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Abstract
The constraints of sensor networks, an emerging area of
network research, require new approaches in system de-
sign. We study the evolution of abstractions and tech-
niques in TinyOS, a popular sensor network operating
system. Examining CVS repositories of several research
institutions that use TinyOS, we trace three areas of de-
velopment: single-hop networking, multi-hop network-
ing, and network services. We note common techniques
and draw conclusions on the emerging abstractions as
well as the novel constraints that have shaped them.

1. INTRODUCTION
Networked systems of small, often battery-powered

embedded computers, referred to as EmNets in a recent
NRC report [17], are touted as a revolution in Informa-
tion Technology with “the potential to change radically
the way people interact with their environment by link-
ing together a range of devices and sensors that will al-
low information to be collected, shared, and processed in
unprecedented ways.” They are also seen as requiring a
dramatically new approach to network system design:

“EmNets are more than simply the next step
in the evolution of the personal computer or
the Internet. Building on developments in both
areas, EmNets will also be operating under a
set of constraints that will demand more than
merely incremental improvements to more tra-
ditional networking and information technol-
ogy.” [17]

Networking issues are at the core of the design of em-
bedded sensor networks because radio communication –
listening, receiving, and transmitting – dominates the en-
ergy budget, defining the lifetime of a deployed system.

Much of the research in this area has been based on the
TinyOS operating system, created at UC Berkeley [23],
but now a public Sourceforge project including many
other groups. In the three years since TinyOS’s intro-
duction, it has been used by many research groups to
address various aspects of EmNet design. Most of this
work is available in the open, making it possible to exam-

ine the new system structures that have emerged and the
common techniques that they exploit. Are they, in fact,
substantially different from general purpose systems?

To begin to answer this question, this paper draws on
our own experience building TinyOS, TinyDB and other
applications as well as a study of development repre-
sented by the CVS trees of several other research groups
(CMU, UCLA, USC, UIUC, UVA, and Vanderbilt). An
appendix contains the list of the sources used to collect
this data. We look in particular at code evolution through
several generations of hardware platforms, OS releases,
and applications. Our primary focus is on networking
abstractions as they appear in applications with particu-
lar sensing and system management structures. We find
that abstractions fall into four categories:

• Certain abstractions appear to begeneral: they are
widely used, and TinyOS provides both the mecha-
nism and policy to support them. The use of the ac-
tive messages networking abstraction [6], multihop
broadcast, and tree-based routing are prime exam-
ples.

• Others appear to bespecialized: they are also
widely used, but TinyOS provides only mecha-
nisms. Each application includes code to dictate a
specific policy. A typical example is power manage-
ment, where the application decides when to power
down particular subsystems.

• Still others arein flux, without any consensus on
the abstraction. Instead, these abstractions are often
implemented as part of an application. For example,
epidemic protocols are often used, but the TinyOS
community has not developed a common interface
or implementation.

• Finally, a set of abstractions are conspicuous by
their absence, in that they appear widely in the lit-
erature, but are scarcely used in the applications we
find in our sample set.

Abstractions have moved among these classes, as de-
velopers refined them; our classification is merely an ob-
servation of the current state of development, to which



we look for insight. For example, initially tree-based
routing was built into each application. It has since
emerged as a general abstraction, with several implemen-
tations of a common interface used by multiple applica-
tions.

We also identify four system design techniques used in
these abstractions that are comparatively uncommon or
unimportant in more general systems. First,cross-layer
control, where two system levels interact in a mutual re-
lationship, is quite common. This reflects the hardware
constrained and application specific nature of EmNets,
but also the use of a ’design to suit’ framework, rather
than a strict set of predefined interfaces. Second, there
are many instances of rate-matched data pumps, either
of network or sensor data; the comparatively small stor-
age on these devices often requires astatic resource al-
location discipline, where queue sizes are carefully con-
sidered and allocated at compile-time. Finally,snooping
and scheduled communicationpose a design tension.
Snooping depends on frequently listening to the radio to
collect as much data as possible, while scheduled com-
munication avoids the energy cost of listening by coordi-
nating the schedules of senders and receivers.

Section 2 provides a brief background on TinyOS,
major hardware platforms, and three example applica-
tions. In Sections 3, 4, and 5, respectively, we examine
single-hop (data link) communication, multi-hop (net-
work) communication, and system services of particu-
lar importance to networking (time synchronization and
power management). For each, we examine systems that
have been built by the larger TinyOS community to iden-
tify networking abstractions and how they evolved. In
Section 6 we survey the identified abstractions and dis-
cuss common system design techniques and trends.

2. TinyOS
As background, we review the basic design of TinyOS

and summarize the variety of hardware platforms and ap-
plications that have driven TinyOS development, focus-
ing on the requirements dictated by each.

2.1 TinyOS Design
TinyOS focuses on three high-level goals in sensor

network system architectures [23]:

• Take account of current and likely future designs for
sensor networks and sensor network nodes.

• Allow diverse implementations of both operating
system services and applications, in varying mixes
of hardware (in different mote generations) and
software.

• Address the specific and unusual challenges of
sensor networks: limited resources, concurrency-

interface StdControl { // booting and power management
command result_t init();
command result_t start();
command result_t stop();

}

interface ADC { // data collection
command result_t getData();
command result_t getContinuousData();
event result_t dataReady(uint16_t data);

}

interface SendMsg { // single-hop networking
command result_t send(uint16_t addr, uint8_t len,

TOS_MsgPtr msg);
event result_t sendDone(TOS_MsgPtr msg, result_t

success);
}

interface ReceiveMsg { // single-hop networking
event TOS_MsgPtr receive(TOS_MsgPtr m);

}

Figure 1: Common TinyOS Interfaces.ADC and
SendMsg are split-phase operations, hence the combi-
nation of commands and events.

intensive operation, a need for robustness, and
application-specific requirements.

To achieve these goals, TinyOS provides an efficient
framework for modularity and a resource-constrained,
event-driven concurrency model. The modularity frame-
work allows the OS to adapt to hardware diversity while
still allowing applications to reuse common software ser-
vices and abstractions.

The need to handle high concurrency comes from
the observation that sensor nodes predominantly process
multiple information flows on the fly, as opposed to per-
forming heavy computation. Nodes must simultaneously
execute several operations at once, but have limited stor-
age. Combined with the need for sensor nodes to be ro-
bust, an event-driven concurrency model best suits this
class of system. Therefore, all of the abstractions and
techniques we explore are cast in an event-driven model.

Program execution in TinyOS is rooted inhardware
eventsandtasks. Hardware events are interrupts, caused
by a timer, sensor, or communication device. Tasks are
a form of deferred procedure call that allows a hardware
event or task to postpone processing. Tasks areposted
to a queue. As tasks are processed, interrupts can trigger
hardware events that preempt tasks. When the task queue
is empty, the system goes into a sleep state until the next
interrupt. If this interrupt queues a task, TinyOS pulls it
off the queue and runs it. If not, it returns to sleep. Tasks
are atomic with respect to each other.

