
USENIX Association

Proceedings of the First Symposium on
Networked Systems Design and Implementation

San Francisco, CA, USA
March 29–31, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Contract-Based Load Management in Federated Distributed Systems∗

Magdalena Balazinska, Hari Balakrishnan, and Mike Stonebraker
MIT Computer Science and Artificial Intelligence Lab

http://nms.lcs.mit.edu/projects/medusa/

Abstract

This paper focuses on load management in loosely-
coupled federated distributed systems. We present a dis-
tributed mechanism for moving load between autonomous
participants using bilateral contracts that are negotiated
offline and that set bounded prices for moving load. We
show that our mechanism has good incentive properties,
efficiently redistributes excess load, and has a low over-
head in practice.

Our load management mechanism is especially well-
suited for distributed stream-processing applications, an
emerging class of data-intensive applications that employ
a “continuous query processing” model. In this model,
streams of data are processed and composed continuously
as they arrive rather than after they are indexed and stored.
We have implemented the mechanism in theMedusadis-
tributed stream processing system, and we demonstrate its
properties using simulations and experiments.

1 Introduction

Many distributed systems are composed of loosely
coupled autonomous nodes spread across different admin-
istrative domains. Examples of such federated systems
include Web services, cross-company workflows where
the end-to-end services require processing by different
organizations [3, 21], and peer-to-peer systems [8, 23,
30, 45]. Other examples are computational grids com-
posed of computers situated in different domains [4, 16,
44], overlay-based computing platforms such as Planet-
lab [35], and data-intensive stream processing systems [1,
2, 5, 6, 7] that can be distributed across different domains
to provide data management services for data streams.

Federated operation offers organizations the opportu-
nity to pool their resources together for common bene-
fit. Participants can compose the services they provide
into more complete end-to-end services. Organizations
can also cope with load spikes without individually hav-
ing to maintain and administer the computing, network,
and storage resources required for peak operation.
∗This material is based upon work supported by the National Science

Foundation under Grant No. 0205445. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

Autonomous participants, however, do not collaborate
for the benefit of the whole system, but rather aim to max-
imize their own benefit. A natural way to architect a fed-
erated system is thus as acomputational economy, where
participants provide resources and perform computing for
each other in exchange for payment.1

When autonomous participants are also real economic
entities, additional constraints come into play. The pop-
ularity of bilateral agreements between Internet Service
Providers (ISPs) demonstrates that participants value and
even require privacy in their interactions with each other.
They also practice price and service discrimination [24],
where they offer different qualities of service and different
prices to different partners. For this purpose, ISPs estab-
lish bilateral Service Level Agreements, where they de-
fine confidential details of thecustomSLA and prices that
one partner offers another.

In this paper, we present a distributed mechanism for
managing load in a federated system. Our mechanism is
inspired on the manner in which ISPs collaborate. Unlike
other computational economies that implement global
markets to set resource prices at runtime, our mechanism
is based onprivate pairwise contractsnegotiated offline
between participants. Contracts set tightlybounded prices
for migrating each unit of load between two participants
and specify the set of tasks that each is willing to execute
on behalf of the other. We envision that contracts will be
extended to contain additional clauses further customiz-
ing the offered services (e.g., performance and availability
guarantees). In contrast to previous proposals, our mecha-
nism (1) provides privacy to all participants regarding the
details of their interactions with others, (2) facilitates ser-
vice customization and price discrimination, (3) provides
a simple and lightweight runtime load management using
price pre-negotiation, and (4) has good system-wide load
balance properties.

With this bounded-price mechanism, runtime load
transfers occur only between participants that have pre-
negotiated contracts, and at a unit price within the con-
tracted range. The load transfer mechanism is simple: a
participant moves load to another if the local processing
cost is larger than the payment it would have to make to

1Non-payment models, such as bartering, are possible too. See Sec-
tion 2 for details.

another participant for processing the same load (plus the
migration cost).

Our work is applicable to a variety of federated sys-
tems, and is especially motivated bydistributed stream
processing applications. In these applications, data
streams are continuously pushed to servers, where they
undergo significant amounts of processing including fil-
tering, aggregation, and correlation. Examples of appli-
cations where this “push” model for data processing is
appropriate include financial services (e.g., price feeds),
medical applications (e.g., sensors attached to patients),
infrastructure monitoring (e.g., computer networks, car
traffic), and military applications (e.g., target detection).

Stream processing applications are well-suited to the
computational economy provided by a federated system.
Data sources are often distributed and belong to different
organizations. Data streams can be composed in differ-
ent ways to create various services. Stream processing
applications also operate on large volumes of data, with
rates varying with time and often exceeding tens of thou-
sands of messages per second. Supporting these applica-
tions thus requires dynamic load management. Finally,
because the bulk of the processing required by applica-
tions can be expressed with standard well-defined oper-
ators, load movements between autonomous participants
does not require full-blown process migration.

We have designed and implemented the bounded-price
mechanism inMedusa, a federated distributed stream-
processing system. Using analysis and simulations, we
show that the mechanism provides enough incentives for
selfish participants to handle each other’s excess load, im-
proving the system’s load distribution. We also show that
the mechanism efficiently distributes excess load when
the aggregate load both underloads and overloads total
system capacity and that it reacts well to sudden shifts in
load. We show that it is sufficient for contracts to specify
a small price-range in order for the mechanism to produce
acceptable allocations where (1) eitherno participant op-
erates above its capacity, or (2) if the system as a whole
is overloaded, thenall participants operate above their ca-
pacity. We further show that the mechanism works well
even when participants establish heterogeneous contracts
at different unit prices with each other.

We discuss related work in the next section. Section 3
presents the bounded-price load management mechanism
and Section 4 describes its implementation in Medusa.
We present several simulation and experimental results in
Section 5 and conclude in Section 6.

2 Related Work

Cooperative load sharing in distributed systems has
been widely studied (see,e.g., [10, 19, 22, 25, 41]). Ap-
proaches most similar to ours produce optimal or near-
optimal allocations usinggradient-descent, where nodes

exchange load among themselves producing successively
less costly allocations. In contrast to these approaches,
we focus on environments where participants are directed
by self-interest and not by the desire to produce a system-
wide optimal allocation.

As recent applications frequently involve indepen-
dently administered entities, more efforts have started to
consider participant selfishness. In mechanism design
(MD) [20, 33], agents reveal their costs to a central en-
tity that computes the optimal allocation and a vector of
compensating payments. Agents seek to maximize their
utility computed as the difference between payment re-
ceived and processing costs incurred. Allocation and pay-
ment algorithms are designed to optimize agents utility
when the latter reveal their true costs.

In contrast to pure mechanism design, algorithmic
mechanism design (AMD) [29, 32] additionally consid-
ers the computational complexity of mechanism imple-
mentations. Distributed algorithmic mechanism design
(DAMD) [12, 14] focuses on distributed implementations
of mechanisms, since in practice a central optimizer may
not be implementable. Previous work on DAMD schemes
includes BGP-based routing [12] and cost-sharing of mul-
ticast trees [13]. These schemes assume that participants
correctly execute payment computations. In contrast, our
load management mechanism is an example of a DAMD
scheme that does not make any such assumption because
it is based on bilateral contracts.

Researchers have also proposed the use of economic
principles and market models for developing complex dis-
tributed systems [27]. Computational economies have
been developed in application areas such as distributed
databases [43], concurrent applications [46], and grid
computing [4, 16, 44]. Most approaches use pricing [4,
9, 15, 16, 39, 43, 46]: resource consumers have differ-
ent price to performance preferences and are allocated a
budget. Resource providers hold auctions to determine
the price and allocation of their resources. Alternatively,
resource providers bid for tasks [39, 43], or adjust their
prices iteratively until demand matches supply [15].

