the delay, but would
also increase the possibility of false failure detection and
unnecessary replica removal.

Waiting for lease expiration, interestingly, does not
cause any delay in our experiments (and thus is not
shown in Figure 11). Since we disable lease renewal
at the very beginning of the protocol and our lease du-
ration is 15 seconds, by the time the protocol completes
the probing phase and the consensus protocol, all leases
have already expired. In these experiments, we do not
inject writes. Thus, the time for applying pending writes
only includes the time for the new primary to collect
pending writes from the replicas and then to realize that
the set is empty. The presence of pending writes will
increase the cost of this step, as explored in our later ex-
periments.

6.3.3 End-to-end Performance

Our final set of experiments study the end-to-end effects
of reconfiguration on users. For this purpose, we deploy
a 42-node Pastry ring on 42 PlanetLab sites, and then
measure the write throughput and latency for a particular
object during reconfiguration.

For these experiments, we configure the system to main-
tain a replication degree of four. To isolate the through-
put of our system from the potential bottleneck on a par-
ticular network path, we directly inject writes on the pri-
mary. Both the writes and the data object are of 80KB
size. In the two-phase protocol for writes, the primary
sends a total of 240KB data to disseminate each write to
the three secondary replicas. For each write, the primary
also incurs roughly 9KB of control message overhead.

The experiment records the total number of writes re-
turned for every 5 second interval, and then reports the
average as the system throughput. Our test program also
records the latency experienced by each write. Writes
are rejected when the system is performing a failure-
induced reconfiguration.

For our experiment, we first replicate the data object
at cs.caltech.edu, cs.ucla.edu, inria.fr
and csres.utexas.edu (primary). Notice that this
replica set is determined by Pastry. Next we manually
kill the process running on inria.fr, thus causing a
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Figure 12: Measured write throughput under regenera-
tion.

failure-induced reconfiguration to shrink the configura-
tion to three replicas. Next, to maintain a replication
factor of 4, Om expands the configuration to include
lbl.gov.

Figure 12 plots the measured throughout of the sys-
tem over time. The absolute throughput in Figure 12
is largely determined by the available bandwidth among
the replica sites. The jagged curve is partly caused by the
short window (5 seconds) we use to compute through-
put. We use a small window so that we can capture rel-
atively short reconfiguration activity. We manually re-
move inria.fr at t = 62.

The throughput between t = 60 and t = 85 in Figure 12
shows the effects of regeneration. Because of the fail-
ure at t = 62, the system is not able to properly process
writes accepted shortly after this point. The system be-
gins regeneration when the failure is detected at t = 69.
The failure-induced reconfiguration shrinking the con-
figuration takes 13 seconds, of which 3.7 is consumed
by the application of pending writes. The failure-free
reconfiguration that expands the configuration to include
lbl.gov takes 1.3 seconds. After the reconfiguration,
the throughput gradually increases to its maximum level
as the two-phase pipeline for writes fills.

To better understand these results, we plot per-write la-
tency in Figure 13. The gap between t = 62 and t = 82
is caused by system regeneration when the system can-
not process writes (from t = 62 to t = 69) or rejects
writes (from t = 69 to t = 82). At t = 80, those seven
writes submitted between t = 62 and t = 69 return with
relatively high latency. These writes have been applied
as pending writes in the new configuration.

We also perform additional experiments showing sim-
ilar results when regenerating three replicas instead of
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Figure 13: Measured latency of writes. For each write
submitted at time t1 and returning at time t2, we plot a
point (t2, t2 − t1) in the graph.

one replica. Overall, we believe that regenerating in 20
seconds can be highly effective for a broad array of ser-
vices. This overhead can be further reduced by com-
bining the failure detection phase (7 seconds) with the
“ProbeMember” phase in failure-induced reconfigura-
tion, potentially reducing the overhead to 13 seconds.