System modularity is based on a component model.
A named component encapsulates some fixed-size state
and a number of tasks. Components interact with each
other strictly via function callinterfaces, which are re-
lated groups ofcommandsandevents. The set of inter-



faces a component uses and provides define its external
namespace. Commands typically represent requests to
initiate some action; events represent the completion of a
request or something triggered by the environment, e.g.,
message reception. Both explicitly return error condi-
tions, such as the inability to service the request. A spe-
cific set of events are bound to hardware interrupts. A
programmer assembles an application by specifying a set
of components and “wiring” their interfaces together.

The TinyOS concurrency model intentionally does not
support blocking or spin loops. As a result, many opera-
tions aresplit-phase: the request is a command that com-
pletes immediately, and an event signals completion of
the requested action. This approach is natural for reactive
processing and for interfacing with hardware, but com-
plicates sequencing high-level operations, as a logically
blocking sequence must be written in a state-machine
style. It allows many concurrent activities to be serviced
on a single stack, reflecting the very limited RAM on
modern microcontrollers. It also makes handling of error
conditions explicit.

TinyOS intentionally defines neither a particular sys-
tem/user boundary nor a specific set of system services.
Instead, it provides a framework for defining such bound-
aries and allows applications to select services and their
implementations. Nonetheless, a common set of services
has emerged and is present on most platforms and used
by most applications. This include timers, data acquisi-
tion, power management, and networking. Some inter-
faces supporting these services are shown in Figure 1.
This general decomposition is not unique to TinyOS; it
can be found in other sensor network platforms, such as
SensorSim [36], MANTIS [2], and EmStar [15]. It cov-
ers the basic requirements of a sensor network: using lit-
tle power, periodically collect data, perform some simple
processing on it, and, if needed, pass it to a neighboring
node.

2.2 Hardware Platforms
There has been a dramatic evolution in hardware plat-

forms since TinyOS was first designed. Table 1 summa-
rizes the generations of the processing board of Berke-
ley “motes” and similar designs from other groups. Al-
though the Berkeley mote’s microcontrollers are drawn
from the same family (Atmel AVR), the radios, their in-
terfaces, and the chip-to-chip interconnects differ sub-
stantially. Other hardware platforms that support TinyOS
by Intel [26] and the ETH [28] use different processors
(ARM) and/or different radios. Several companies have
developed other variants. Highly integrated experimental
devices with a processor and radio integrated on a single
tiny die also exist [22]. We examine the impact these
hardware variations have on networking in greater detail
in Section 3.

While it is reasonable to expect that the capability of a
device with a given size and power limit will improve
with time, but the rate of improvement is unlikely to
mirror that of desktop systems and there will be simi-
lar pressures to reduce the size and power consumption
for a given capability. The balance of processing, mem-
ory, and communication for the designs in Table 1 is
very far from the 1 MIPS:1 MB:1 mbps rule of thumb.
Small, simple processors are fast, but memory accounts
for most of the microcontroller chip and most of the
standby power consumption. The radio consumes the
majority of the active power.

2.3 Applications
Sensor network development has been very applica-

tion driven. TinyOS applications have evolved from sim-
ple sense-and-route demos to a variety of complete appli-
cations, some of which have had long term deployments.
We present three examples that illustrate a range of sen-
sor network abstractions:

Habitat Monitoring (TinyDB): patches of nodes gather
sensor data for several months from areas of inter-
est to natural scientists or other environmental ob-
servers. Example deployments include James Re-
serve [32], Great Duck Island [31] and a vineyard in
British Columbia [44]. We use TinyDB [30] as a rep-
resentative habitat monitoring application. It allows a
user to collect data from a sensor network using a flex-
ible database-like query language. Nodes cooperatively
process queries to collect and extract the requested data.
TinyDB represents a class of stationary networks that
monitor the encompassing space.

Shooter Localization: a small subset of a sensor net-
work localizes the origin of a bullet in an urban set-
ting [27]. Individual nodes detect projectile shockwaves
(with latency in the tens of microseconds) and the sound
of the weapon firing, and use the time between the two
to estimate distance. Actual shooter location is com-
puted centrally. Shooter localization represents a class
of stationary networks that monitor objects or phenom-
ena within a space.

Pursuer-Evader: a large network tracks the movement
of one or more evader robots using magnetic or other
field readings. The network routes this information to
a pursuing robot using geographic or landmark rout-
ing [9]. Pursuer-evader represents a closed-loop network
with stationary and mobile nodes, and was developed by
several groups as part of a demo for the EmNet-related
DARPA program, NEST [40].

These three applications drive three different areas
of TinyOS development: Habitat Monitoring needs to
keep energy consumption low, so that multi-month de-



Mote WeC rene dot mica mica2 mica2 dot iMote [26] btNode[25]

Released 1999 2000 2001 2002 2003 2003 2003 2003
Processor 4 MHz 7 MHz 4 MHz 12 Mhz 7 Mhz
Flash (code, kB) 8 8 16 128 128 128 512 128
RAM (kB) 0.5 0.5 1 4 4 4 64 4
Radio (kBaud) 10 10 10 40 40 40 460 460
Radio Type RFM ChipCon ChipCon Zeevo BT Ericson BT
µcontroller Atmel ARM Atmel
Expandable no yes no yes yes yes yes yes

Table 1: Hardware Platform Evolution

ployments are possible; Shooter Localization requires
a high sample rate and fine-grain time synchronization;
Pursuer-Evader requires mote localization and more ad-
vanced routing (to the mobile pursuer).

3. SINGLE HOP COMMUNICATION
Active messages [6] has remained the basic network-

ing primitive of TinyOS. Active messages is a simple
message-based networking abstraction where messages
include an identifier that specifies an action to be exe-
cuted upon message reception. Although the abstraction
has changed little, its implementation and features have
changed substantially, due to changing hardware plat-
forms and emerging needs. There have been three major
networking stacks from UC Berkeley, one for each of the
primary platforms: rene, mica, and mica2. The primary
differences between these stacks can be traced to shifts
in the network hardware/software boundary.

The core challenge has been to meet the hard real time
requirements of networking hardware. The radio timing
requirements have influenced and restricted the use of
tasks not only in the radio stack, but throughout TinyOS.
Reliable radio reception requires high-frequency low-
jitter channel sampling. This is simplified by raising
the hardware/software boundary. However, raising this
interface is not without cost: useful features, such as
fine-grained power management, time-stamping, selec-
tive back-off, and link-level packet acknowledgment, be-
come more expensive and complex to provide on more
sophisticated radio interfaces. Leopold et al. [25] ob-
serve similar issues with the Bluetooth interface:“the ar-
guments mentioned above [high energy utilization, lack
of timestamps, no access to connectivity data] disqualify
Bluetooth as a first choice for sensor nodes.”

3.1 Communication Interfaces
In most cases, a macro-component called Generic-

Comm encapsulates the TinyOS network stack. Gener-
icComm provides the active message communication in-
terfaces (SendMsg and ReceiveMsg, as shown in Fig-
ure 1), which support single hop unicast and broadcast
communication. Message buffer structures have a fixed
size. CSMA (carrier-sense, multiple access) is the de-
fault media access. Applications and the network stack

exchange message buffers through pointers: senders pro-
vide their own storage for messages (there is no send
buffer pool). Successful calls to send implicitly yield the
provided buffer to GenericComm, which returns it to the
sender when signaling the sendDone event.