These approaches to computational economies require
participants to hold and participate in auctions for every
load movement, thus inducing a large overhead. Variable
load may also make prices vary greatly and lead to fre-
quent re-allocations [15]. If the cost of processing clusters
of tasks is different from the cumulative cost of indepen-
dent tasks, auctions become combinatorial [31, 34]2, com-
plicating the allocation problem. If auctions are held by
overloaded agents, underloaded agents have the choice to
participate in one or many auctions simultaneously, lead-
ing to complex market clearance and exchange mecha-
nisms [29]. We avoid these complexities by bounding

2In a combinatorial auction, multiple items are sold concurrently. For
each bidder, each subset of these items represents a different value.

the variability of runtime resource prices and serializ-
ing communications between partners. In contrast to our
approach, computational economies also make it signif-
icantly more difficult for participants to offer different
prices and different service levels to different partners.

As an alternative to pricing, recent approaches pro-
pose to base computational economies onbartering.
SHARP [17] is an infrastructure that enables peers to se-
curely exchange tickets that provide access to resources.
SHARP does not address the policies that define how
the resources should be exchanged. Chunet al. [8] pro-
pose a computational economy based on SHARP. In their
system, peers discover required resources at runtime and
trade resource tickets. A ticket is a soft claim on resources
and can be rejected resulting in zero value for the holder.
In contrast, our pairwise agreements do not specify any
resource amounts and peers pay each other only for the
resources they actually use.

Service level agreements (SLAs) are widely used for
Web services and electronic commerce [3, 21, 37]. The
contract model we propose fits well with these SLA in-
frastructures.

In P2P systems, peers offer their resources to each
other for free. Schemes to promote collaboration use
reputation [23], accounting [45], auditing [30], or strat-
egyproof computing [28] to eliminate “free-riders” who
use resources without offering any in return. In contrast,
we develop a mechanism for participants that require tight
control over their collaborations and do not offer their re-
sources for free.

3 The Bounded-Price Mechanism

In this section, we define the load management prob-
lem in federated distributed systems, present the bounded-
price mechanism and discuss its properties.

3.1 Problem Statement

We are given a system comprised of a setS of au-
tonomousparticipants each with computing, network,
and storage resources, and a time varying setK of het-
erogeneoustasksthat impose a load on participants’ re-
sources. Each task is considered to originate at a partici-
pant where it is submitted by a client. Since we only ex-
amine interactions between participants, we use the terms
participant andnodeinterchangeably. Tasks can be ag-
gregated into larger tasks or split into subtasks. If the
load imposed by a task increases, the increase can thus
be treated as the arrival of a new task. Similarly, a load
decrease can be considered as the termination of a task.
We discuss tasks further in Section 4.

For each participant, the load imposed on its resources
represents a cost. We define a real-valuedcost functionof
each participanti as:

∀i ∈ S, ∀taskseti ⊆ K, Di : taskseti → R (1)

Xcur

Cost Function D i

Marginal Cost (m)

Price
Per Unit

X

Load Level, X, for which MC = Price

x

Load Levels within
Bounded−Price Range

 0

 2

 4

 6

 8

 10

 12

 14

 0.5 0.6 0.7 0.8 0.9

T
ot

al
 C

os
t

Percent Utilization (Load)

Figure 1:Prices and processing costs.

wheretaskseti is the subset of tasks inK running ati.
This cost depends on the load imposed by the tasks. Each
participant monitors its own load and computes its pro-
cessing cost. There are an unlimited number of possible
cost functions and each participant may have a different
one. We assume, however, that this cost is amonotonic
andconvexfunction. Indeed, for many applications that
process messages (e.g., streams of tuples), an important
cost metric is the per message processing delay. For most
scheduling disciplines this cost is an increasing and con-
vex function, reflecting the increased difficulty in offering
low delay service at higher load. Figure 1 illustrates such
cost function for a single resource. We revisit Figure 1
further throughout the section.

Participants are selfish and aim to maximize their util-
ity, computed as the difference between the processing
cost,Di(taskseti), and the payment they receive for that
processing. When a task originates at a participant, it
has a constant per-unit load value to that participant (this
value could be, for instance, the price paid by the partic-
ipant’s clients for the processing). When a task comes
from another participant, the payment made by that par-
ticipant defines the task’s value.

Each participant has a maximum load level corre-
sponding to a maximum cost, above which the participant
considers itself overloaded. The goal of a load manage-
ment mechanism is to ensure that no participant is over-
loaded, when spare capacity exists. If the whole system
is overloaded, the goal is to use as much of the available
capacity as possible. We seek a mechanism that produces
anacceptable allocation:

Definition: An acceptable allocationis a task distribu-
tion where (1)no participant is above its capacity thresh-
old, or (2) all participants are at or above their capacity
thresholds if the total offered load exceeds the sum of the
capacity thresholds.

Because the set of tasks changes with time, the alloca-
tion problem is an online optimization. Since the system
is a federation of loosely coupled participants, no single

entity can play the role of a central optimizer and the im-
plementation of the mechanism must be distributed. We
further examine the mechanism design aspects of our ap-
proach in Section 3.3.

In our scheme, load movements are based onmarginal
costs, MCi : (u, taskseti) → R defined as the incre-
mental cost for nodei of running tasku given its current
taskseti. Figure 1 shows the marginal costm caused by
adding loadx, when the current load isXcur. Assuming
the set of tasks intaskseti imposes a total loadXcur and
u imposes loadx, thenMC(u, taskseti) = m. If x is one
unit of load, we callm theunit marginal cost.

3.2 Model and Algorithms

We propose a mechanism to achieve acceptable allo-
cations based on bilateral contracts: participants establish
contracts with each other by negotiating offline a set of
tightly bounded prices for each unit of load they will move
in each direction.

Definition: A contract Ci,j between participantsi andj
defines a price range:[min price(Ci,j),max price(Ci,j)],
that constrains the runtime price paid by participanti for
each unit of load given toj.

Participants must mutually agree on what one unit of pro-
cessing, bandwidth, and storage represent. Different pairs
of participants may have contracts specifying different
unit prices. There is at most one contract for each pair
of participants and each direction. Participants may peri-
odically renegotiate, establish, or terminate contracts of-
fline. We assume that the set of nodes and contracts form
a connected graph. The set of a participant’s contracts is
called itscontractset. We useC to denote the maximum
number of contracts that any participant has.

At runtime, participants that have a contract with each
other may performload transfers. Based on their load
levels, they agree on a definite unit price,price(Ci,j),
within the contracted price-range, and on a set of tasks,
themoveset, that will be transferred. The participant of-
fering load also pays its partner a sum ofprice(Ci,j) ∗
load(moveset).

3.2.1 Fixed-Price Contracts

We first present thefixed-price mechanism, where
min price(Ci,j) = max price(Ci,j) = FixedPrice(Ci,j).
With fixed-price contracts, if the marginal cost per unit of
load of a task is higher than the price in a contract, then
processing that task locally is more expensive than paying
the partner for the processing. Conversely, when a task’s
marginal cost per unit of load is below the price specified
in a contract, then accepting that task results in a greater
payment than cost increase.

Given a set of contracts, we propose a load manage-
ment protocol, where each participant concurrently runs

00. PROCEDURE OFFER LOAD:
01. repeat forever:
02. sort(contractset on price(contractsetj) ascending)
03. foreach contractCj ∈ contractset:
04. offerset ← ∅
05. foreach tasku ∈ taskset
06. total load ← taskset− offerset− {u}
07. if MC(u, total load) > load(u) ∗ price(Cj)
08. offerset ← offerset ∪ {u}
09. if offerset 6= ∅
10. offer ← (price(Cj), offerset)
11. (resp, acceptset) ← send offer(j, offer)
12. if resp = accept and acceptset 6= ∅
13. transfer(j, price(Cj), acceptset)
14. break foreach contract
15. waitΩ time units

Figure 2:Algorithm for shedding excess load.

one algorithm for shedding excess load (Figure 2) and one
for taking on new load (Figure 3).

