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Abstract Autonomous participants, however, do not collaborate
This paper focuses on load management in Ioosel)]?-)r-the benefit of the whole system, but rather aim to max-
mize their own benefit. A natural way to architect a fed-

coupled federated distributed systems. We present a dis-

tributed mechanism for moving load between autonomouesrated system is thus agamputational economyvhere

participants using bilateral contracts that are negotiaté)cggécgﬁgsirﬁ’g’éggéez‘i‘;:ce; ?r?gn?erform computing for
offline and that set bounded prices for moving load. We When autonomousg arti(?i znts a.re also real economic
show that our mechanism has good incentive properties P P

efficiently redistributes excess load, and has a low ove htities, additional constraints come into play. The pop-

head in practice. ularity of bilateral agreements between Internet Service

Our load management mechanism is especially WelErowders .(ISPS.) demonstr_atgs that part|C|pants value and
en require privacy in their interactions with each other.

suited for distributed stream-processing applications, a('ﬁ/*le also practice price and service discrimination [24]

emerging class of data-intensive applications that emplo\xh y h P ff d'frp lities of ) d diff '

a “continuous query processing” model. In this model ric?erg Eoe(;/if(f)erzrntl erentquaF|t|eshq service an|spl erentb
| partners. For this purpose, S estab-

streams of data are processed and composed continuo . .
P P i%% bilateral Service Level Agreements, where they de-

as they arrive rather than after they are indexed and stor . . . .
We have implemented the mechanism in Medusadis- Ine confidential details of theustomSLA and prices that
ne partner offers another.

tributed stream processing system, and we demonstrate & . . .
b gsy In this paper, we present a distributed mechanism for

properties using simulations and experiments. managing load in a federated system. Our mechanism is
inspired on the manner in which ISPs collaborate. Unlike
other computational economies that implement global
Many distributed systems are composed of |oose|91arkets to set resource prices at runtime, our mechanism
coupled autonomous nodes spread across different admifased orprivate pairwise contractsiegotiated offline
istrative domains. Examples of such federated systenR§tween participants. Contracts set tighthunded prices
include Web services, cross-company workflows whertr migrating each unit of load between two participants
the end-to-end services require processing by differefnd specify the set of tasks that each is willing to execute
organizations [3, 21], and peer-to-peer systems [8, 29N behalf of the other. We envision that contracts will be
30, 45]. Other examples are computational grids confxtended to contain additional clauses further customiz-
posed of computers situated in different domains [4, 16Nd the offered services (e.g., performance and availability
44), overlay-based computing platforms such as Plangguarantees). In contrast to previous proposals, our mecha-
lab [35], and data-intensive stream processing systems [ism (1) provides privacy to all participants regarding the
2,5, 6, 7] that can be distributed across different domairfetails of their interactions with others, (2) facilitates ser-
to provide data management services for data streams. Vice customization and price discrimination, (3) provides
Federated operation offers organizations the opport@ simple and lightweight runtime load management using
nity to pool their resources together for common beneRfice pre-negotiation, and (4) has good system-wide load
fit. Participants can compose the services they providealance properties.
into more complete end-to-end services. Organizations With this bounded-price mechanisnruntime load
can also cope with load spikes without individually haviransfers occur only between participants that have pre-
ing to maintain and administer the computing, networkiegotiated contracts, and at a unit price within the con-
and storage resources required for peak operation. tracted range. The load transfer mechanism is simple: a
participant moves load to another if the local processing

*This material is based upon work supported by the National Scien ; :
Foundation under Grant No. 0205445. Any opinions, findings, and cocr§0St IS Iarger than the payment it would have to make to

clusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science *Non-payment models, such as bartering, are possible too. See Sec-
Foundation. tion 2 for details.
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another participant for processing the same load (plus tlexchange load among themselves producing successively
migration cost). less costly allocations. In contrast to these approaches,
Our work is applicable to a variety of federated syswe focus on environments where participants are directed
tems, and is especially motivated bijstributed stream by self-interest and not by the desire to produce a system-
processing applications In these applications, data wide optimal allocation.
streams are continuously pushed to servers, where theyAs recent applications frequently involve indepen-
undergo significant amounts of processing including fildently administered entities, more efforts have started to
tering, aggregation, and correlation. Examples of appleonsider participant selfishness. In mechanism design
cations where this “push” model for data processing i§MD) [20, 33], agents reveal their costs to a central en-
appropriate include financial servicesd, price feeds), tity that computes the optimal allocation and a vector of
medical applicationse(g, sensors attached to patients),compensating payments. Agents seek to maximize their
infrastructure monitoringe.g, computer networks, car utility computed as the difference between payment re-
traffic), and military applicationse(g, target detection). ceived and processing costs incurred. Allocation and pay-
Stream processing applications are well-suited to theent algorithms are designed to optimize agents utility
computational economy provided by a federated systemhen the latter reveal their true costs.
Data sources are often distributed and belong to different In contrast to pure mechanism design, algorithmic
organizations. Data streams can be composed in diffemechanism design (AMD) [29, 32] additionally consid-
ent ways to create various services. Stream processiegs the computational complexity of mechanism imple-
applications also operate on large volumes of data, witlnentations. Distributed algorithmic mechanism design
rates varying with time and often exceeding tens of thouDAMD) [12, 14] focuses on distributed implementations
sands of messages per second. Supporting these applichmechanisms, since in practice a central optimizer may
tions thus requires dynamic load management. Finallpot be implementable. Previous work on DAMD schemes
because the bulk of the processing required by applicacludes BGP-based routing [12] and cost-sharing of mul-
tions can be expressed with standard well-defined opdieast trees [13]. These schemes assume that participants
ators, load movements between autonomous participarusrrectly execute payment computations. In contrast, our
does not require full-blown process migration. load management mechanism is an example of a DAMD
We have designed and implemented the bounded-priseheme that does not make any such assumption because
mechanism inMedusa a federated distributed stream-it is based on bilateral contracts.
processing system. Using analysis and simulations, we Researchers have also proposed the use of economic
show that the mechanism provides enough incentives farinciples and market models for developing complex dis-
selfish participants to handle each other’s excess load, irributed systems [27]. Computational economies have
proving the system’s load distribution. We also show thabeen developed in application areas such as distributed
the mechanism efficiently distributes excess load whedatabases [43], concurrent applications [46], and grid
the aggregate load both underloads and overloads totadmputing [4, 16, 44]. Most approaches use pricing [4,
system capacity and that it reacts well to sudden shifts i, 15, 16, 39, 43, 46]: resource consumers have differ-
load. We show that it is sufficient for contracts to specifyent price to performance preferences and are allocated a
a small price-range in order for the mechanism to produdaudget. Resource providers hold auctions to determine
acceptable allocations where (1) eitimerparticipant op- the price and allocation of their resources. Alternatively,
erates above its capacity, or (2) if the system as a whotesource providers bid for tasks [39, 43], or adjust their
is overloaded, theall participants operate above their ca-prices iteratively until demand matches supply [15].
pacity. We further show that the mechanism works well These approaches to computational economies require
even when participants establish heterogeneous contrapesticipants to hold and participate in auctions for every
at different unit prices with each other. load movement, thus inducing a large overhead. Variable
We discuss related work in the next section. Section ®ad may also make prices vary greatly and lead to fre-
presents the bounded-price load management mechanigoent re-allocations [15]. If the cost of processing clusters
and Section 4 describes its implementation in Medusaf tasks is different from the cumulative cost of indepen-
We present several simulation and experimental results @ent tasks, auctions become combinatorial [312,34]m-