GenericComm provides limited receive buffering.
When a component receives a message, it must return
a buffer to the radio stack. The stack uses this buffer to
hold the next message as it arrives. Typically, a compo-
nent consumes and returns the buffer it was passed; how-
ever, if it wishes to store this buffer for later use, it may
instead return a pointer to another free buffer. If it has ex-
hausted all its buffering, the component must determine
what should be dropped. The stated goal is to keep the
system responsive and ensure that there is always a free
buffer for the radio stack to use. Components that need to
accumulate several packets before processing them must
allocate buffers statically and locally [11], rather than re-
lying on the network stack to provide arbitrary buffering.

Alternative interfaces for single hop communication
exist. For instance, S-MAC [45] is an RTS/CTS-based
networking stack that supports fragmentation at the data
link level. This allows S-MAC to support sending mes-
sages larger than the link MTU (maximum transmission
unit). It schedules RTS/CTS exchanges and turns ra-
dios off to reduce listening costs transparently. S-MAC
preserves the split-phase nature and zero-copy semantics
similar to SendMsg in its byte stream interface and pro-
vides an Active Message interface.

Based on the code we reviewed in CVS, almost all ap-
plications developed under TinyOS use active messages.
It appears that the availability of large message sizes
is not yet a general need: in the few cases where the
default message size has been insufficient, applications
have increased it modestly (e.g., from 36 to 56 bytes in
TinyDB). TinyDiffusion, a naming protocol discussed in
Section 4.2, uses S-MAC, but does not send messages
larger than the link MTU.

We now examine in detail each of the three implemen-
tations of active messages, beginning with the earliest
implementation, for the rene mote. We emphasize the
differences between successive implementations, noting
ways in which the hardware/software boundary changed
and which of these ways most influenced the capabilities
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Figure 2: Typical single hop network stacks for three generations of motes. From left to right: rene,mica , mica2 ,
and S-MAC onmica radio stacks. Grey components abstract hardware.

of the system.

3.2 AM Stack Implementations
Figure 2 shows the structure of the various stack im-

plementations. The rene RFM TR1000 radio is ex-
tremely simple. The system modulates the channel by
writing a DC-balanced bit sequence to the transmit pin
at precise times. Similarly, the data is recovered by read-
ing the receive pin at precise times to sample the channel.
The RFM component exports this bit-level interface. Bits
are received and transmitted in a timer interrupt handler.
CSMA media access control is intertwined with data
encoding and transmission within the SECDED com-
ponent. CRCPACKETOBJ performs the packet-to-byte
translation, with CRC checking, while AM is responsible
for application layer dispatch.

The mica hardware uses the same radio as the rene
and can use the rene stack unchanged. However, the
mica adds hardware edge detection and byte-to-bit con-
version on top of the RFM chip. This allows two major
advancements: more precise bit timing, and increased
data rates (40KBaud over rene’s 10KBaud). Instead of a
strictly layered approach, the mica stack delegates sepa-
rate parts of the communication process to different com-
ponents. It separates out the media access control (Chan-
nelMon), bit-level timing (RadioTiming) and data trans-
fer (SpiByteFifo). MicaHighSpeedRadio signals packet
reception events to the active message layer as well as
low-jitter timing events at specific points in packet recep-
tion or transmission (e.g., when the channel is acquired).
Interpositioning is used to provide CRC checks on the
packet level (through CRCFilter).

A later revision of the stack introduced synchronous
link-layer acknowledgments. The sender and receiver
swap roles just as the last data byte of the packet is sent.
The receiver transmits an acknowledgment code (a pre-
defined sequence of bits), and the sender reports if it
heard the code in its sendDone event. The sender then
has a synchronous acknowledgment at the cost of a few
byte times and can immediately decide whether to re-
transmit the buffer or use it for a new message.

Low power listeningreduces the cost of idle listen-
ing by lowering the radio sample rate when looking for
a packet start symbol and turning off the radio between

samples. This requires a transmitter to send a longer start
symbol. On the RFM TR1000, which can turn on in less
than a bit time, low power listening can lead to significant
idle listening energy savings at only a small overhead to
a transmitter. Once a receiver detects a packet, it keeps
its radio on and receives at the full data rate.

The mica2 is based on a Chipcon CC1000 radio, which
performs bit synchronization and encoding and exports
only a byte-level interface. A single, large component,
CC1000RadioInt, replaces the modular architecture used
in mica. Initially, the mica2 stack did not provide link-
layer acknowledgments, but later revisions added them
as well as low power listening. The application-level se-
mantics of CC1000 acknowledgments are the same as the
mica. However, the hardware interface requires the im-
plementation to send a tiny ACK data packet instead of
an ACK code, and low power listening is not nearly as
efficient.

New platforms are emerging that support the IEEE
802.15.4 standard for personal area wireless networks.
802.15.4 radios provide packet level interfaces for send-
ing and receiving, link layer encryption and authentica-
tion, link-layer acknowledgments, CRC checking, and
early packet rejection. These new standardized radios
move most of the functionality of the CC1000 radio stack
into hardware. simplifying the TinyOS code.

The S-MAC stack in Figure 2 shows an alternative
approach to layering. The complex SMAC compo-
nent handles backoff, retransmission, RTS/CTS/ACK
handshakes, fragmentation, and radio duty cycle con-
trol. PHY RADIO performs CRC checking and byte
buffering while CODECMANCHESTER runs Manch-
ester coding. RADIOCONTROL handles the low-level
carrier sensing and start symbol detection.

3.3 Analysis
Hardware differences between mote platforms af-

fected software structure and networking capabilities in
unforeseen and surprising ways. We discuss four ex-
amples: hard real time issues, low power listening, link
layer acknowledgments, and low-level hooks.

The concurrency model was intended to allow a col-
lection of components to be replaced by hardware and
vice versa. Moving the hardware/software boundary



changes the division of work between tasks and hardware
events, leading to different maximum critical section and
task lengths. The bit-level interface in rene requires the
stack to handle interrupts at a high enough rate that the
handler cannot encode or decode bytes; encoding/decod-
ing is deferred to tasks. Because it has a small buffer,
the encoding layer (SECDED) must run a task every
byte time. This means no other tasks can run longer
than a byte time (1.8ms). A larger encoding/decoding
buffer would reduce sensitivity to long-running applica-
tion tasks.

In mica, the addition of a byte-level hardware abstrac-
tion reduced the interrupt rate. This increased the num-
ber of cycles available for each event, allowing encod-
ing/decoding to remain in the interrupt handler. Tasks are
posted by the packet level component, making the stack
more resilient, but not immune, to the effects of long-
running application tasks: the maximum task length in-
creases to a packet time, approximately 25 milliseconds.

Both the rene andmica2 stacks support low-power
listening. However, it is much more efficient in the for-
mer, because the TR1000 can turn on very quickly, while
the CC1000 turns on slowly. This latency determines
how quickly the stack can sample the channel, and there-
fore how much it can reduce the cost of idle listening.