The basic idea in shedding excess load is for an over-
loaded participant to select a maximal set of tasks from its
taskseti that cost more to process locally than they would
cost if processed by one of its partners and offer them to
that partner. Participants can use various algorithms and
policies for selecting these tasks. We present a general al-
gorithm in Figure 2. If the partner accepts even a subset
of the offered tasks, the accepted tasks are transferred. An
overloaded participant could consider its contracts in any
order. One approach is to exercise the lower-priced con-
tracts first with the hope of paying less and moving more
tasks. In this paper, we ignore the task migration costs.
These costs should, however, be considered before an of-
fer is sent by imposing a minimum threshold between the
difference in the local and remote processing costs.

ProcedureOFFER LOAD waits between load trans-
fers to let local load level estimations (e.g., exponentially
weighted moving averages) catch-up with the new aver-
age load level. If no transfer is possible, a participant
retries to shed load periodically. Alternatively, the par-
ticipant may ask its partners to notify it when their loads
decrease sufficiently to accept new tasks.

In procedureACCEPT LOAD (Figure 3), each par-
ticipant continuously accumulates load offers and peri-
odically accepts subsets of offered tasks, examining the
higher unit-price offers first. Since accepting an offer re-
sults in a load movement (because offers are sent to one
partner at the time), the participant keeps track of all ac-
cepted tasks in thepotentialset and responds to both ac-
cepted and rejected offers. Participants that accept a load
offer cannot cancel transfers and move tasks back when
load conditions change. They can, however, use their own
contracts to move load further or to move it back.

There are several advantages in serializing communi-
cation between participants rather than having them of-
fer their load simultaneously to all their partners. The

00. PROCEDURE ACCEPT LOAD:
01. repeat forever:
02. offers ← ∅
03. forΩ time units or while(movement = true)
04. for each new offer received,new offer:
05. offers ← offers ∪ {new offer}
06. sort(offers on price(offersi) descending)
07. potentialset ← ∅
08. foreach offeroi ∈ offers
09. acceptset ← ∅
10. foreach tasku ∈ offerset(oi)
11. total load ← taskset ∪ potentialset ∪ acceptset
12. if MC(u, total load) < load(u) ∗ price(oi)
13. acceptset ← acceptset ∪ {u}
14. if acceptset 6= ∅
15. potentialset ← potentialset ∪ acceptset
16. resp ← (accept, acceptset)
17. movement ← true
18. elseresp ← (reject, ∅)
19. respond(oi, resp)

Figure 3:Algorithm for taking additional load.

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

�

�

�

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

Movement

Level
Load

Single
Load

A B A B A B

Contract
a

a

a

a

a
b

b

b
a

b
c

c

c

c

d

d

Scenario 1 Scenario 2 Scenario 3

Figure 4:Three load movement scenarios for two partners.

communication overhead is lower but most importantly,
the approach prevents possible overbooking as partners
always receive the load they accept. This in turn allows
participants to accept many offers at once. The only draw-
back is a slightly longer worst-case convergence time.

Figure 4 illustrates three load movement scenarios. If
participantA has one or more tasks for which its marginal
cost per unit of load exceeds the price in its contract with
B, these tasks are moved in a single transfer (scenarios 1
and 2). Only those tasks, however, for which the marginal
cost per unit of load atB does not exceed the price in the
contract are transferred (scenario 3).

3.2.2 Setting Up Fixed-Price Contracts

With an approach based on fixed prices, the only tunable
parameters are the unit prices set in contracts. When a
participant negotiates a contract to shed load, it must first
determine its maximum desired load levelX, and the cor-
responding marginal cost per unit of load. This marginal
cost is also the maximum unit price that the participant
should accept for a contract. For any higher price, the
participant risks being overloaded and yet unable to shed

load. Any price below that maximum is acceptable. Fig-
ure 1 illustrates, for a single resource and a strictly con-
vex function, how a load levelX maps to a unit price.
In general, this price is the gradient of the cost function
evaluated atX.

When a participant negotiates a contract to accept load,
the same maximum price rule applies since the participant
will never be able to accept load once it is overloaded it-
self. A participant, however, should not accept a price that
is too low because such price would prevent the partici-
pant from accepting new load even though it might still
have spare capacity. The participant should rather esti-
mate its expected load level, select a desired load level
between the expected and maximum levels and negotiate
the corresponding contract price.

Participants may be unwilling to move certain tasks to
some partners due to the sensitive nature of the data pro-
cessed or because the tasks themselves are valuable in-
tellectual property. For this purpose, contracts can also
specify the set of tasks (or types of tasks) that may be
moved, constraining the runtime task selection. In offline
agreements, participants may also prevent their partners
from moving their operators further thus constraining the
partner’s task selections.

To ensure that a partner taking over a task provides
enough resources for it, contracts may also specify a mini-
mum per-message processing delay (or other performance
metric). A partner must meet these constraints or pay a
monetary penalty. Such constraints are commonplace in
SLAs used for Web services, inter-company workflows
or streaming services [18]. Infrastructures exist to en-
force them through automatic verification [3, 21, 37, 38].
In the rest of this paper, we assume that such infrastruc-
ture exists and that monetary penalties are high enough
to discourage any contract breaches. To avoid breaching
contracts when load increases, participants may prioritize
tasks already running over newly arriving tasks.

3.2.3 Extending the Price Range

Fixed-price contracts do not always produce acceptable
allocations. For instance, load cannot propagate through
a chain of identical contracts. A lightly loaded node in the
middle of a chain accepts new tasks as long as its marginal
cost isstrictly belowthe contract price. The node even-
tually reaches maximum capacity (as defined by the con-
tract prices) and refuses additional load. It does not offer
load to partners that might have spare capacity, though,
because its unit marginal cost is still lower than any of its
contract prices. Hence, if all contracts are identical, a task
can only propagate one hop away from its origin.

To achieve acceptable allocations for all configura-
tions, participants thus need to specify asmall range of
prices, [FixedPrice−∆;FixedPrice], in their contracts.
Such price range allows a participant to forward load from

an overloaded partner to a more lightly loaded one by ac-
cepting tasks at a higher price and offering them at a lower
price. When a contract specifies a small price-range, for
each load transfer, partners must dynamically negotiate
the final unit price within the range. Since a fixed unit
price equals the gradient (or derivative) of the cost curve
at some load level, a price range converts into a load level
interval as illustrated in Figure 1. The price range is the
difference in the gradients of the cost curve at interval
boundaries.

We now derive the minimal contract price-range that
ensures convergence to acceptable allocations. We ana-
lyze a network of homogeneous nodes with identical con-
tracts. We explore heterogeneous contracts through sim-
ulations in Section 5. For clarity of exposition, we also
assume in the analysis that all tasks are identical to the
smallest migratable task,u andimpose the same load. We
useku to denote a set ofk tasks.

We defineδk as the decrease in unit marginal cost due
to removingk tasks from a node’staskset:

δk(taskset) =
MC(u, taskset− u)−MC(u, taskset− (k + 1)u)

load(u)
(2)

δk is thus approximately the difference in the cost func-
tion gradient evaluated at the load level including and ex-
cluding thek tasks.

Given a contract with price,FixedPrice, we define
tasksetF as the maximum set of tasks that a node can
handle before its per-unit-load marginal cost exceeds
FixedPrice and triggers a load movement. I.e.,tasksetF

satisfies:MC(u, tasksetF − u) ≤ load(u) ∗ FixedPrice
andMC(u, tasksetF) > load(u) ∗ FixedPrice.

With all contracts in the system specifying the same
price range, [FixedPrice − ∆, FixedPrice] such that
∆ = δ1(tasksetF), any task can now travel two hops.
A lightly loaded node accepts tasks atFixedPrice until
its load reaches that oftasksetF. The node then alter-
nates between offering one tasku at priceFixedPrice −
δ1(tasksetF) and accepting one task atFixedPrice. This
scenario is shown in Figure 5. Similarly, for load to travel
through a chain ofM + 1 nodes (orM transfers) the
price range must be at leastδM−1(tasksetF). The jth
node in such a chain alternates between accepting a task
at priceFixedPrice − δj−1(tasksetF) and offering it at
priceFixedPrice− δj(tasksetF).