7 Related Work

RAMBO [15, 23] explicitly aims to support reconfig-
urable quorums, and thus shares the same basic goal
as Om. In RAMBO, configuration not only refers to a
particular set of replicas, but also includes specific quo-
rum definitions used in accessing the replicas. In our
system, the default scheme for data accessing is read-
one/write-all. RAMBO also uses a consensus protocol
(Paxos [21]) to uniquely determining the next configura-
tion. Relative to RAMBO, our design has the following
features. First, RAMBO only performs failure-induced
reconfigurations. Second, RAMBO requires a major-
ity of replicas to reconfigure. On the other hand, Om
can reconfigure from any single replica at the cost of a
small probability of violating consistency. Finally, in
RAMBO, both reads and writes proceed in two phases.
The first phase uses read quorums to obtain the latest
version number (and value, in the case of reads), while
the second phase uses a write quorum to confirm the
value. Thus, reads in RAMBO are much more expen-
sive than ours. Om avoids this overhead for reads by
using a two-phase protocol for write propagation.

A unique feature of RAMBO is that it allows accesses
even during reconfiguration. However, to achieve this,
RAMBO requires reads or writes to acquire appropriate
quorums from all previous configurations that have not
been garbage-collected. To garbage-collect a configura-



tion, a replica needs to acquire both a read and a write
quorum of that configuration. This means that when-
ever a read quorum of replicas fail, the configuration can
never be garbage-collected. Since both reads and writes
in RAMBO need to acquire a write quorum, this fur-
ther implies that RAMBO completely blocks whenever
it loses a read quorum. Om uses lease graphs to avoid
acquiring quorums for garbage-collection. If Om uses
the same read/write quorums as in RAMBO, Om will
regenerate (and thus temporarily block accesses) only if
RAMBO blocks.

Related to replica group management, there has been ex-
tensive study on group communication [3, 5, 19, 24, 28,
29, 31] in asynchronous systems. A comprehensive sur-
vey [7] is available in this space. Group communication
does not support read operations, and thus does not need
leases or a two-phase write protocol. On the other hand,
Om does not deliver membership views and does not re-
quire view synchrony. The membership in the configu-
ration can not be considered as a view, since we do not
impose virtual synchrony relationship between the con-
figurations and writes.

The group membership design in [31] uses ideas sim-
ilar to failure-free reconfiguration (called update) and
failure-induced reconfiguration (called reconfiguration).
However, updates in [31] involve two phases rather than
a single phase in our failure-free reconfiguration. In fact,
their updates are similar to Om writes. Furthermore,
the reconfiguration process in [31] involves re-applying
pending “updates”. Our design avoids this overhead
by using appropriate manipulation [42] on the sequence
numbers proposed by failure-free and failure-induced re-
configurations.

In standard replicated state machine techniques [37], all
writes go through a consensus protocol and all reads
contact a read quorum of replicas. With a fixed set of
replicas, a read quorum here usually cannot be a single
replica. Otherwise the failure of any replica will dis-
able the write quorum. In comparison, with regenera-
tion functionality and the lease graph, Om is able to use
a small read quorum (i.e., a single replica). Om also uses
a simpler two-phase write protocol in place of a consen-
sus protocol for normal writes. Consensus is only used
for reconfiguration.

Similar to the witness model, voting with witnesses [26]
allows the system to compose a quorum with nodes other
than the replicas themselves. However, voting with wit-
nesses still uses the simple majority quorum technique
and thus always requires a majority to proceed. The
same is true for Disk Paxos [14] where a majority of
disks is needed.

8 Conclusions

Motivated by the need for consistent replica regenera-
tion, this paper presents Om, the first read/write peer-to-
peer wide-area storage system that achieves high avail-
ability and manageability through online automatic re-
generation while still preserving consistency guarantees.
We achieve these properties through the following three
novel techniques: i) single replica regeneration that en-
ables Om to achieve high availability with a small num-
ber of replicas; ii) failure-free reconfigurations allow-
ing common-case reconfigurations to proceed within a
single round of communication; and iii) a lease graph
and two-phase write protocol to avoid expensive con-
sensus for normal writes and also to allow reads to be
processed by any replica. Experiments on PlanetLab
show that consistent regeneration in Om completes in
approximately 20 seconds, with the potential for further
improvement to 13 seconds.
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