Synchronous link layer acknowledgments present an-
other timing issue. In the mica stack, they depend on
being able to quickly transition (in 12µs, where a raw
bit time is 25µs) the RFM radio between send and re-
ceive mode while maintaining synchronization to within
a bit time. The Chipcon radio transitions much more
slowly (250µs, where a raw bit time is 26µs) and self-
synchronizes at byte boundaries, precluding this tech-
nique. For this reason, mica2 acknowledgments require
a complete packet transmission. This is a well-known
and fundamental tension: moving the hardware bound-
ary further up the stack improves performance, but also
disallows certain capabilities enabled by low-level hard-
ware access. The important parameter in this case was
transition time, as opposed to more traditional measures
of radio performance such as throughput or sensitivity.

An additional feature that emerges is low-level hooks
that, following the technique of cross-layer control, al-
low higher level components to monitor radio events with
high precision. We examine one common use of these
hooks in Section 5.2, when we discuss time synchro-
nization. They are also commonly used in localization
systems based on time of flight measurements [41].

In summary, we observed the emergence of the
AM abstraction as general and widely used throughout
TinyOS. Lower levels of the radio stack, however, are
implementation-specific and tied to a particular hardware
platform. The development of the various mote plat-
forms shows that several hardware characteristics enable

important features and influence the ability of the radio
stack to coexist with applications and services.

4. MULTI-HOP COMMUNICATION
The literature describes many ad-hoc multi-hop rout-

ing algorithms, where network routes are discovered
through a self-organizing process [9, 13, 37, 38, 43].
Similarly, varieties of multi-hop routing components are
among the most diverse and numerous implementations
contributed to the TinyOS repository. We broadly divide
these components into three classes:tree-based collec-
tion, where nodes route or aggregate data to an endpoint,
intra-network routingwhere data is transfered between
in-network end-points, anddissemination, where data is
propagated to entire regions. Habitat monitoring primar-
ily uses tree-based collection, whereas Pursuer-evader
routes between mobile in-network regions. Essentially
all applications use some form of broadcast or dissemi-
nation to convey commands, reconfigure, or control in-
network processing. Examining several multi-hop im-
plementations, we see the emergence of two common
abstractions: (i) a neighborhood discovery and link qual-
ity estimation service and (ii) an augmented version of
the AM interface that supports packet encapsulation and
monitored forwarding. We summarize these classes and
common abstractions, noting several key points in the
evolution of routing as implemented in TinyOS.

4.1 Tree-Based Routing
Tree-based routing is primary based on two pieces of

information: a parent node identifier, and ahop-count
or depth from the tree root, i.e., the parent’s hop-count
plus one. A routing tree is built via local broadcast from
the root followed by selective retransmission from its de-
scendents. A node routes a packet by transmitting it with
the parent as the designated recipient. The parent does
the same to its parent, until the packet reaches the root of
the tree. The key design issues are how the routing tree is
discovered and maintained, as well as how the forward-
ing is performed. We examine the historical improve-
ments of tree formation over five successive protocols
(AMROUTE, BLess, Surge, mh6, and MultiHopRouter).

The early AMROUTE builds a tree using periodic bea-
con floods from the root, keeping no route history; it
only maintains a single, current parent, the first receipt
of the recent beacon. BLess, in contrast, uses no flood-
ing. Instead, each node listens to routed data packets and
greedily selects a parent from overheard transmissions.
The root node seeds the tree by periodically broadcast-
ing BLess packets, but these broadcasts are not retrans-
mitted. BLess maintains a table of candidate parents and
uses the parent with the lowest hop-count.

Surge also uses beaconless tree formation and main-
tains a table of candidate parents, but selects its parent



based on a combination of link quality (packet success
rate) and hop count. mh6 [43] and its re-implementation
in MultiHopRouter extend this approach by filtering the
neighbor set (based on link quality and other factors) and
choosing the parent based on an estimated cost to the
root through each neighbor. Each node computes qual-
ity estimates on incoming links and periodically trans-
mits these, along with its cost estimate to the root, al-
lowing neighbors to determine outgoing link quality and
total path estimates. Parent selection algorithms try to
minimize either end-to-end packet loss or, with link-level
acknowledgments, total expected transmissions, includ-
ing retransmissions. Surge and MultiHopRouter provide
support for retransmission and output queuing. Similar
techniques for asymmetric link rejection and neighbor-
hood management have recently been proposed for ad-
hoc routing in 802.11 networks [13].

One reason why many implementations of tree-based
protocols exist is that it is straightforward to construct
a basic tree-based topology and forwarding mecha-
nism.application. However, substantial care is required
to construct and maintain a stable topology that can pro-
vide good connectivity in a diverse radio environment
for weeks or months. The introduction of parameterized
interfaces in NesC, combined with the development of
more mature routing protocols made it possible to build
a robust, encapsulated routing layer that could be easily
reused in many applications.

4.2 Intra-network Routing
Several established ad hoc protocols, such as DSDV,

AODV, and Directed Diffusion, have been implemented
for TinyOS in various reduced forms. DSDV and AODV
are designed for unicast routing to specific endpoints. In
the TinyOS version implemented by Intel Oregon [44],
the basic algorithms for route discovery and maintenance
are similar to their IP counterparts, but the final results
are not. Instead, they maintain a single route, much
as tree-based protocols do. TinyDiffusion builds, then
prunes, a routing tree based at a particular requesting
source. [19]

A number of protocols structure network names to
assist routing. A fully featured implementation of
GPSR [24], which uses a node’s geographic location as
its name, has been completed by University of South-
ern California. It supports both greedy geographic rout-
ing and perimeter routing to recover from local failures.
Pseudo-geographic routing, in which each node is as-
signed a vector of hop-count distances from several bea-
cons instead of coordinates in a Cartesian plane, has been
explored as well. [38] Intra-network routing, the main-
stay of Internet usage, is uncommon in TinyOS appli-
cations. One exception is Pursuer-Evader, which pro-
vides mobile-to-mobile routing within a single routing

tree rooted at a landmark. The destination reinforces a
path from the landmark for downward routing.

4.3 Broadcast and Epidemic Protocols
Many applications need to reliably disseminate a data

item to every node in a network. For example, in
TinyDB new queries must be installed, while in Pursuer-
Evader the application can be reconfigured in-situ (e.g.,
to change filter settings or radio transmit power). Re-
liable network-wide dissemination can also be used to
distribute new versions of TinyOS programs.

In practice, reliable data dissemination has two prin-
cipal implementations. The first, a simple flooding pro-
tocol, is common, easily implemented, and often tightly
integrated in an application; it appears in Pursuer-Evader
as well as others. In this implementation, the source
(usually a base station) generates a data packet, and each
node that hears it forwards it once. Experience has shown
that a single flood often reaches most nodes very quickly,
but collisions and lossy links lead to several motes not
hearing the data. Typically, the source repeats the flood
several times, until every node receives it. Determining
when to stop requires either visual inspection or rout-
ing data out of the network to the base station. Pursuer-
Evader uses a delayed retransmission strategy, which
greatly reduces collisions and improves coverage.