A larger price range speeds-up load movements
through a chain because more tasks can be moved at
each step. With a larger price range, however, nodes unit
marginal costs are more likely to fall within the dynamic
range requiring a price negotiation. A larger range thus
increases runtime overhead, price volatility and the num-
ber of re-allocations caused by small load variations. Our
goal is therefore to keep the range as small as possible and
extend it only enough to ensure convergence to acceptable
allocations.

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

�

1

Contract

3

2

a

Level
Load

Movement 1 Movements 2,3 Final Assignment
A B C BAB A C

da

b
a

c
d

c
b
a

Figure 5:Load movements between three nodes using a small
price-range.

For underloaded systems to always converge to accept-
able allocations, tasks must be able to travel as far as the
diameterM of the network of contracts. The minimal
price range should then beδM−1(tasksetF).

Lemma 1 In a network of homogeneous nodes, tasks,
and contracts, to ensure convergence to acceptable
allocations in underloaded systems, the unit price
range in contracts must be at least:[FixedPrice −
δM−1(tasksetF),FixedPrice], where M is the diam-
eter of the network of contracts andtasksetF is the
set of tasks that satisfiesMC(u, tasksetF − u) ≤
load(u) ∗FixedPrice andMC(u, tasksetF) > load(u) ∗
FixedPrice.

When the system is overloaded, a price range does
not lead to an acceptable-allocation (where∀i ∈
S : Di(taskseti) ≥ Di(tasksetFi)). In the final allo-
cation, some participants may have a marginal cost as low
asFixedPrice− δM (tasksetFi) (wider ranges do not im-
prove this bound). For overloaded systems, price-range
contracts therefore achievenearly acceptable allocations
defined as:

Definition: A nearly acceptable allocation satisfies
∀i ∈ S : Di(taskseti) > Di(tasksetFi −Mu)

Price ranges modify the load management protocol as
follows. Initial load offers are made at the lowest price.
If no task can be accepted, the partner proposes a higher
price. Upon receiving such a counter-offer, if the new
price is still its best alternative, a participant recomputes
the offerset. If the set is empty, it suggests a new price
in turn. Negotiation continues until both parties agree on
a price or no movement is possible. Other negotiation
schemes are possible.

3.3 Properties

The goal of mechanism design [33] is to implement an
optimal system-wide solution to a decentralized optimiza-
tion problem, where each agent holds an input parameter

to the problem and prefers certain solutions over others.
In our case, agents are participants and optimization pa-
rameters are participants’ cost functions and original sets
of tasks. The system-wide goal is to achieve an acceptable
allocation while each participant tries to optimize its util-
ity. Our mechanism isindirect: participants reveal their
costs and tasks indirectly by offering and accepting tasks
rather than announcing their costs directly to a central op-
timizer or to other agents.

A mechanism defines the set of strategiesS available
to agents and an outcome rule,g : SN → O, that maps
all possible combinations of strategies adopted by agents
to an outcomeO. With fixed-price contracts, the runtime
strategy-space of participants is reduced to only three pos-
sible strategies: (1) accept load at the pre-negotiated price,
(2) offer load at the pre-negotiated price, or (3) do nei-
ther.3 The desired outcome is an acceptable allocation.

Similarly to the definition used in Sandholmet.
al. [40], our mechanism isindividual rational(i.e., a par-
ticipant may not decrease its utility by participating) on a
per load movement basis. Each agent increases its utility
by accepting load when the price exceeds the per-unit-
load marginal cost (because in that case the increase in
payment,pi, exceeds the increase in cost,Di) and offer
load in the opposite situation. For two agents and one
contract this strategy is alsodominantbecause compared
to any other strategy, it optimizes an agent’s utility inde-
pendently of what the other agent does.

For multiple participants and contracts, the strategy
space is richer. Participants may try to optimize their util-
ity by accepting too much load with the hope of passing
it on at a lower price. Assuming, however, that partici-
pants are highlyrisk-averse: they are unwilling to take on
load unless they can process it at a lower cost themselves
because they risk paying monetary penalties, the strategy
of offering and accepting loadonly when marginal costs
are strictly higher or lower than prices respectively, is an
optimal strategy. This strategy is not dominant, though,
because it is technically possible that a participant has a
partner that always accepts load at a low price. In specific
situations, the order in which participants contact each
other may also change their utility due to simultaneous
moves by other participants.

These properties also hold for price-range contracts,
when participants’ marginal costs are far from range
boundaries. Within a range, participants negotiate, thus
revealing their costs more directly. Reaching an agree-
ment is individual-rational since moving load at a price
between participants’ marginal costs increases both their
utilities. Partners thus agree on a price within the range,
when possible.

Our mechanism is also a distributed algorithmic mech-
anism (DAM) [12, 14] since the implementation is (1)

3We exclude the task selection problem from the strategy space.

distributed: there is no central optimizer, and (2) algo-
rithmic: the computation and communication complexi-
ties are both polynomial time, as we show below. Be-
cause our mechanism is indirect, it differs from previous
DAMD approaches [12, 14] that focus on implementing
the same payment computation as would a central opti-
mizer but in an algorithmic and distributed fashion. An
important assumption made in these implementations is
that agents are either separate from the entities comput-
ing the payment functions [14] or that they compute the
payments honestly [12]. Our mechanism does not need to
make any such assumption.

Because each load transfer takes place only if the
marginal cost of the node offering load is strictly greater
than that of the node accepting the load, successive allo-
cations strictly decrease the sum of all costs. Under con-
stant load, movements thus always eventually stop. If all
participants could talk to each other, the final allocation
would always be acceptable andPareto-optimal: i.e., no
agent could improve its utility without another agent de-
creasing its own utility. In our mechanism, however, par-
ticipants only exchange load with their direct partners and
this property does not hold. Instead, for a given load, the
bounded-price mechanism limits the maximum difference
in load levels that can exist between participants once the
system converges to a final allocation. If a node has at
least one task for which the unit marginal cost is greater
than the upper-bound price of any of the node’s contracts,
then all its partners must have a load level such that an
additional task would have an average unit marginal cost
greater than the upper-bound price in their contract with
the overloaded node. If a partner had a lower marginal
cost, it would accept its partner’s excess task at the con-
tracted price. This property and the computation of the
minimal price ranges yield the following theorem:

Theorem 2 If nodes, contracts and tasks are homoge-
neous, and contracts are set according to Lemma 1, the
final allocation is an acceptable allocation for under-
loaded systems and a nearly acceptable allocation for
overloaded systems.

In Section 5, we analyze heterogeneous settings using
simulations and find that in practice, nearly acceptable al-
locations are also reached in such configurations.

Another property of the fixed-price mechanism is its
fast convergence and low communication overhead. Task
selection is the most complex operation and is performed
once for each load offer and once for each response.
Therefore, in a system withαN overloaded participants,
under constant load, in the best case, all excess tasks re-
quire a single offer and are moved in parallel, for a conver-
gence time ofO(1). In the worst case, the overloaded par-
ticipants form a chain with only the last participant in the
chain having spare capacity. In this configuration, partici-
pants must shed load one at the time, through the most ex-

pensive of theirC contracts, for a worst case convergence
time ofO(NC). If nodes use notifications when they fail
to shed load, the worst-case is reduced toO(N + C). For
auctions, the worst-case convergence time isO(N) in this
configuration. To summarize:

Lemma 3 For N nodes with at mostC contracts each,
the fixed-price mechanism has a convergence time ofO(1)
in the best case andO(N + C) in the worst case if notifi-
cations are used.