Section 5 and conclude in Section 6. plicating the allocation problem. If auctions are held by
overloaded agents, underloaded agents have the choice to
2 Related Work participate in one or many auctions simultaneously, lead-

ing to complex market clearance and exchange mecha-
Cooperative load sharing in distributed systems hagisms [29]. We avoid these complexities by bounding
been widely studied (see,g, [10, 19, 22, 25, 41]). Ap-
proaches most similar to ours produce optimal or near- 2|n a combinatorial auction, multiple items are sold concurrently. For
optimal allocations usingradient-descentwhere nodes each bidder, each subset of these items represents a different value.




the variability of runtime resource prices and serializ- 14k o ]

. ; . Cost Function D

ing communications between partners. In contrast to our ok N/

approach, computational economies also make it signif- Load Level, X, for which MC = Price

i iffi ici i k7] 10 [ | | ]

|cz_intly more difficult for_ participants _to offer different g Load Levels within |_|

prices and different service levels to different partners. s 8l Bounded-Price Range || \ -
As an alternative to pricing, recent approaches pro- # 6L '/ price

pose to base computational economies hmrtering x ‘ iPerUnit

SHARP [17] is an infrastructure that enables peers to se- 4 | Marginal Cost () 1 Lo |

curely exchange tickets that provide access to resources. 2F .

SHARP does not address the policies that define how 0 ‘ ‘ S

the resources should be exchanged. Cétal.[8] pro- 0.5 0.6 0.7 Xy 08 X 09

. . P t Utilization (Load
pose a computational economy based on SHARP. In their ereent Utilization (Load)

system, peers discover required resources at runtime and
trade resource tickets. A ticket is a soft claim on resources
and can be rejected resulting in zero value for the holder.
In contrast, our pairwise agreements do not specify anyheretaskset; is the subset of tasks i’ running ats.
resource amounts and peers pay each other only for tfi@is cost depends on the load imposed by the tasks. Each
resources they actually use. participant monitors its own load and computes its pro-

Service level agreements (SLAs) are widely used focessing cost. There are an unlimited number of possible
Web services and electronic commerce [3, 21, 37]. Theost functions and each participant may have a different
contract model we propose fits well with these SLA in-one. We assume, however, that this cost manotonic
frastructures. and convexfunction. Indeed, for many applications that

In P2P systems, peers offer their resources to eaghnocess messages (e.g., streams of tuples), an important
other for free. Schemes to promote collaboration useost metric is the per message processing delay. For most
reputation [23], accounting [45], auditing [30], or strat-scheduling disciplines this cost is an increasing and con-
egyproof computing [28] to eliminate “free-riders” who vex function, reflecting the increased difficulty in offering
use resources without offering any in return. In contrastow delay service at higher load. Figure 1 illustrates such
we develop a mechanism for participants that require tighost function for a single resource. We revisit Figure 1
control over their collaborations and do not offer their refurther throughout the section.

Figure 1:Prices and processing costs.

sources for free. Participants are selfish and aim to maximize their util-
ity, computed as the difference between the processing
3 The Bounded-Price Mechanism cost, D; (taskset;), and the payment they receive for that

i i i processing. When a task originates at a participant, it
In this section, we define the load management proky,s 4 constant per-unit load value to that participant (this
Iem mfederatgd dlstrlbulted sygtems, pre;ent the boundq;ioﬂue could be, for instance, the price paid by the partic-
price mechanism and discuss its properties. ipant's clients for the processing). When a task comes
3.1 Problem Statement from another participant, the payment made by that par-
ticipant defines the task’s value.
Each participant has a maximum load level corre-
sponding to a maximum cost, above which the participant

2?3 Ztr?erigiarsissctjﬁgt:eir? 222 2?;213 \é?]ry'gﬂfim;:t?re_considers itself overloaded. The goal of a load manage-
g P P P ment mechanism is to ensure that no participant is over-

sources. Each task is considered to originate at a parti%-adeol when spare capacity exists. If the whole system
pant where it is submitted by a client. Since we only ex: ' :

amine interactions between participants, we use the terrjﬁssoverloaded, the goal is to use as much of the available
- ) P b ' capacity as possible. We seek a mechanism that produces
participant and nodeinterchangeably. Tasks can be ag- .
. o anacceptable allocation
gregated into larger tasks or split into subtasks. If the
load imposed by a task increases, the increase can thsfinition: An acceptable allocationis a task distribu-
be treated as the arrival of a new task. Similarly, a loatlon where (1)no participant is above its capacity thresh-
decrease can be considered as the termination of a taskd, or (2) all participants are at or above their capacity
We discuss tasks further in Section 4. thresholds if the total offered load exceeds the sum of the
For each participant, the load imposed on its resourceapacity thresholds.
represents a cost. We define a real-valcest functiorof

each participant as:

We are given a system comprised of a Sebf au-
tonomousparticipants each with computing, network,

Because the set of tasks changes with time, the alloca-
tion problem is an online optimization. Since the system
Vi € S, Vtaskset; C K, D; :taskset; =R (1) is a federation of loosely coupled participants, no single



entity can play the role of a central optimizer and the im-| 00. PROCEDURE OFFER_LOAD:
plementation of the mechanism must be distributed. Weg 01. repeat forever:

: : : 02. sort(contractset on price(contractset;) ascending)
further examine the mechanism design aspects of our apos" 10 o contra o € contractset:
proach in Section 3.3. 04. offerset — 0
In our scheme, load movements are basetharginal 05. foreach task € taskset

costs MC; : (u,taskset;) — R defined as the incre- 83- t_%t\ilc—loacz :ltfllskzet —loffgrset —{u} c
mental cost for nodé of running tasku given its current : ! ({h otalload) > load(u) * price(C;)

A A 08. offerset « offerset U {u}
taskset;. Figure 1 shows the marginal costcaused by | oo. if offerset £ 0
adding loadr, when the current load iX.,,.. Assuming 10. offer «— (price(C;), offerset)
the set of tasks imaskset; imposes a total loa& ., and 11. (resp, acceptset) « send-offer(j, offer)

. - . 12. if resp = accept and acceptset # )
u imposes load, thenMC(u, taskset;) = m. If z is one 13. transfer(j, price(C;), acceptset)

unit of load, we calln the unit marginal cost 14, break foreach contract

. 15. waitS2 time units
3.2 Model and Algorithms

We propose a mechanism to achieve acceptable allo- ~ F19Uré 2:Algorithm for shedding excess load.

cations based on bilateral contracts: participants establish

contracts with each other by negotiating offline a set of

tightly bounded prices for each unit of load they will moveone algorithm for shedding excess load (Figure 2) and one
in each direction. for taking on new load (Figure 3).

The basic idea in shedding excess load is for an over-
loaded participant to select a maximal set of tasks from its
taskset; that cost more to process locally than they would
cost if processed by one of its partners and offer them to
that partner. Participants can use various algorithms and

Participants must mutually agree on what one unit of prcpolicies for selecting these tasks. We present a general al-
cessing, bandwidth, and storage represent. Different pa@8'ithm in Figure 2. If the partner accepts even a subset
of participants may have contracts specifying differen®f the offered tasks, the accepted tasks are transferred. An
unit prices. There is at most one contract for each pag:}verloaded participant could consider its contracts in any
of participants and each direction. Participants may perder. One approach is to exercise the lower-priced con-
odically renegotiate, establish, or terminate contracts oftacts first with the hope of paying less and moving more
fline. We assume that the set of nodes and contracts foi@sks. In this paper, we ignore the task migration costs.
a connected graph. The set of a participant’s contracts [d1€se costs should, however, be considered before an of-
called itscontractset. We useC' to denote the maximum fer is sent by imposing a minimum threshold between the
number of contracts that any participant has. difference in the local and remote processing costs.

At runtime, participants that have a contract with each Procedure®OFFER_LOAD waits between load trans-
other may perfornoad transfers Based on their load fer§ to let Iocal_ load level estimations (e.g., exponentially
levels, they agree on a definite unit prigesice(C; ;), Weighted moving averages) catch-up with the new aver-
within the contracted price-range, and on a set of task@@e load level. If no transfer is possible, a participant
the moveset, that will be transferred. The participant of- fetries to shed load periodically. Alternatively, the par-

fering load also pays its partner a sumpofce(C; ;) * ticipant may ask its partners to notify it when their loads
load (moveset). ' decrease sufficiently to accept new tasks.

In procedureACCEPT_LOAD (Figure 3), each par-
ticipant continuously accumulates load offers and peri-
odically accepts subsets of offered tasks, examining the
We first present thefixed-price mechanismwhere higher unit-price offers first. Since accepting an offer re-
min_price(C; ;) = max_price(C; ;) = FixedPrice(C; ;).  sults in a load movement (because offers are sent to one
With fixed-price contracts, if the marginal cost per unit ofpartner at the time), the participant keeps track of all ac-
load of a task is higher than the price in a contract, thecepted tasks in thpotentialset and responds to both ac-
processing that task locally is more expensive than payirgepted and rejected offers. Participants that accept a load
the partner for the processing. Conversely, when a taskidfer cannot cancel transfers and move tasks back when
marginal cost per unit of load is below the price specifiedbad conditions change. They can, however, use their own
in a contract, then accepting that task results in a greateontracts to move load further or to move it back.
payment than cost increase. There are several advantages in serializing communi-

Given a set of contracts, we propose a load manageation between participants rather than having them of-
ment protocol, where each participant concurrently runfer their load simultaneously to all their partners. The

Definition: A contract C; ; between participantsand j
defines a price rangémnin_price(C; ;), max_price(C; ;)],
that constrains the runtime price paid by participafar
each unit of load given tg.

3.2.1 Fixed-Price Contracts



00. PROCEDURE ACCEPT_LOAD: load. Any price below that maximum is acceptable. Fig-

8;- repee; foreveg ure 1 illustrates, for a single resource and a strictly con-
. olrers «— - . .

03 for 2 time units or while(movement = true) vex function, _how_a I(_)ad levek maps to a unit price.

04. for each new offer receivedew offer: In general, this price is the gradient of the cost function

05. offers « offers U {new _offer} evaluated afX .

gg’- Sortt(otf,fefs on Prqi)ce(Offersi) descending) When a participant negotiates a contract to accept load,
. potentialset «— . . . . ..

08.  foreach offeb; € offers th_e same maximum price rule applies since the part|C|p§mt

09. acceptset « 0 will never be able to accept load once it is overloaded it-

10. foreach task € offerset(o;) self. A participant, however, should not accept a price that

11 total-load « taskset U potentialset U acceptset | s too low because such price would prevent the partici-

12. if MC(u, total_load) < load(u) * price(o;) tf fi load th h it might still

13 acceptset « acceptset U {u} pant from accepting new load even though it might still

14, if acceptset £ () have spare capacity. The participant should rather esti-

15. potentialset < potentialset U acceptset mate its expected load level, select a desired load level

16. resp «— (accept, acceptset) between the expected and maximum levels and negotiate

17. movement «— true h di .