The second approach is to use anepidemicalgorithm.
Instead of a single flooding event, nodes periodically ex-
change information to know when to propagate data [14].
For example, the Maté virtual machine uses a purely
epidemic algorithm to disseminate new code [29]. In
contrast to a flood, an epidemic only transmits when
needed. Local suppression mechanisms can reduce re-
dundant transmissions, saving energy. By ensuring reli-
able delivery to every connected node, an epidemic ap-
proach is robust to transient disconnections and can prop-
agate to new nodes added to a network.

TinyDB uses a hybrid approach to install and stop
queries. It first floods new queries into the network; this
reaches most nodes very quickly. The network then uses
an epidemic approach to reach the few remaining nodes
that missed the flood. As every data message contains a
query ID, nodes can detect inconsistencies by snooping
on local data traffic.

4.4 Common Multi-Hop Developments
We observe a number of common developments that

have occurred in several multi-hop networking imple-
mentations for TinyOS. First, most of the current multi-
hop routing implementations – MultiHopRouter, TinyD-
iffusion, GPSR, BVR – discover and manage a list of
neighboring nodes for possible routes. They use this in-
formation when initially constructing routes and to adapt
to connectivity changes, including node appearance and



interface Send {
command result_t send(TOS_MsgPtr msg, uint16_t

length);
command void* getBuffer(TOS_MsgPtr msg, uint16_t*

length);
event result_t sendDone(TOS_MsgPtr msg, result_t

success);
}
interface Intercept {

event result_t intercept(TOS_MsgPtr msg,
void* payload,
uint16_t payloadLen);

}

Figure 3: The Send and Intercept Interfaces for Routing.

disappearance. Typical information appearing in neigh-
borhood tables includes node addresses, link quality es-
timates, and routing metadata, such as hop-count in
routing-tree protocols. Note that this table contains both
link state (link quality) and routing layer (hop-count) in-
formation. With limited memory, the table is constrained
to a limited number of entries. Routing components uti-
lize link information in route selection, while link com-
ponents utilize routing information in table management.
Aspects of both are conveyed in route update messages.

Recent experiments have established that sensor net-
works experience lossy and asymmetric links whose
quality changes over time [7, 42]. Traditional protocols
that assume bi-directional connectivity are likely to fail
in such an environment; many early multi-hop routing
protocols in TinyOS correspondingly suffer from poor
end-to-end packet delivery [20]. To remedy this, re-
cent routing layers in TinyOS, such as MultiHopRouter,
BVR, TinyDiffusion and the TinyOS DSDV implemen-
tation include the notion of alink quality estimatorthat
identifies a set of bi-directional, high-quality links that
network, transport, and application layers can rely upon.

A second common development in multi-hop routing
is that routing layer implementations (e.g., DSDV, Mul-
tiHopRouter) have begun to use the Send and Intercept
interfaces, shown in Figure 3. The getBuffer command
in the Send interface allows the routing layer to control
the offset of the application payload in a message buffer,
which is useful for packet encapsulation. A routing layer
signals the Intercept event when it receives a packet to
forward. An application can suppress forwarding by re-
turning a certain result code. This allows application
such as TinyDB to locally aggregate data. These inter-
faces are examples of cross-layer control, and enhance
the AM abstraction with support for multi-hop commu-
nication by interposing new interfaces. Similar interfaces
would support broadcast with processing at each hop.

A third development is augmenting low-level net-
work abstractions to include interfaces for promiscuous
communication, where the network stack can pass non-
locally addressed packets up to a higher level compo-
nent. Some link estimation and neighbor table manage-

ment modules rely on this to learn about nearby nodes.
TinyDB uses it for application-specific network opti-
mizations. This prevalent use of snooping indicates that
it is a technique of general utility in sensor networks.

Finally, a fourth development that has recently
emerged in multi-hop protocols is the addition of a send
queue. Initial implementations, such as BLess, have a
single packet buffer, and drop outgoing packets when the
underlying communication components are busy trans-
mitting. Surge, mh6, and MultiHopRouter all add out-
going queues, but have different queuing policies. For
example, mh6 maintains separate forwarding and origi-
nating queues, giving priority to originating, while Mul-
tiHopRouter gives priority to forwarding. No implemen-
tations that we found include a receive queue beyond the
simple buffering provided by AM.

4.5 Observations
Except for GPSR, all multi-hop protocol implemen-

tations in TinyOS we could find are built on top of the
AM abstraction. The stability and wide use of the AM
interface suggest that protocol developers are satisfied
with the simple dispatch function it provides. It is pos-
sible that this stability reflects a desire not to modify the
lower level portions of the network stack, which tend to
be complex. However, the untyped packet interface be-
low AM is similarly isolated from this complexity. It is
worth noting that TinyDiffusion, which is built on top
of S-MAC, currently uses S-MAC’s AM interface rather
than an interface which S-MAC provides that includes
features like fragmentation.

When a message exceeds the length of an AM packet,
application level framing is used [10]. For example, the
TinyDB application partitions both queries and query re-
sults into logical units that have meaning on their own,
(e.g., a field in a query result.) If a single fragment gets
lost, the application can still use the other fragments.

Applications developed on TinyOS have predomi-
nantly used tree-based routing. Some applications, such
as pursuer-evader, use intra-network routing, but imple-
mentations tend to be single destination and fairly sim-
ple. The literature, however, has proposed many intra-
network routing algorithms. There are several poten-
tial explanations for this difference in usage. Complex
routing algorithms may have difficulty scaling down to
resource constrained nodes. The implementations may
simply be too immature enough to have seen use in re-
leased applications. This was the case with initial im-
plementations of tree-based routing which were not suf-
ficiently robust to be widely adopted (despite their sim-
plicity). However, it appears that general point-to-point
routing is simply less common in applications of embed-
ded networks, which tend to operate in aggregate on in-
formation that is distributed throughout the network. In



such applications, information tends either to be broad-
cast out or to flow in a single direction towards a small
number of sinks.

Applications are increasingly using reliable dissemi-
nation for programming or reconfiguration. For small
networks, simple floods are sufficient. As sensor net-
works are deployed at larger scales, the need to respond
to unforeseen system interactions increases, as does the
benefit of an epidemic-based solution. However, unlike
prior IP-based epidemics, sensor nets can take advantage
of geographic proximity and spatial redundancy.

Based on the observations in this section, we note sev-
eral progressions in the development of multi-hop net-
working in TinyOS. First, the evolution of a neighbor-
hood management table with the ability to reject asym-
metric links and select low-loss routes has finally re-
sulted in a widely used tree-based routing component –
MultiHopRouter. Second, the use of snooping (as op-
posed to broadcast floods) to gather neighborhood infor-
mation and construct initial routes has become standard
practice. Finally, the appearance of send queues suggests
that applications may need to be tolerant of significant
transmission delays and that some traditional networking
techniques (e.g., differentiated services or load shedding)
are applicable in this domain.

5. NETWORK SERVICES
A number of abstractions support efficient, low-power

networking in TinyOS. In this section, we focus on two
prominent examples, power management and time syn-
chronization.