With our mechanism, most load movements require as
few as three messages: an offer, a response, and a load
movement. The best-case communication complexity is
thusO(N). In contrast, an approach based on auctions
has a best-case communication overhead ofO(NC) if
the auction is limited toC partners andO(N2) if not.
If the whole system is overloaded and participants must
move load through a chain of most-expensive contracts,
the worst-case complexity may be as high asO(N2C),
mostly because each participant periodically tries to shed
load. If, however, the notifications described above are
used, the worst-case communication overhead is only
O(NC). The same worst-case communication overhead
applies to auctions. In summary:

Lemma 4 To converge, the fixed-price contracts mech-
anism imposes a best-case communication overhead of
O(N) and a worst-case overhead ofO(NC) if notifica-
tions are used.

Compared to auctions, our scheme significantly re-
duces the communication overhead, for a slight increase
in worst-case convergence time. Simulation results (Sec-
tion 5) show that the convergence time is short in practice.

When contracts specify a small price-range, most load
movements take place outside of the range and the mech-
anism preserves the properties above. If, however, the op-
timal load allocation falls exactly within the small price-
range, final convergence steps require more communica-
tion and may take longer to achieve, but at that point,
the allocations are already acceptable. When load is for-
warded through a chain, the complexity grows with the
length of the chain and the amount of load that needs to
be forwarded through that chain. In practice, though, long
chains of overloaded nodes are a pathological, thus rare,
configuration.

4 System Implementation

In this section, we describe the implementation of
the bounded-price mechanism in the Medusa distributed
stream-processing system.

4.1 Streams and Operators

In stream-processing applications,data streamspro-
duced by sensors or other data sources are correlated and

Group by
IP prefix

sum

count
src IP

Group by

Filter Active clusters

(g)

Operator
Window Stream

(a)
(b)

(c) (d)

Participant 1

Participant 2

(e)

Active sources

Filter

Filter

(f)

Medusa/Aurora Node

Medusa/Aurora Node

false

true

Active and
many protocols

Sources using
many protocols

T sec

T sec count distinct
protocol

T sec

JoinT sec

Group by src IP
source IP

sum > T1

count > T2

count > T1

Connection
Summaries

Figure 6:Example of a distributed Medusa query.

aggregated byoperatorsto produce outputs of interest. A
data stream is a continuous sequence of attribute-value tu-
ples that conform to some pre-defined schema. Operators
are functions that transform one or more input streams
into one or more output streams. A loop-free, directed
graph of operators is called acontinuous query, because it
continuously processes tuples pushed on its input streams.

Stream processing applications are naturally dis-
tributed. Many applications including traffic management
and financial feed analysis process data from either ge-
ographically distributed sources or different autonomous
organizations. Medusa uses Aurora [1] as its query pro-
cessor. Medusa takes Aurora queries and arranges for
them to be distributed across nodes and participants, rout-
ing tuples and results as appropriate.

Figure 6 shows an example of a Medusa/Aurora query.
The query, inspired from Snort [36] and Autofocus [11],
is a simple network intrusion detection query. Tuples on
input streams summarize one network connection each:
source and destination IPs, time, protocol used, etc. The
query identifies sources that are either active (operators
a andb) or used abnormally large numbers of protocols
within a short time period (operatorse and f) or both
(operatorg). The query also identifies clusters of ac-
tive sources (operatorsc and d). To count the number
of connections or protocols the query applieswindowed
aggregateoperators (a, c , ande): these operators buffer
connection information for a time periodT , group the in-
formation by source IP and apply the desired aggregate
function. Aggregate values are thenfiltered to identify
the desired type of connections. Finally, operatorg joins
active sources with those using many protocols to identify
sources that belong in both categories.

The phrases in italics in the previous paragraph corre-
spond to well-defined operators. While the system allows
user-defined operators, our experience with a few appli-
cations suggests that developers will implement most ap-
plication logic with built-in operators. In addition to sim-
plifying application construction and providing query op-
timization opportunities, using standard operators facili-
tates Medusa’s task movements between participants.

Medusa participants useremote definitionsto move

Transport Independent RPC

(XML−RPC, TCP−RPC, Local)

QueryProcessor

(Aurora)

IOQueues

Local Partition of
Distributed

Catalog (Lookup)
Brain

DataControl

Medusa Node

DHT
(Chord)

Figure 7:Medusa software structure.

tasks with relatively low overhead compared to full-blown
process migration. Remote definitions specify how oper-
ators on different nodes map on to each other. At runtime,
when a path of operators in the boxes-and-arrows diagram
needs to be moved to another node, all that’s required is
for the operators to be instantiated remotely and for the in-
coming streams to be diverted to the appropriately named
inputs on the new node. Our current prototype does not
move operator state. The new instance re-starts the com-
putation from an empty state. We plan to explore moving
operator state in future work.4

For stream-processing, the algorithm for selecting
tasks to offload to another participant must take into ac-
count the data flow between operators. It is preferable to
cluster and move together operators that are linked with a
high-rate stream or even simply belong to the same con-
tinuous query. In this paper we investigate the general
federated load management problem and do not take ad-
vantage of possible relations between tasks to optimize
their placement. In stream processing it is also often pos-
sible to partition input streams [41] and by doing so han-
dle the load increase of a query network as a new query
network. We make this assumption in this paper.

4.2 Medusa Software Architecture

Figure 7 shows the Medusa software structure. Each
Medusa node runs one instance of this software. There
are two components in addition to the Aurora query pro-
cessor. The first component, calledLookup , is a client
of an inter-node distributed catalog (implemented using
a distributed hash table [42]) that holds information on
streams, schemas and queries running in the system. The
Brain component monitors local load conditions by pe-
riodically asking theQueryProcessor for the aver-
age input and output rates measured by theIOQueues
(which serve to send and receive tuples to and from clients
or other Medusa nodes) as well as for rough estimates of
the local CPU utilization of the various operators.Brain
uses this load information as input to the bounded-price
mechanism that manages load.

4The semantics of many stream processing applications are such that
occasional tuple drops are acceptable [2].

min # of contracts 1 3 5 7 9 10
max # of contracts 11 13 14 15 17 18
avg diameter 19 8 6 5 4 4

Table 1:Max number of contracts per node and network diam-
eter for increasing min numbers of contracts.

5 Evaluation

In previous sections, we showed some properties of
our mechanism and computed the best- and worst-case
complexities. In this section, we complete the evaluation
using simulations and experiments. We first examine the
convergence to acceptable allocations in a network of het-
erogeneous nodes. We simulate heterogeneity by setting
contracts at randomly selected prices. Second, we study
the average convergence speed in large and randomly cre-
ated topologies. Third, we examine how our approach to
load management reacts to load variations. Finally, we
examine how Medusa performs on a real application by
running the network intrusion detection query, presented
in Section 4, on logs of network connections.

We use the CSIM discrete event simulator [26] to study
a 995-node Medusa network. We simulate various ran-
dom topologies, increasing the minimum number of con-
tracts per node, which has the effect of reducing the diam-
eter of the contract network. To create a contract network,
each node first establishes a bilateral contract with an al-
ready connected node, forming a tree. Nodes that still
have too-few contracts then randomly select additional
partners. With this algorithm, the difference between the
numbers of contracts that nodes have is small, as shown
in Table 1.

Each node runs a set of independent and identical op-
erators that process tuples at a cost of 50µs/tuple. We
set the input rate on each stream to 500 tuples/s (or
500 KBps). Assuming that each node has one 100 Mbps
output link, each operator uses 4% of the bandwidth and
2.5% of CPU. We select these values to model a reason-
able minimum migratable unit. In practice, tasks are not
uniform and the amount of resources each task consumes
bounds how close a participant’s marginal cost can get to
a contract price without crossing it. When we examine
convergence properties, we measure overload and avail-
able capacity in terms of the number of tasks that can be
offered or accepted, rather than exact costs or load. All
nodes use the same convex cost function: the total num-
ber of in-flight tuples (tuples being processed and tuples
awaiting processing in queues).