18. elseresp — (reject, ) the corresponding contract price. _

19. respond (o, resp) Participants may be unwilling to move certain tasks to

some partners due to the sensitive nature of the data pro-
cessed or because the tasks themselves are valuable in-
tellectual property. For this purpose, contracts can also
Load specify the set of tasks (or types of tasks) that may be
Level - moved, constraining the runtime task selection. In offline

: agreements, participants may also prevent their partners
from moving their operators further thus constraining the
partner’s task selections.

To ensure that a partner taking over a task provides
enough resources for it, contracts may also specify a mini-
mum per-message processing delay (or other performance
metric). A partner must meet these constraints or pay a
monetary penalty. Such constraints are commonplace in

Figure 4:Three load movement scenarios for two partners. SLAs used for Web services, inter-company workflows
or streaming services [18]. Infrastructures exist to en-
force them through automatic verification [3, 21, 37, 38].
communication overhead is lower but most importantlyin the rest of this paper, we assume that such infrastruc-
the approach prevents possible overbooking as partnetge exists and that monetary penalties are high enough
always receive the load they accept. This in turn allowso discourage any contract breaches. To avoid breaching
participants to accept many offers at once. The only draveontracts when load increases, participants may prioritize
back is a slightly longer worst-case convergence time. tasks already running over newly arriving tasks.

Figure 4 illustrates three load movement scenarios. If
participant4 has one or more tasks for which its margina
cost per unit of load exceeds the price in its contract wit
B, these tasks are moved in a single transfer (scenariog-ied-price contracts do not always produce acceptable
and 2). Only those tasks, however, for which the marging|locations. For instance, load cannot propagate through
cost per unit of load aB does not exceed the price in theg chain of identical contracts. A lightly loaded node in the
contract are transferred (scenario 3). middle of a chain accepts new tasks as long as its marginal
cost isstrictly belowthe contract price. The node even-
tually reaches maximum capacity (as defined by the con-
tract prices) and refuses additional load. It does not offer
With an approach based on fixed prices, the only tunablead to partners that might have spare capacity, though,
parameters are the unit prices set in contracts. Whenba&cause its unit marginal cost is still lower than any of its
participant negotiates a contract to shed load, it must firsbntract prices. Hence, if all contracts are identical, a task
determine its maximum desired load levé] and the cor- can only propagate one hop away from its origin.
responding marginal cost per unit of load. This marginal To achieve acceptable allocations for all configura-
cost is also the maximum unit price that the participantions, participants thus need to specifgmall range of
should accept for a contract. For any higher price, thprices [FixedPrice — A; FixedPrice], in their contracts.
participant risks being overloaded and yet unable to shesluch price range allows a participant to forward load from

Figure 3:Algorithm for taking additional load.

-5y Contract

Scenario 1 Scenario 3

Scenario 2

:§.2.3 Extending the Price Range

3.2.2 Setting Up Fixed-Price Contracts



an overloaded partner to a more lightly loaded one by ac- | g
cepting tasks at a higher price and offering them at a lower L&
price. When a contract specifies a small price-range, for
each load transfer, partners must dynamically negotiate

the final unit price within the range. Since a fixed unit

price equals the gradient (or derivative) of the cost curve - e _——
at some load level, a price range converts into a load level | -
interval as illustrated in Figure 1. The price range is the

difference in the gradients of the cost curve at interval
boundaries Movement 1 Movements2,3  Fina Assignment

1 Contract

We now derive the minimal contract price-range thaf._. re 5 Load is bet th q ) "

ensures convergence to acceptable allocations. We a gure o:Load movements between three nodes using a sma
L s . rice-range.

lyze a network of homogeneous nodes with identical corf
tracts. We explore heterogeneous contracts through sim-
ulations i_n Section 5. _For clarity of exposi_tion,_we also  For underloaded systems to always converge to accept-
assume in the analysis that all tasks are identical to thgle allocations, tasks must be able to travel as far as the
smallest migratable task,andimpose the same loallVe  diameterM of the network of contracts. The minimal

useku to denote a set of tasks. price range should then B, _; (taskset™).
We define);, as the decrease in unit marginal cost due
to removingk tasks from a node’saskset;: Lemmal In a network of homogeneous nodes, tasks,

and contracts, to ensure convergence to acceptable

allocations in underloaded systems, the unit price

(2) range in contracts must be at least{FixedPrice —

51, is thus approximately the difference in the cost funcdar—1(taskset"), FixedPrice], where M is the diam-

tion gradient evaluated at the load level including and exéter of the network of contracts anidskset™ is the

cluding thek tasks. set of tasks that satisfiedIC(u, taskset? — u) <
Given a contract with priceFixedPrice, we define load(u) * FixedPrice andMC (u, taskset™) > load(u)

taskset? as the maximum set of tasks that a node cahixedPrice.

handle before its per-unit-load marginal cost exceeds . _

FixedPrice and triggers a load movement. |.eagkset” When the system is overloaded, a price range does

satisfiesMC(u, taskset? — u) < load(u) * FixedPrice not lead to an acceptable-aIIFocatlon (wheVe <

andMC(u,tasksetF) > load(u) % FixedPrice. S .Z Di(taskseti). Z Di(taskseti )) In the final allo-
With all contracts in the system specifying the sam&alONn. Some participants may have a marginal cost as low

price range, [FixedPrice — A, FixedPrice] such that @SFixedPrice —dy(taskset;’) (wider ranges do notim-

A = § (tasksetF), any task can now travel two hops. Prove this bound). For_ overloaded systems, price-range

A lightly loaded node accepts tasks BitcedPrice until contracts therefore achiemearly acceptable allocations

its load reaches that ahskset?. The node then alter- defined as:

nates between offering one taslat priceFixedPrice — o . -
F ) . . Definition: A nearly acceptable allocation satisfies
01 (taskset" ) and accepting one task BixedPrice. This , P
o S T Vi e S : D;(taskset;) > D;(taskset;; — Mu)
scenario is shown in Figure 5. Similarly, for load to travel !
through a chain ofM/ + 1 nodes (orM transfers) the