5.1 Power Management
TinyOS manages power management through the in-

teraction of three elements. First, each service can be
stopped through a call to its StdControl.stop command
(see Figure 1); components in charge of hardware periph-
erals can then switch them to a low-power state. Second,
the HPLPowerManagement component puts the proces-
sor into the lowest-power mode compatible with the cur-
rent hardware state, which it discovers by examining the
the processor’s I/O pins and control registers. Third, the
TinyOS timer service can function with the processor
mostly in the extremely-low-powerpower-savemode.

TinyDB uses these features to support sensor network
deployments that last for months. In this context, idle lis-
tening dominates energy consumption. As discussed in
Section 3.2, low-power listening reduces the cost of idle
listening by increasing the cost of transmission. How-
ever, instead of low power listening, TinyDB uses com-
munication scheduling. Using coarse-grained (millisec-
ond) time synchronization, TinyDB motes coordinate to
all turn on at the same time, sample data, forward it to
the query root, and return to sleep.

Figure 4 illustrates TinyDB’s power management ap-
proach. At the end of a round of data collection,
each mote calls StdControl.stop to stop both the on-
board sensor hardware (IntersemaPressure) and the ra-
dio (CC1000M, UARTM). After the next timer event,
HPLPowerManagement puts the processor into power-
save mode (via adjustPower). At the start of the next
data collection round, the timer wakes the mote up, and
StdControl.start is called to restart the sensors and ra-
dio. This approach to communication scheduling re-
quires time synchronization when used in conjunction
with multi-hop routing, discussed below.

Low Level Hardware Components

CC1000M.nc IntersemaPressure.nc UARTM.nc

Radio Hardware
Status Register: On / Off

Sensor Hardware
Status Register: On / Off

Uart Hardware
Status Register: On / Off HPLPowerManagement.nc

TimerM.nc

adjustPower()

Application

StdControl

stop()

CPU

Figure 4: The TinyDB power management API. The ap-
plication calls StdControl.stop to halt the low-level hard-
ware. HPLPowerManagement.nc sees changes to the
hardware status registers, which causes it to put the CPU
into a low-power sleep state.

Power management illustrates cross-layer control at
a very low-level: HPLPowerManagement goes directly
to the hardware to determine when the processor can
be switched into various low-power modes (e.g., idle,
power-down, power-save, standby, extended standby).
Correspondingly, power management is an abstraction
that must inherently be specialized: effective power man-
agement without application input is not possible. For
example, by supplying a small bit of application infor-
mation, TinyDB allows TinyOS to spend most of its time
in a very low power mode. Approaches such as S-MAC
take a static approach to this communication scheduling,
always waking at a certain fixed interval. TinyDB, how-
ever, allows this scheduling to dynamically change in a
fine grained manner with regards to application needs
(e.g. query sampling rates), conserving more energy.

5.2 Time Synchronization
Another service that many network-centric applica-

tions need is time-synchronization. Such a service is
useful in several scenarios. For example, sensor fu-
sion applications that combine a set of coincident read-
ings from different locations, such as shooter localiza-
tion, need to establish the temporal consistency of data.
TDMA-style media access protocols need fine-grained



time synchronization for slot coordination, and power-
aware approaches to communication scheduling (dis-
cussed above) require senders and receivers to agree
when their radios will be on.

Several groups, including UCLA1, Vanderbilt2, and
UC Berkeley3, have implemented time synchronization.
GenericComm provides a hook for modifying messages
just as it transmits the first data bit, after media access.
All of these implementations work similarly: they use
the hook to place a time stamp in the packet. This allows
very precise time-synchronization that might otherwise
not be possible [16]. This is another example of cross-
layer control in TinyOS. The Vanderbilt implementation
models possible delays, which allows it to obtain slightly
better accuracy than the other approaches; all three report
sub-millisecond accuracy.

Initial efforts to develop a general purpose, low-level
time synchronization component were unsuccessful. A
number of subtle and bad interactions observed with
some higher level applications, such that timer events
are missed or software components hang in inconsistent
states. Applications were fragile to time-critical intervals
suddenly becoming slightly shorter or longer.

Instead, the current approach taken by TinyOS is to
provide the mechanism to get and set the current sys-
tem time (and time stamp messages at a low level), but
to depend on applications to choosewhento invoke syn-
chronization. For example, in the TinyDB application,
when a node hears a time-stamped message from a par-
ent in the routing tree, it adjusts its clock so that it will
start the next communication period at exactly the same
time as its parent. It does this by changing the duration of
the sleep period between communication intervals, rather
than changing how long the sensor is awake, since cut-
ting the waking period short could cause critical services,
such as data acquisition, to fail.

As with power management, it appears that time syn-
chronization is emerging in TinyOS as a specialized ab-
straction, with mechanism provided by the operating sys-
tem and policy by the application. Applications have
a varying set of time synchronization requirements, so
incorporating their behavior in the service is beneficial.
Gradual time shifting is suitable in some situations, while
others require sudden shifts to the correct time.

The fact that applications fail when time-
synchronization changes the underlying clock has
been observed before; systems such as NTP [33] work
around this problem by slowly adjusting the clock rate
to synchronize it with neighbors. The NTP approach has
the potential to introduce errors in an environment as
time-sensitive as TinyOS, where a timer that fires even a

1In tinyos-1.x/contrib/Timesync-NESL-UCLA/
2In tinyos-1.x/contrib/vu/
3In tinyos-1.x/beta/TimeSync/

few milliseconds earlier than expected can cause radio
or sensor data to be lost.

Some applications may prefer to focus on robust-
ness rather than maximizing the precision of time syn-
chronization, as most algorithms proposed in the litera-
ture [16, 18] and included in the TinyOS repository strive
to do. For example, TinyDB only requires time synchro-
nization to millisecond fidelity, but also requires a rapid
settling time. A general abstraction that fit all possible
needs would do much more work than TinyDB needs.
Simple, specialized abstractions are a natural way to ad-
dress these types of services.

6. DISCUSSION
We focus now on what can be distilled from this broad

study of TinyOS’s networking software. We first revisit
the four classes of abstractions that have emerged, dis-
cussing the members of each class. We also observe that
there are design techniques commonly used in TinyOS,
but which are not common to more general purpose sys-
tems. We then contrast the observed design goals of sen-
sor networks and Internet-based systems.

6.1 Abstractions
We place the observed abstractions into one of four

classes: general, specialized, in-flux, or absent. In this
last class we note two abstractions that one might ex-
pect, based on literature and other networking systems,
but were absent in the sources we examined.

6.1.1 General Abstractions

We noted severalgeneralnetworking abstractions, i.e,
widely used and support by both TinyOS mechanisms
and policies. The AM abstraction (Section 3.2) has re-
mained stable since the earliest TinyOS work [23], and
most network applications use it either directly or indi-
rectly. This is not entirely surprising, as communication
is the core service offered by TinyOS.

Another reason for the stability of AM is that the in-
terface is very simple and lightweight. Other abstractions
can easily provide it, in order to be compatible with pre-
existing code. For instance, S-MAC provides an imple-
mentation of AM on top of its interface, allowing its use
by existing programs without modification, despite that
fact that it also provides another messaging interface.