5.1 Convergence to Acceptable Allocations

In this section, we study load distribution properties for
networks of heterogeneous contracts. We compare the re-
sults to those achieved using homogeneous contracts and
show that our approach works well in heterogeneous sys-
tems. We also simulate fixed-price contracts and show

Contracts Price Selection
Fixed ∀i ∈ S : |tasksetFi | = 14 operators

∀i, j ∈ S : price(Ci,j) = MC(u, tasksetFi − u)
Range ∀i, j ∈ S :

max price(Ci,j) = MC(u, tasksetFi − u)
min price(Ci,j) = max price(Ci,j)−∆
∆ = δ2(tasksetFi)
i.e., the range is [MC 12th op,MC 14th op]

Random ∀i ∈ S : |tasksetFi | ∈ [12ops, 18ops]
∀i, j ∈ S if |tasksetFi | ≤ |tasksetFj |
price(Ci,j) = MC(u, tasksetFi − u)

Random ∀i, j ∈ S : max price same as for Random
Range min price(Ci,j) = max price(Ci,j)−∆

∆ = δ2(tasksetFi)

Desired result Initial Load Allocation
underload 299 nodes with 22 ops

696 nodes with 7.7 ops on avg
Overall average 12 ops/node

overload 299 nodes with 22 ops
696 nodes with 12.0 ops on avg
Overall average 15 ops/node

Table 2: Simulated configurations. u is one operator.
δ2(tasksetF) is defined in Section 3.2.3.

that such contracts have good properties in practice, even
though they do not always lead to acceptable allocations.

We thus study and compare the convergence properties
of four variants of the mechanism: (1)Fixed, where all
contracts set an identical fixed-price, (2)Range, where all
contracts are uniform but define a small price-range, (3)
Random Fixed, where contracts specify fixed but ran-
domly chosen prices, andRandom Range, where con-
tracts define randomly selected price-ranges. Table 2
summarizes the price selection used for each type of con-
tract. We limit price ranges to the variation in marginal
cost resulting from moving only two tasks. This range is
much smaller than required in theory to ensure acceptable
allocations: the range is half the theoretical value for the
smallest network diameter that we simulate (Table 1).

Starting from skewed load assignments, as summa-
rized in Table 2, we examine how far the final allocation
is from being acceptable. For an underloaded system, we
measure the total excess load that nodes were unable to
move (Figure 8). For an overloaded system, we measure
the unused capacity that remains at different nodes (Fig-
ure 9)5. In both figures, the column with zero minimum
number of contracts shows the excess load and available
capacity that exist before any reallocation.

With the Fixed variant of the mechanism, we exam-
ine the properties of an underloaded system whose fixed
contract prices are above the average load level and those
of an overloaded system where prices are below average
load. As shown in Figures 8 and 9, as the number of
contracts increases, the quality of the final allocation im-
proves: nodes manage to reallocate a larger amount of

5Each result is the average of nine simulations.

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 T

as
ks

Minimum Number of Contracts

Fixed
Random Fixed

Range
Random Range

Excess Load

Figure 8:Excess load for the final allocation in an underloaded
network of 995 nodes. First column shows excess load before
any load movement.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 1 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 T

as
ks

Minimum Number of Contracts

Fixed

Random Fixed

Range

Random Range

Excess Capacity

Figure 9:Left-over capacity for the final allocation in an over-
loaded network of 995 nodes.

excess load or exploit a larger amount of available capac-
ity. With a minimum of 10 contracts, nodes successfully
redistribute over 99% of excess load in the underloaded
scenario and use over 95% of the initially available ca-
pacity in the overloaded case. The system thus converges
to an allocation close to acceptable in both cases. Hence,
even though they do not work well for specific configura-
tions (as discussed in Section 3.2.3), fixed-price contracts
can lead to allocations close to acceptable for randomly
generated configurations.

We re-run all simulations replacing fixed prices with a
price range and observe the improvement in final alloca-
tion. We choose the price range to fall within the two load
levels of 12 and 15 operators per node (Table 2, variant
Range). The results, also presented in Figures 8 and 9,
show that a minimum of seven contracts achieves an ac-
ceptable allocation. At that moment, the diameter of the
network is five (Table 1) so the price-range is half the the-
oretically required value. When the system is overloaded,
over 98% of available capacity is successfully used with
a minimum of 10 contracts per node. Additionally, nodes
below their capacity have room for only one additional
operator. The final allocation is thus nearly acceptable,
as defined in Section 3.2.3. This result shows that price

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60

C
os

t

Time (sec)

Fixed
Random Fixed

Range
Random Range

Optimal Total Cost

(a) Total cost.

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60

M
ov

em
en

ts

Time (sec)

Movements
Operators Moved

(b) Number of movements with fixed-price
contracts.

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60

M
ov

em
en

ts

Time (sec)

Movements
Operators Moved

(c) Number of movements with price-
range contracts.

Figure 10:Convergence speed in an underloaded network of 995 nodes.

ranges, even smaller than the theoretically computed val-
ues, suffice to achieve acceptable or nearly acceptable al-
locations in randomly generated configurations.

In practice, contracted prices will be heterogeneous.
We thus simulate the same network of contracts again
but with randomly selected prices (Random Fixed vari-
ant). To pick prices, each participant randomly selects a
maximum capacity between 12 and 18 operators. When
two participants establish a contract, they use the lower
of their maximums as the fixed price. We find that ran-
dom fixed-price contracts are less efficient than homoge-
neous contracts but they also achieve allocations close to
acceptable (94% of excess load is re-allocated with 10
contracts as shown in Figure 8). Because we measure
the capacity at each node as the number of operators that
the node can accept before its marginal cost reaches its
highest contracted price, when the number of contracts
increases, so does the measured capacity. This in turn
makes heterogeneous-price contracts appear less efficient
than they actually are at using available capacity. The
range of prices from which contracts are drawn is such
that when each node has at least three contracts, the ini-
tially available capacity is roughly the same as with ho-
mogeneous contracts.

Finally, we explore heterogeneous price ranges by
adding a lower price bound to each randomly chosen
fixed price (Random Range variant). As shown in Fig-
ures 8 and 9, heterogeneous price-range contracts have
similar properties to the uniform price-ranges. The final
allocation is slightly worse than in the uniform case be-
cause nodes with small capacity impede load movements
through chains and measured capacity increases with the
number of contracts. We find, however, that in the un-
derloaded case nodes were at most 2.1 operators above
their threshold (average of multiple runs) and in the under-
loaded case nodes had at most capacity left for 2.5 oper-
ators. Heterogeneous prices thus lead to allocations close
to acceptable ones.

5.2 Convergence Speed

Figure 10(a) shows how the total cost decreases with
time in the underloaded network of 995 nodes with a min-
imum of five contracts per node. In the simulation, each
node tried to move load at most once every 2 seconds
(no movements were allowed within the first 5 seconds
of the simulation). For all variants, the cost decreases
quickly and reaches values close to the final minimum
within as few as 15 seconds of the first load movement.
This fast convergence is partly explained by the ability
of the bounded-price mechanism to balance load between
any pair of nodes in a single iteration and partly by the
ability of our mechanism to balance load simultaneously
at many locations in the network. Fixed-price variants
have a somewhat sharper decrease while also leading to a
final allocation close to acceptable.

Figures 10(b) and (c) show the convergence speed
measured as the number of load transfers (Movements)
and the number of operators moved for homogeneous
contracts (random prices produce almost identical trends).
For both variants, the first load movements re-allocate
many operators, leading to the fast decrease in the total
cost in early phases of the convergence. Fixed-price con-
tracts converge faster than price-range contracts because
more operators can be moved at once. The convergence
also stops more quickly but, as shown above, the alloca-
tion is slightly worse than with a small price range.