MC(u, taskset — u) — MC(u, taskset — (k + 1)u)

O (taskset) = load(u)

Price ranges modify the load management protocol as
follows. Initial load offers are made at the lowest price.
i N 3plo task can be accepted, the partner proposes a higher
at priceFixedPrice — d;_; (taskset™) and offering it at  price  Upon receiving such a counter-offer, if the new
price FixedPrice — 0 (taskset"). price is still its best alternative, a participant recomputes
A larger price range speeds-up load movementgq ,frerqet. If the set is empty, it suggests a new price

through a chain because more tasks can be moved;at, - Negotiation continues until both parties agree on
each step. With a larger price range, however, nodes Unjtice or no movement is possible. Other negotiation
marginal costs are more likely to fall within the dynamicg-hemes are possible.

range requiring a price negotiation. A larger range thus

increases runtime overhead, price volatility and the nung .3  Properties

ber of re-allocations caused by small load variations. Our

goal is therefore to keep the range as small as possible andThe goal of mechanism design [33] is to implement an
extend it only enough to ensure convergence to acceptaladptimal system-wide solution to a decentralized optimiza-
allocations. tion problem, where each agent holds an input parameter



to the problem and prefers certain solutions over otherdistributed: there is no central optimizer, and (2) algo-
In our case, agents are participants and optimization pathmic: the computation and communication complexi-
rameters are participants’ cost functions and original seties are both polynomial time, as we show below. Be-
of tasks. The system-wide goal is to achieve an acceptaldause our mechanism is indirect, it differs from previous
allocation while each participant tries to optimize its util-DAMD approaches [12, 14] that focus on implementing
ity. Our mechanism isndirect participants reveal their the same payment computation as would a central opti-
costs and tasks indirectly by offering and accepting tasksizer but in an algorithmic and distributed fashion. An
rather than announcing their costs directly to a central ofpmportant assumption made in these implementations is
timizer or to other agents. that agents are either separate from the entities comput-
A mechanism defines the set of strategieavailable ing the payment functions [14] or that they compute the
to agents and an outcome rule; SV — O, that maps payments honestly [12]. Our mechanism does not need to
all possible combinations of strategies adopted by agentsake any such assumption.
to an outcome). With fixed-price contracts, the runtime  Because each load transfer takes place only if the
strategy-space of participants is reduced to only three postarginal cost of the node offering load is strictly greater
sible strategies: (1) accept load at the pre-negotiated pridban that of the node accepting the load, successive allo-
(2) offer load at the pre-negotiated price, or (3) do neieations strictly decrease the sum of all costs. Under con-
ther? The desired outcome is an acceptable allocation. stant load, movements thus always eventually stop. If all
Similarly to the definition used in Sandholrat. participants could talk to each other, the final allocation
al. [40], our mechanism igdividual rational(i.e., a par- would always be acceptable aRdreto-optimal i.e., no
ticipant may not decrease its utility by participating) on aagent could improve its utility without another agent de-
per load movement basis. Each agent increases its utilityeasing its own utility. In our mechanism, however, par-
by accepting load when the price exceeds the per-uniticipants only exchange load with their direct partners and
load marginal cost (because in that case the increasethis property does not hold. Instead, for a given load, the
payment,p;, exceeds the increase in cogl;) and offer bounded-price mechanism limits the maximum difference
load in the opposite situation. For two agents and oni@ load levels that can exist between participants once the
contract this strategy is alstbominantbecause compared system converges to a final allocation. If a node has at
to any other strategy, it optimizes an agent’s utility indeleast one task for which the unit marginal cost is greater
pendently of what the other agent does. than the upper-bound price of any of the node’s contracts,
For multiple participants and contracts, the strategthen all its partners must have a load level such that an
space is richer. Participants may try to optimize their utiladditional task would have an average unit marginal cost
ity by accepting too much load with the hope of passingreater than the upper-bound price in their contract with
it on at a lower price. Assuming, however, that particithe overloaded node. If a partner had a lower marginal
pants are highlyisk-averse they are unwilling to take on cost, it would accept its partner’s excess task at the con-
load unless they can process it at a lower cost themselvigacted price. This property and the computation of the
because they risk paying monetary penalties, the strategyinimal price ranges yield the following theorem:
of offering and accepting loadnly when marginal costs
are strictlijl higher orFIJowger than )r/Jrices respgctively, is a|:|- heorem 2 If nodes, contracts and _tasks are homoge-
optimal strategy. This strategy is not dominant, thoug 'eous, and .confcracts are set according t_o Lemma 1, the
because it is technically possible that a participant has g]al allocation is an acceptable allocation for u_nder-
partner that always accepts load at a low price. In specifleaded systems and a nearly acceptable allocation for

situations, the order in which participants contact eacﬂverloaded systems.

other may also change their utility due to simultaneous |n Section 5, we analyze heterogeneous settings using
moves by other participants. simulations and find that in practice, nearly acceptable al-
These properties also hold for price-range contractscations are also reached in such configurations.
when participants’ marginal costs are far from range Another property of the fixed-price mechanism is its
boundaries. Within a range, participants negotiate, thuyast convergence and low communication overhead. Task
revealing their costs more directly. Reaching an agregelection is the most complex operation and is performed
ment is individual-rational since moving load at a pricepnce for each load offer and once for each response.
between participants’ marginal costs increases both thefherefore, in a system withN overloaded participants,
utilities. Partners thus agree on a price within the rang@nder constant load, in the best case, all excess tasks re-
when possible. quire a single offer and are moved in parallel, for a conver-
Our mechanism is also a distributed algorithmic mechgence time of)(1). In the worst case, the overloaded par-
anism (DAM) [12, 14] since the implementation is (1)ticipants form a chain with only the last participant in the
chain having spare capacity. In this configuration, partici-
3We exclude the task selection problem from the strategy space. pants must shed load one at the time, through the most ex-
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With our mechanism, most load movements require as