A second set of general abstractions have emerged
for tree-based routing, particularly the Send and Inter-
cept interfaces shown in Figure 3. Implementations
from Berkeley (Route) and Intel-Portland (HSN, AODV,
DSDV) use this interface, and major applications, in-
cluding TinyDB, have been reimplemented to make use
of it. From a networking perspective, this is an impor-
tant development, as it allows applications make use of
a variety of different multi-hop implementations without



source code modification.

6.1.2 Specialized Abstractions

Specializedabstractions, i.e., those where TinyOS
provides mechanisms and applications provide policies,
have appeared for both power-management and time-
synchronization. In many cases, it is possible to conceive
of completely general versions of these abstractions, and
general purpose operating systems often provide some
version thereof. However, as with the effort to build a
general version of time synchronization in TinyOS, gen-
eral abstractions of some services are very hard to get
right. This is because the requirements of applications
vary dramatically: some applications and services need
time synchronization that is accurate to within a few mil-
liseconds with a small set of other nodes (e.g., TDMA),
while others depend on a globally synchronized clock
that is much less accurate (e.g., TinyDB). Many sensor
network applications have long sleep periods, which pro-
vide natural, application-specific points for clock adjust-
ment.

6.1.3 In-Flux Abstractions

A third class of abstractions we consider to bein-flux,
commonly found but changing between applications and
hardware versions, often in conflicting fashion.

One such abstraction is epidemic propagation. Both
TinyDB and Mat́e use this technique to reliably dissem-
inate code (capsules or queries) through a network; we
believe that this abstraction is important for sensor net-
works and expect that it will see further use, e.g., for
multi-hop network reprogramming. Many applications
propagate commands that need to be received every-
where through näıve flooding. However, no established
interface has emerged for this dissemination. This ab-
straction is a case where the literature [8, 35] provides
clear evidence of the shortcomings of flooding and its
variants. Based on our observations, however, systems
have suffered with these problems instead of adapting
and adjusting solutions from prior work to the different
constraints wireless sensor networks pose.

An abstraction that is surprisingly in flux is the radio
MAC. We find considerable variation in how the channel
activity is sensed, the use of control packets (RTS/CTS
and ACK) per data packet, backoff, power management,
link estimation, queuing, and assumptions about mes-
sage size and traffic pattern. Additionally, each gen-
eration of hardware presented a distinct set of require-
ments for channel coding, start-symbol detection, align-
ment, and data transfer. We anticipate that the recent ap-
pearance of 802.15.4 radios will stabilize work in this
regard; being an accepted IEEE standard gives it legiti-
macy and wide use. For media access protocols to stabi-
lize they will need to have cross-layer control interfaces,

discussed below, so they can be specialized to the partic-
ular needs of the application and network layer.

Routing from an arbitrary source to an arbitrary desti-
nation appears in only a few applications and involves a
small subset of source-destination pairs within the con-
text of substantial dissemination and collection traffic.
Currently, it is realized out of the tree-based structures
that are used for those other patterns.

6.1.4 Absent Abstractions

Finally, we note a few abstractions that we expected to
find in TinyOS based on our reading of the sensor net-
work literature, but that were absent in the code base.

One example is distributed cluster formation, about
which there has been a large amount of publication in
the ad-hoc and sensor network communities [12, 3, 5].
Instead we find dissemination using simple best-effort
broadcasts and collection using continually monitored
trees. The prime exception is the Intel DSDV implemen-
tation, which builds clusters using an available energy
metric. The absence here may stem from the complex-
ity of maintaining 2-hop neighbor lists with low-power
radios that are heavily influenced by environmental fac-
tors.

Another abstraction missing from TinyOS is incoming
(receive) queues. Applications generally handle message
reception by accepting a message from the radio stack,
processing it, and returning it back to the radio stack.
Packets are typically dispatched to components that do a
particular, simple operation on the contents. Compared
to their communication bandwidth, motes have an abun-
dance of CPU cycles; they can process messages at the
rate they receive them.

6.2 Common Techniques
In addition to these abstractions, we observe certain

designtechniquesthat have been widely and successfully
employed in TinyOS. We strive, in particular, to identify
common approaches that facilitate program design and
engineering or enhance performance. We consider those
strategies that are prevalent in the TinyOS codebase, and
which the preceding sections suggest will continue to be
important in future sensor network software systems.

6.2.1 Communication Scheduling and Snooping

Two conflicting techniques that are widely used in
TinyOS, and seem particularly important for sensor net-
works, arecommunication schedulingand snooping.
Communication scheduling, as discussed in Section 5.1,
refers to disabling the radio except during pre-arranged
times when a pair of nodes expect to exchange data. It
may also involve frequency or code division. In contrast,
snooping refers to receiving packets that might not even
be destined for a node, to acquire network neighborhood



information or learn about new processing tasks (as with
queries in TinyDB or program capsules in Maté); snoop-
ing is an essential part of the epidemic algorithms we
noted throughout TinyOS.

Snooping tends to reduce the overall communication
burden on the network, but requires the node to spend en-
ergy listening to its radio and receiving packets – exactly
what scheduled communication avoids. While always-on
and totally scheduled represent extreme points, we find
that applications tend to strike a balance using partially
scheduled techniques. For instance, TinyDB leaves the
radio on for longer than a single transmission time so
that some snooping can occur. Several TDMA schemes
are in development [21], but some use the time slots as
a heuristic to make collision improbable (using CSMA
within slots), instead of assuming the time slot allocation
is absolutely collision free. Applications may desire to
open up additional ‘snooping slots’.

6.2.2 Cross-Layer Control

One approach that has emerged as particularly effec-
tive in the sensor network domain is the general tech-
nique ofcross-layer control. An example of this is the
way in which many TinyOS routing stacks share network
neighborhood information between link state and net-
work layers. Exposing state from a lower level (the link
state layer) to a higher level (the network layer) avoids
duplicating data in multiple layers, conserving RAM.
Another example is the provision by the network stack of
low-level information, such as received signal strength,
to higher layers. Promiscuous communication works
similarly: non-locally addressed packets overheard by
the network layer are exposed to the application layer to
allow it to avoid unnecessary communication.

Cross-layer techniques also work in the opposite di-
rection: higher level components (frequently the applica-
tion), can use logic in lower components to improve per-
formance. For example, applications write timestamps
in time synchronization messages just as the stack sends
them using a hook the stack provides. In an extreme case,
one radio stack exposes control of MAC layer function-
ality and parameters.

One reason that these techniques are so effective in
sensor networks, and TinyOS in particular, is that each
node is generally dedicated to a single task, allowing the
application to choose which instance of a particular ab-
straction (e.g., S-MAC vs AM) it prefers without concern
for the operation of other applications. This approach
also supports the most important cross-layer technique
that has emerged in TinyOS, application control of net-
work services such as time-synchronization and power
management. This control is necessary, as the applica-
tion is the only software component capable of orches-
trating the activities of all of the device’s subsystems.