5.3 Stability under Changing Load

Next, we examine how the mechanism responds to
sudden step-shifts in load. A bad property would be for
small step shifts in load to lead to excessive re-allocations.
We subject a network of 50 nodes (with a minimum of
three fixed or three price-range contracts per node) to a
sudden load increase (at time 60 sec) and a sudden load
decrease (at time 120 sec). We run two series of exper-
iments. We first create a large variation with 30% extra

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

T
ot

al
 C

os
t

O
pe

ra
to

rs
 M

ov
ed

Time (sec)

Total Cost
Operators Moved

(a) Large load variation with price range:
30% extra load.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

T
ot

al
 C

os
t

O
pe

ra
to

rs
 M

ov
ed

Time (sec)

Total Cost
Operators Moved

(b) Small load variation with price range:
15% extra load.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

T
ot

al
 C

os
t

O
pe

ra
to

rs
 M

ov
ed

Time (sec)

Total Cost
Operators Moved

(c) Large load variation with fixed prices:
30% extra load.

Figure 11:Assignment stability under variable load. Load added at 60 sec and removed at 120 sec.

load (10 extra operators each to 10 different nodes). We
then repeat the experiment adding only 15% extra load.
Figure 11 shows the total cost and operator movements
registered during the simulation.

A 30% load increase, concentrated around a few nodes,
makes these nodes exceed their capacity leading to a few
re-allocations both with fixed prices and price ranges.
Fixed prices, however, produce fewer re-allocations be-
cause convergence stops faster. When load is removed,
spare capacity appears. If nodes use a price range, a
small number of re-allocations follows. With fixed-prices,
since nodes all run within capacity before the load is re-
moved, nothing happens. The 15% load increase leads
to an almost insignificant number of movements even
when a small price-range is used. Indeed, fewer nodes
exceed their capacity and load variations within capacity
do not lead to re-allocations. Both variants of the mech-
anism thus handle load variations without excessive re-
allocations.

5.4 Prototype Experiments

We evaluate our prototype on the network intrusion de-
tection query (with 60 sec windows and without the final
join) running on network connection traces collected at
MIT (1 hour trace from June 12, 2003) and at an ISP in
Utah (1 day trace from April 4, 2003). To reduce the pos-
sible granularity of load movements, we partition the Utah
log into four traces that are streamed in parallel, and the
MIT log into three traces that are streamed in parallel. To
increase the magnitude of the load, we play the Utah trace
with a 20× speed-up and the MIT trace with an 8× speed-
up.

Figure 12 illustrates our experimental setup. Node
0 initially processes all partitions of the Utah and MIT
traces. Nodes 1 and 2 process 2/3 and 1/3 of the MIT
trace, respectively. Node 0 runs on a desktop with a Pen-
tium(R) 4, 1.5GHz and 1GB of memory. Nodes 1 and 2
run on a Pentium III TabletPC with 1.33GHz and 1GB of

Node
Interm.

Node
Interm.

App
Client

App
Client

Node 0

Node 2

Node 1

Utah
trace

MIT
trace

MIT
trace Movement

Operator

Movements
Operator

2/3

1/3
8X

20X

8X

Figure 12:Experimental setup.

memory. The nodes communicate over a 100 Mbps Eth-
ernet. All clients are initially on the same machines as
the nodes running their queries. All Medusa nodes have
fixed-price contracts with each other and are configured
to take or offer load every 10 seconds.

Figure 13 shows the results obtained. Initially, the load
at each node is approximately constant. At around 650
seconds (1) the load on the Utah trace starts increasing
and causes Node 0 to shed load to Node 1, twice (on Fig-
ure 13 these movements are labeled (2) and (3)). After
the second movement, load increases slightly but Node 1
refuses additional load making Node 0 move some oper-
ators to Node 2 (4). The resulting load allocation is not
uniform but it is acceptable. At around 800 seconds (5),
Node 1 experiences a load spike, caused by an increase
in load on the MIT trace. The spike is long enough to
cause a load movement from Node 1 to Node 2 (6), mak-
ing all nodes operate within capacity again. Interestingly,
after the movement the load on Node 1 decreases. This
decrease does not cause further re-allocations as the allo-
cation remains acceptable.

In our experimental setup, it takes approximately
75 ms to move a query fragment between two nodes. Each
movement proceeds as follows. The origin node sends to
the remote node a list of operators and stream subscrip-

2 3 4 61 5

 0

 1000

 2000

 3000

 4000

 5000

 6000

 630 660 690 720 750 780 810 840 870

L
oa

d
(m

es
sa

ge
s/

se
c)

Time (sec)

node0

node1

node2

 7000

 8000

node1

node2

node0

Figure 13: Load at three Medusa nodes running the network
intrusion detection query over network connection traces.

tions (i.e., a list of client applications or other Medusa
nodes currently receiving the query output streams). The
remote node instantiates the operators locally, subscribes
itself to the query input streams, starts the query, and sets
up the subscriptions to the output streams. After the re-
mote query starts, the origin node drains accumulated tu-
ples and deletes the query. Both nodes update the catalog
asynchronously. When a query moves, client applications
see a small number of duplicate tuples because the new
query starts before the old one stops. They may also see
some reordering if the origin node was running behind
before the move.

In our current implementation, we do not send the state
of operators to the remote location. This approach works
well for all stateless operators such asfilter, map, and
union as well as for operators that process windows of
tuples without keeping state between windows (e.g.,win-
dowed joinsand some types ofaggregates). For these
latter operators, a movement disrupts the computation
over only one window. For more stateful operators, we
should extend the movement protocol to include freezing
the state of the original query, transferring the query with
that state, and re-starting the query from the state at the
new location. We plan to explore the movements of state-
ful operators in future work.

6 Conclusion

In this paper, we presented a mechanism for load man-
agement in loosely coupled, federated distributed sys-
tems. The mechanism, called thebounded-price mech-
anism, is based on pairwise contracts negotiated offline
between participants. These contracts specify a bounded
range of unit prices for load transfers between partners.
At runtime, participants use these contracts to transfer ex-
cess load at a price within the pre-defined range.

Small price-ranges are sufficient for the mechanism to
produce acceptable allocations in an underloaded network
of uniform nodes and contracts, and produce allocations

close to acceptable in other cases. Compared to previous
approaches, this mechanism gives participants control and
privacy in their interactions with others. Contracts allow
participants not only to constrain prices but also practice
price discrimination and service customization. The ap-
proach also has a low runtime overhead.

Participants have flexibility in choosing contract
prices. We show that even randomly chosen prices
from a wide range achieve allocations close to accept-
able. We suggest, however, that participants first negoti-
ate relatively high fixed-price contracts to maximize their
chances of shedding excess load while minimizing run-
time overhead and only later negotiate additional con-
tracts with lower prices. Additionally, if participants no-
tice that they often stand between overloaded and under-
loaded partners, they should re-negotiate some of their
contracts to cover a small price-range and make a small
profit by forwarding load from their overloaded to their
underloaded partners.

Although the load management mechanism introduced
in this paper is motivated by federated distributed stream
processing, it also applies to other federated systems such
as Web services, computational grids, overlay-based com-
puting platforms, and peer-to-peer systems.

In this paper, we did not address high availability. Be-
cause each participant owns multiple machines, partici-
pant failures are rare. We envision, however, that if the
participant running the tasks fails, it is up to the original
nodes to recover the failed tasks. If the original participant
fails, though, the partner continues processing the tasks
until the original participant recovers. Contracts could
also specify availability clauses. We plan to investigate
high availability further in future work.

Acknowledgments

We thank Rahul Sami for many invaluable suggestions.
We thank Jaeyeon Jung and Dave Andersen from MIT,
and Noah Case from Syptec, for providing us the network
connection traces.