few as three messages: an offer, a response, and a load

movement. The best-case communication complexity is

thusO(N). In contrast, an approach based on auctiongggregated bgperatorsto produce outputs of interest. A
has a best-case communication overhead@NC) if  data stream is a continuous sequence of attribute-value tu-
the auction is limited ta” partners and)(N?) if not.  ples that conform to some pre-defined schema. Operators
If the whole system is overloaded and participants mustre functions that transform one or more input streams
move load through a chain of most-expensive contract#)to one or more output streams. A loop-free, directed
the worst-case complexity may be as highsV2C), graph of operators is calleccantinuous querybecause it
mostly because each participant periodically tries to shezbntinuously processes tuples pushed on its input streams.
load. If, however, the notifications described above are Stream processing applications are naturally dis-
used, the worst-case communication overhead is ontgibuted. Many applications including traffic management
O(NC). The same worst-case communication overheaand financial feed analysis process data from either ge-
applies to auctions. In summary: ographically distributed sources or different autonomous

i ) organizations. Medusa uses Aurora [1] as its query pro-
Lemma 4 To converge, the fixed-price contracts mechzessor, Medusa takes Aurora queries and arranges for

anism imposes a best-case communication overhead it to be distributed across nodes and participants, rout-
Q(N) and a worst-case overhead 6f NC) if notifica- ing tuples and results as appropriate.
tions are used. Figure 6 shows an example of a Medusa/Aurora query.
Compared to auctions, our scheme significantly reln€ query, inspired from Snort [36] and Autofocus [11],
duces the communication overhead, for a slight incread®  Simple network intrusion detection query. Tuples on
in worst-case convergence time. Simulation results (SeliPut streams summarize one network connection each:
tion 5) show that the convergence time is short in practic€0urce and destination IPs, time, protocol used, etc. The
When contracts specify a small price-range, most load!€"Y identifies sources that are either active (operators
movements take place outside of the range and the me¢h@ndb) or used abnormally large numbers of protocols
anism preserves the properties above. If, however, the orﬂth'n a short time period (operatoss andf ) or both
timal load allocation falls exactly within the small price- (OP€ratorg). The query also identifies clusters of ac-
range, final convergence steps require more communich/€ sources (operators andd). To count the number
tion and may take longer to achieve, but at that poinf connections or protocols the query applesmdowed
the allocations are already acceptable. When load is ford9regateoperators4, ¢, ande): these operators buffer
warded through a chain, the complexity grows with th&onnection information for a time peridd, group the in-

length of the chain and the amount of load that needs {§rmation by source IP and apply the desired aggregate

be forwarded through that chain. In practice, though, lon§/nction. Aggregate values are théhered to identify
e desired type of connections. Finally, operaqoins

chains of overloaded nodes are a pathological, thus rare;

configuration. active sources with those using many protocols to identify

sources that belong in both categories.

The phrases in italics in the previous paragraph corre-
spond to well-defined operators. While the system allows

In this section, we describe the implementation ofiser-defined operators, our experience with a few appli-
the bounded-price mechanism in the Medusa distributezhtions suggests that developers will implement most ap-
stream-processing system. plication logic with built-in operators. In addition to sim-
plifying application construction and providing query op-
timization opportunities, using standard operators facili-

In stream-processing applicatiordata streamgro- tates Medusa’s task movements between participants.
duced by sensors or other data sources are correlated andvledusa participants usemote definitiongo move

4 System Implementation

4.1 Streams and Operators
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Table 1:Max number of contracts per node and network diam-
eter for increasing min numbers of contracts.

5 Evaluation

In previous sections, we showed some properties of
our mechanism and computed the best- and worst-case
complexities. In this section, we complete the evaluation
using simulations and experiments. We first examine the
tasks with relatively low overhead compared to full-blownconvergence to acceptable allocations in a network of het-
process migration. Remote definitions specify how opererogeneous nodes. We simulate heterogeneity by setting
ators on different nodes map on to each other. At runtimegpntracts at randomly selected prices. Second, we study
when a path of operators in the boxes-and-arrows diagratime average convergence speed in large and randomly cre-
needs to be moved to another node, all that's required &ed topologies. Third, we examine how our approach to
for the operators to be instantiated remotely and for the ilead management reacts to load variations. Finally, we
coming streams to be diverted to the appropriately nameagkamine how Medusa performs on a real application by
inputs on the new node. Our current prototype does notinning the network intrusion detection query, presented
move operator state. The new instance re-starts the coin-Section 4, on logs of network connections.
putation from an empty state. We plan to explore moving We use the CSIM discrete event simulator [26] to study
operator state in future work. a 995-node Medusa network. We simulate various ran-

For stream-processing, the algorithm for selectinglom topologies, increasing the minimum number of con-
tasks to offload to another participant must take into adracts per node, which has the effect of reducing the diam-
count the data flow between operators. It is preferable tter of the contract network. To create a contract network,
cluster and move together operators that are linked witheach node first establishes a bilateral contract with an al-
high-rate stream or even simply belong to the same comeady connected node, forming a tree. Nodes that still
tinuous query. In this paper we investigate the gener&dave too-few contracts then randomly select additional
federated load management problem and do not take gohrtners. With this algorithm, the difference between the
vantage of possible relations between tasks to optimizaeimbers of contracts that nodes have is small, as shown
their placement. In stream processing it is also often po# Table 1.
sible to partition input streams [41] and by doing so han- Each node runs a set of independent and identical op-
dle the load increase of a query network as a new quepgyrators that process tuples at a cost of/&0tuple. We
network. We make this assumption in this paper. set the input rate on each stream to 500 tuples/s (or
500 KBps). Assuming that each node has one 100 Mbps
output link, each operator uses 4% of the bandwidth and

) 2.5% of CPU. We select these values to model a reason-
Figure 7 shows the Medusa software structure. Eaclyye minimum migratable unit. In practice, tasks are not

Medusa node runs one instance of this software. The[giform and the amount of resources each task consumes
are two components in addition to the Aurora query progqnds how close a participant's marginal cost can get to
cessor. The first component, calledokup , is a client 5 contract price without crossing it. When we examine
of an inter-node distributed catalog (implemented USiNgsnvergence properties, we measure overload and avail-
a distributed hash table [42]) that holds information oryp o capacity in terms of the number of tasks that can be
streams, schemas and queries running in the system. Thgs e or accepted, rather than exact costs or load. Al
Brain  component monitors local load conditions by pey,,qes use the same convex cost function: the total num-

riodically asking theQueryProcessor  for the aver-  por of inflight tuples (tuples being processed and tuples
age input and output rates measured bylth@ueues awaiting processing in queues).