This is an example of a case where TinyOS has been
particularly successful at translating a stated goal of the
project into reality; early work states [17]: “Without the
traditional layers of abstraction dictating what capabil-
ities are available, it is possible to foresee many novel
relationships between the application and the underlying
system.”

Of course, cross-layer techniques are not new; they
have been widely used in the networking and operating
systems communities [4, 34]. The resource constrained
nature of sensor networks, however, makes these tech-
niques particularly important. Without them, it is un-
likely that there would be sufficient RAM or radio band-
width available to develop the complex systems that have
begun to emerge. Moreover, we find that these tech-
niques are used to enhance control, rather than simply
to optimize frequent paths.

6.2.3 Static Resource Allocation

The third technique apparent in TinyOS is the notion
of static resource allocation, or allocating buffers for
the network, sensors, UART, and other OS services at
compile-time. The prevalence of this static allocation
in TinyOS is somewhat controversial, as RAM is valu-
able. To elucidate the importance of this technique, we
consider a critical design parameter of any event-driven
system: event-arrival rate.

Assuming that processing resources are sufficient,
queue size (n) is determined by the maximum event-
arrival rate (r), the number of events processed simulta-
neously (c), and the processing time per event (t). From
Little’s Law, we readily deriven = rt+c. Many TinyOS
applications have processing times much smaller than the
inverse of the arrival rate, and process one event at a time,
which impliesn = 2 (one buffer for the current object
and one for the next arrival). This is the root reasoning
behind the buffer-swapping policy of the network stack;
i.e. swap these two buffers on every arrival.

This reasoning argues against dynamic buffer alloca-
tion, which assumes that another buffer is always avail-
able. Since this is not true given the small amount of
memory in today’s sensor networks, it is much better to
statically allocate the right number of buffers, which is
the policy generally adopted in the TinyOS community.

This also leads to better composition, since compo-
nents reserve the amount of memory they need, making
total memory requirements checkable at compile-time.
In contrast, two components that depend on dynamic
buffer allocation may work fine alone, but not as well
together as they unpredictably run out of memory. Static
allocation can be wasteful when worst case requirements
are much greater than the expected case. For example,
TinyDB statically allocates 17 separate send buffers, but
it is very unlikely that these would all used simultane-



ously; if the system were so overloaded, not having a
buffer to allocate would be a minor issue.

Finally, it should be noted that although we believe
the policy of statically allocating memory is the right
approach for sensor networks. TinyOS provides lim-
ited tools for understanding static memory needs. Im-
proved profilers or simulation tools that could predict
such needs, such as recent work on computing stack us-
age [39], would be of great value to the community.

6.3 EmNets vs. the Internet
RFC 1958 (“Architectural Principles of the Internet”)

reads:

“However, in very general terms, the commu-
nity believes the goal is connectivity, the tool
is the Internet Protocol, and the intelligence is
end to end rather than hidden in the network
... connectivity is its own reward, and is more
valuable than any individual application” [1]

Examined in this light, the networking abstractions
that have emerged in sensor networks are the result of
more than chance. They differ from traditional Inter-
net abstractions not only because of resource constraints,
which might change, but because of a very different set
of goals and principles.

End-to-end connectivity is not the primary goal. Un-
like the Internet, which is a collection of independent
end points that share a common routing infrastructure,
sensor networks are homogeneous systems deployed for
an application-specific and collaborative purpose. Ev-
ery node is both a sensor and a router. The relative
costs of communication and computation push the archi-
tecture from end-to-end logic to in-network processing.
Network neighbors are generally physically close; corre-
spondingly, their sensor readings are often related. Addi-
tionally, a wireless medium, combined with geographic
proximity, correlates network traffic between neighbors.

7. CONCLUSION
In this paper, we were able to classify the most promi-

nent abstractions in TinyOS based on the degree of con-
sensus shown in our community-wide study of the code
base. Among the more mature, general abstractions are
active messages and tree-based routing. However, most
abstractions are still specialized and application specific,
in flux, or largely missing despite being in the literature.
We observe a trend where application specific abstrac-
tions become gradually become more general over time.
This is illustrated, for example by the emergence of tree-
based routing in TinyOS.

One major reason for the absence of consensus is the
unusual degree to which application specialization mat-
ters. This appears to be due to a few factors: first, each

mote runs only one application at a time, eliminating the
need for shared abstractions; second, power management
affects all levels of the system and is essentially always
application specific; and third, limited resources lead to
specialized implementations offering greater efficiency
than their generalized counterparts. The last effect is
evident in time synchronization, multi-hop routing, and
buffer allocation. A fourth factor is that many applica-
tions have real-time requirements that mandate precise
control over timing throughout the application, reducing
the utility of off-the-shelf components.

We also found several techniques that work well in
these systems. The two most obvious are cross-layer
control and static resource allocation. The former al-
lows better use of resources and more control over timing
(e.g. time synchronization), and is well-supported by the
“wiring” language in TinyOS, which exposes the layer-
ing and encourages interposition and cross-layer think-
ing. Part of the success of cross-layer control is the
support it provides to application specialization. Static
resource planning is more robust, more modular, and
forces the author to think about the whole program, in-
cluding all of its resources.

In conclusion, we see that wireless sensor networking
is driven by three differentiating factors: power manage-
ment, limited resources and real-time constraints. These
factors have driven the development of the abstractions
and techniques seen above. It remains to be seen how
lasting and wide-ranging these trends will be.

8. APPENDIX: CODE SOURCES
The following source code repositories were used to collect the data
for this paper.

CENS. Fromhttp://cvs.cens.ucla.edu/viewcvs/
viewcvs.cgi/tos-contrib/ . Includes RBS [16] time
synchronization.

Rutgers. Fromhttp://www.cs.rutgers.edu/dataman/
FourierNet/tos10/distro.html . Includes an ad-hoc
positioning system and based on ranging code from Vanderbilt.

sf.net vert. From
http://sourceforge.net/projects/vert/ . Includes an
activation tracking demo and “virtual real time” demo from UVA.

TinyOS Contrib . From
http://sourceforge.net/projects/tinyos/ in the
tinyos-1.x/contrib directory. Includes PRIME, S-MAC,
TinyDiff, SensorIB, tinydb, and hsn.

TinyOS CVS and main UC Berkeley repository; includes all UC
Berkeley files. From
http://sourceforge.net/projects/tinyos/ in the
nest, tinyos, tinyos-1.x andtos directories. The
“TinyDB” application is available at
tinyos-1.x/tos/lib/TinyDB .

TinyOS Documentation Project. Fromhttp://ttdp.org .

http://cvs.cens.ucla.edu/viewcvs/viewcvs.cgi/tos-contrib/
http://cvs.cens.ucla.edu/viewcvs/viewcvs.cgi/tos-contrib/
http://www.cs.rutgers.edu/dataman/FourierNet/tos10/distro.html
http://www.cs.rutgers.edu/dataman/FourierNet/tos10/distro.html
http://sourceforge.net/projects/vert/
http://sourceforge.net/projects/tinyos/
http://sourceforge.net/projects/tinyos/
http://ttdp.org
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