References

[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new
model and architecture for data stream management.The VLDB
Journal: The Int. Journal on Very Large Data Bases, Sept. 2003.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Mod-
els and issues in data stream systems. InProc. of 2002 ACM Sym-
posium on Principles of Database Systems, June 2002.

[3] P. Bhoj, S. Singhal, and S. Chutani. SLA management in federated
environments. Technical Report HPL-98-203, Hewlett-Packard
Company, 1998.

[4] R. Buuya, H. Stockinger, J. Giddy, and D. Abramson. Economic
models for management of resources in peer-to-peer and grid com-
puting. InProc. of SPIE Int. Symposium on The Convergence of In-
formation Technologies and Communications (ITCom 2001), Aug.
2001.

[5] S. Chandrasekaran, A. Deshpande, M. Franklin, and J. Hellerstein.
TelegraphCQ: Continuous dataflow processing for an uncertain
world. In Proc. of the First Biennial Conference on Innovative
Data Systems Research (CIDR’03), Jan. 2003.

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scal-
able continuous query system for Internet databases. InProc. of
the 2000 ACM SIGMOD Int. Conference on Management of Data,
May 2000.

[7] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. Zdonik. Scalable distributed stream
processing. InProc. of the First Biennial Conference on Innovative
Data Systems Research (CIDR’03), Jan. 2003.

[8] B. Chun, Y. Fu, and A. Vahdat. Bootstrapping a distributed com-
putational economy with peer-to-peer bartering. InProc. of the
Workshop on Economics of Peer-to-Peer Systems, June 2003.

[9] B. N. Chun. Market-Based Cluster Resource Management. PhD
thesis, University of California at Berkeley, 2001.

[10] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load shar-
ing in homogeneous distributed systems.IEEE Transactions on
Software Engineering, SE-12(5):662–675, May 1986.

[11] C. Estan, S. Savage, and G. Varghese. Automatically inferring
patterns of resource consumption in network traffic. InProc. of
the ACM SIGCOMM 2003 Conference, Aug. 2003.

[12] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A
BGP-based mechanism for lowest-cost routing. InProc. of the 21st
Symposium on Principles of Distributed Computing, July 2002.

[13] J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the
cost of multicast transmissions.Journal of Computer and System
Sciences, 63:21–41, 2001.

[14] J. Feigenbaum, C. Papadimitriou, and S. Shenker. Distributed al-
gorithmic mechanism design: Recent results and future directions.
In Proc. of the 6th Int. Workshop on Discrete Algorithms and Meth-
ods for Mobile Computing and Communications, Sept. 2002.

[15] D. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini. Economic
models for allocating resources in computer systems. In S. H.
Clearwater, editor,Market based Control of Distributed Systems.
World Scientist, Jan. 1996.

[16] I. T. Foster and C. Kesselman. Computational grids. InProc. of
the Vector and Parallel Processing (VECPAR), June 2001.

[17] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An
architecture for secure resource peering. In19th ACM Symposium
on Operating Systems Principles, Oct. 2003.

[18] Y. Fu and A. Vahdat. Service level agreement based distributed re-
source allocation for streaming hosting systems. InProc. of 7th Int.
Workshop on Web Content Caching and Distribution, Aug. 2002.

[19] R. Gallager. A minimum delay routing algorithm using distributed
computation.IEEE Transactions on Communication, COM-25(1),
Jan. 1977.

[20] M. Jackson. Mechanism theory.Forthcoming in Encyclopedia of
Life Support Stystems, 2000.

[21] A. Keller and H. Ludwig. The WSLA framework: Specifying and
monitoring service level agreements for Web services. Technical
Report RC22456, IBM Corporation, May 2002.

[22] J. F. Kurose. A microeconomic approach to optimal resource al-
location in distributed computer systems.IEEE Transactions on
Computers, 38(5):705–717, 1989.

[23] K. Lai, M. Feldman, I. Stoica, and J. Chuang. Incentives for co-
operation in peer-to-peer networks. InProc. of the Workshop on
Economics of Peer-to-Peer Systems, June 2003.

[24] W. Lehr and L. W. McKnight. Show me the money: Contracts and
agents in service level agreement markets.http://itc.mit.
edu/itel/docs/2002/show_me_the_money.pdf ,
2002.

[25] T. W. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard. En-
terprise: A market-like task scheduler for distributed computing
environments.The Ecology of Computation, 1988.

[26] Mesquite Software, Inc. CSIM 18 user guide.http://www.
mesquite.com .

[27] M. S. Miller and K. E. Drexler. Markets and computation: Agoric

open systems. In B. Huberman, editor,The Ecology of Computa-
tion. Science & Technology, 1988.

[28] C. Ng, D. C. Parkes, and M. Seltzer. Strategyproof computing:
Systems infrastructures for self-interested parties. InProc. of the
Workshop on Economics of Peer-to-Peer Systems, June 2003.

[29] C. Ng, D. C. Parkes, and M. Seltzer. Virtual worlds:
Fast and strategyproof auctions for dynamic resource al-
location. http://www.eecs.harvard.edu/˜parkes/
pubs/virtual.pdf , June 2003.

[30] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforcing fair shar-
ing of peer-to-peer resources. InProc. of the 2nd Int. Workshop on
Peer-to-Peer Systems (IPTPS ’03), Feb. 2003.

[31] N. Nisan and A. Ronen. Computationally feasible VCG mech-
anisms. InProc. of the Second ACM Conference on Electronic
Commerce (EC00), Oct. 2000.

[32] N. Nisan and A. Ronen. Algorithmic mechanism design.Games
and Economic Behavior, 35, 2001.

[33] D. Parkes.Iterative Combinatorial Auctions: Achieving Economic
and Computational Efficiency (Chapter 2). PhD thesis, Depart-
ment of Computer and Information Science, University of Penn-
sylvania, 2001.

[34] D. Parkes. Price-based information certificates for minimal-
revelation combinatorial auctions.Agent Mediated Electronic
Commerce IV, LNAI 2531:103–122, 2002.

[35] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint
for introducing disruptive technology into the Internet. InProc. of
the First Workshop on Hot Topics in Networks, Oct. 2002.

[36] M. Roesch. Snort: Lightweight intrusion detection for networks.
In Proc. of the 13th Conference on Systems Administration (LISA-
99), Nov. 1999.

[37] A. Sahai, A. Durante, and V. Machiraju. Towards automated
SLA management for Web services. Technical Report HPL-2001-
310R1, Hewlett-Packard Company, July 2001.

[38] A. Sahai, S. Graupner, V. Machiraju, and A. van Moorsel. Spec-
ifying and monitoring guarantees in commercial grids through
SLA. Technical Report HPL-2003-324, Hewlett-Packard Com-
pany, Nov. 2002.

[39] T. W. Sandholm. An implementation of the contract net protocol
based on marginal cost calculations. InProc. of the 12th Int. Work-
shop on Distributed Artificial Intelligence, pages 295–308, 1993.

[40] T. W. Sandholm. Contract types for satisficing task allocation: I
theoretical results. InAAAI Spring Symposium Series: Satisficing
Models, Mar. 1998.

[41] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J.
Franklin. Flux: An adaptive partitioning operator for continuous
query systems. InProc. of the 19th Int. Conference on Data Engi-
neering (ICDE 2003), Mar. 2003.

[42] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for Internet
applications. InProc. of the ACM SIGCOMM 2001 Conference,
pages 149–160, Aug. 2001.

[43] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: a wide-area distributed
database system.The VLDB Journal: The Int. Journal on Very
Large Data Bases, 5, Jan. 1996.

[44] The Condor Project. Condor high throughput computing.http:
//www.cs.wisc.edu/condor/ .

[45] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA:
A secure economic framework for peer-to-peer resource sharing.
In Proc. of the Workshop on Economics of Peer-to-Peer Systems,
June 2003.

[46] C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and W. Stor-
netta. Spawn: A distributed computational economy.IEEE Trans-
actions on Software Engineering, SE-18(2):103–117, 1992.