(which serve to send and receive tuples to and from clients ]
or other Medusa nodes) as well as for rough estimates 8f1 Convergence to Acceptable Allocations

the local CPU utilization of the various operatoBsain |, thjs section, we study load distribution properties for
uses this load information as input to the bounded-pricgenyorks of heterogeneous contracts. We compare the re-
mechanism that manages load. sults to those achieved using homogeneous contracts and

4The semantics of many stream processing applications are such t1$i0W that our approach quks We.” in heterogeneous sys-
occasional tuple drops are acceptable [2]. tems. We also simulate fixed-price contracts and show

Figure 7:Medusa software structure.

4.2 Medusa Software Architecture
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Figure 8:Excess load for the final allocation in an underloaded
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any load movement.

Desired result | Initial Load Allocation
underload 299 nodes with 22 ops

696 nodes with 7.7 ops on avg
Overall average 12 ops/node
overload 299 nodes with 22 ops

696 nodes with 12.0 ops on avg 2000 ‘ ‘ "Excess Capacity
Overall average 15 ops/node 1800 §§§ 1
1600 + NN ]
. . . . 9 1400 § §§ Random Range
Table 2: Simulated configurations. u is one operator. ﬁ 1200 §§§ Range
da(taskset") is defined in Section 3.2.3. 5 1000 §§§ Random Fixed
5 AW
that such contracts have good properties in practice, even 400 §§§
though they do not always lead to acceptable allocations. 200 §§§ W
. O RN N AN NN
We thu; study and compare _the conyergence properties 012345678 91011
of four variants of the mechanism: (E)xed, where all Minimum Number of Contracts

contracts set an identical fixed-price, @nge, where all
contracts are uniform but define a small price-range, (Fjigure 9:Left-over capacity for the final allocation in an over-
Random Fixed, where contracts specify fixed but ran-loaded network of 995 nodes.
domly chosen prices, anBandom Range, where con-
tracts define randomly selected price-ranges. Table 2
summarizes the price selection used for each type of cofXcess load or exploit a larger amount of available capac-
tract. We limit price ranges to the variation in marginalty: With a minimum of 10 contracts, nodes successfully
cost resulting from moving only two tasks. This range igedistribute over 99% of excess load in the underloaded
much smaller than required in theory to ensure acceptab§enario and use over 95% of the initially available ca-
allocations: the range is half the theoretical value for thBacity in the overloaded case. The system thus converges
smallest network diameter that we simulate (Table 1). o an allocation close to acceptable in both cases. Hence,
Starting from skewed load assignments, as summ&ven though they do not work well for specific configura-
rized in Table 2, we examine how far the final allocatiorfions (as discussed in Section 3.2.3), fixed-price contracts
is from being acceptable. For an underloaded system, $&n lead to allocations close to acceptable for randomly
measure the total excess load that nodes were unableg@nerated configurations.
move (Figure 8). For an overloaded system, we measure We re-run all simulations replacing fixed prices with a
the unused capacity that remains at different nodes (Fi§¥ice range and observe the improvement in final alloca-
ure 9%. In both figures, the column with zero minimum tion. We choose the price range to fall within the two load
number of contracts shows the excess load and availadfvels of 12 and 15 operators per node (Table 2, variant
capacity that exist before any reallocation. Range). The results, also presented in Figures 8 and 9,
With the Fixed variant of the mechanism, we exam-Show that a minimum of seven contracts achieves an ac-
ine the properties of an underloaded system whose fixégptable allocation. At that moment, the diameter of the
contract prices are above the average load level and thdd@work is five (Table 1) so the price-range is half the the-
of an overloaded system where prices are below avera§eetically required value. When the system is overloaded,
load. As shown in Figures 8 and 9, as the number dVver 98% of available capacity is successfully used with
contracts increases, the quality of the final allocation im@ Minimum of 10 contracts per node. Additionally, nodes

proves: nodes manage to reallocate a larger amount @glow their capacity have room for only one additional
operator. The final allocation is thus nearly acceptable,

SEach result is the average of nine simulations. as defined in Section 3.2.3. This result shows that price
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Figure 10:Convergence speed in an underloaded network of 995 nodes.

ranges, even smaller than the theoretically computed va-2 Convergence Speed

ues, suffice to achieve acceptable or nearly acceptable al- )
locations in randomly generated configurations. Figure 10(a) shows how the total cost decreases with

In practice, contracted prices will be heterogeneouéi.me in the underloaded network of 995 nodes with a min-

We thus simulate the same network of contracts agalf?um of five contracts per node. In the simulation, each
but with randomly selected priceR4ndom Fixed vari- node tried to move load at most once every 2 seconds
ant). To pick prices, each participant randomly selects @0 movements were allowed within the first 5 seconds
maximum capacity between 12 and 18 operators. WheH .the simulation). For all variants, the cqst deprgases
two participants establish a contract, they use the lowéluickly and reaches values close to the final minimum
of their maximums as the fixed price. We find that ranWithin as few as 15 seconds of the first load movement.
dom fixed-price contracts are less efficient than homogdis fast convergence is partly explained by the ability
neous contracts but they also achieve allocations close $the bounded-price mechanism to balance load between
acceptable (94% of excess load is re-allocated with 1@y Pair of nodes in a single iteration and partly by the
contracts as shown in Figure 8). Because we meas.@@ility of our mechanism to balance load simultaneously
the capacity at each node as the number of operators tftmany locations in the network. Fixed-price variants
the node can accept before its marginal cost reaches {tgve @ somewhat sharper decrease while also leading to a
highest contracted price, when the number of contracfidl allocation close to acceptable.
increases, so does the measured capacity. This in turnFigures 10(b) and (c) show the convergence speed
makes heterogeneous-price contracts appear less efficigiftasured as the number of load transféisements)
than they actually are at using available capacity. Th@nd the number of operators moved for homogeneous
range of prices from which contracts are drawn is sucRontracts (random prices produce almost identical trends).
that when each node has at least three contracts, the ifiR" both variants, the first load movements re-allocate
tially available capacity is roughly the same as with hoMmany operators, leading to the fast decrease in the total
mogeneous contracts. cost in early phases of the convergence. Fixed-price con-
Finally, we explore heterogeneous price ranges bijacts converge faster than price-range contracts because
adding a lower price bound to each randomly chosefiOré operators can be moved at once. The convergence
fixed price Random Range variant). As shown in Fig- also stops more quickly but, as shown above, the alloca-
ures 8 and 9, heterogeneous price-range contracts hdiRd is slightly worse than with a small price range.
similar properties to the uniform price-ranges. The fin o .
allocation is slightly worse than in the uniform case bjg;'3 Stability under Changing Load
cause nodes with small capacity impede load movements Next, we examine how the mechanism responds to
through chains and measured capacity increases with t8gqden step-shifts in load. A bad property would be for
number of contracts. We find, however, that in the ungmg|| step shifts in load to lead to excessive re-allocations.
der_Ioaded case nodes were at most 2.1 operators abgyg subject a network of 50 nodes (with a minimum of
their threshold (average of multiple runs) and in the undegnee fixed or three price-range contracts per node) to a
loaded case nodes had at most capacity left for 2.5 opefpdden load increase (at time 60 sec) and a sudden load
ators. Heterogeneous prices thus lead to allocations cloggcrease (at time 120 sec). We run two series of exper-
to acceptable ones. iments. We first create a large variation with 30% extra
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A 30% load increase, concentrated around a few nodes, L
makes these nodes exceed their capacity leading to a few | Operator
re-allocations both with fixed prices and price ranges. ‘
Fixed prices, however, produce fewer re-allocations be-
cause convergence stops faster. When load is removed,
spare capacity appears. If nodes use a price range, a
small number of re-allocations follows. With fixed-prices,
since nodes all run within capacity before the load is re-
moved, nothing happens. The 15% load increase leads

to an almost insignificant number of movements €VeHemory. The nodes communicate over a 100 Mbps Eth-
when a small price-range is used. Indeed, fewer nodeg,q; Al clients are initially on the same machines as

exceed their capacity and load variations within capaci%e nodes running their queries. All Medusa nodes have

do not lead to re-allocations. Both variants of the meChﬂxed-price contracts with each other and are configured

alrlnsmtlthus handle load variations without excessive €5 take or offer load every 10 seconds.
allocations.
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Figure 12:Experimental setup.

Figure 13 shows the results obtained. Initially, the load
at each node is approximately constant. At around 650
seconds (1) the load on the Utah trace starts increasing

We evaluate our prototype on the network intrusion deand causes Node 0 to shed load to Node 1, twice (on Fig-
tection query (with 60 sec windows and without the finaure 13 these movements are labeled (2) and (3)). After
join) running on network connection traces collected athe second movement, load increases slightly but Node 1
MIT (1 hour trace from June 12, 2003) and at an ISP imefuses additional load making Node 0 move some oper-
Utah (1 day trace from April 4, 2003). To reduce the posators to Node 2 (4). The resulting load allocation is not
sible granularity of load movements, we partition the Utaluniform but it is acceptable. At around 800 seconds (5),
log into four traces that are streamed in parallel, and thidode 1 experiences a load spike, caused by an increase
MIT log into three traces that are streamed in parallel. Ton load on the MIT trace. The spike is long enough to
increase the magnitude of the load, we play the Utah tracause a load movement from Node 1 to Node 2 (6), mak-
with a 20x speed-up and the MIT trace with as&peed- ing all nodes operate within capacity again. Interestingly,
up. after the movement the load on Node 1 decreases. This

Figure 12 illustrates our experimental setup. Nodelecrease does not cause further re-allocations as the allo-
0 initially processes all partitions of the Utah and MITcation remains acceptable.
traces. Nodes 1 and 2 process 2/3 and 1/3 of the MIT In our experimental setup, it takes approximately
trace, respectively. Node O runs on a desktop with a Peii5 ms to move a query fragment between two nodes. Each
tium(R) 4, 1.5GHz and 1GB of memory. Nodes 1 and 2Znovement proceeds as follows. The origin node sends to
run on a Pentium Il TabletPC with 1.33GHz and 1GB ofthe remote node a list of operators and stream subscrip-

5.4 Prototype Experiments
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NN I ‘ N able. We suggest, however, that participants first negoti-
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ate relatively high fixed-price contracts to maximize their
chances of shedding excess load while minimizing run-
lyme overhead and only later negotiate additional con-
tracts with lower prices. Additionally, if participants no-
tice that they often stand between overloaded and under-
loaded partners, they should re-negotiate some of their
tions (i.e., a list of client applications or other Medusa:ontracts to cover a small price-range and make a small
nodes currently receiving the query output streams). Thsrofit by forwarding load from their overloaded to their
remote node instantiates the operators locally, subscribgaderloaded partners.
itself to the query input streams, starts the query, and sets Although the load management mechanism introduced
up the subscriptions to the output streams. After the ren this paper is motivated by federated distributed stream
mote query starts, the origin node drains accumulated tgrocessing, it also applies to other federated systems such
ples and deletes the query. Both nodes update the catalggweb services, computational grids, overlay-based com-
asynchronously. When a query moves, client applicationsuting platforms, and peer-to-peer systems.
see a small number of duplicate tuples because the new |n this paper, we did not address high availability. Be-
query starts before the old one stops. They may also seguse each participant owns multiple machines, partici-
some reordering if the origin node was running behingant failures are rare. We envision, however, that if the
before the move. participant running the tasks fails, it is up to the original
In our currentimplementation, we do not send the statgodes to recover the failed tasks. If the original participant
of operators to the remote location. This approach work@ils, though, the partner continues processing the tasks
well for all stateless operators such féter, map and until the original participant recovers. Contracts could
union as well as for operators that process windows odiso specify availability clauses. We plan to investigate
tuples without keeping state between windows (evi);  high availability further in future work.
dowed joinsand some types adiggregates For these
latter operators, a movement disrupts the computatioA
over only one window. For more stateful operators, we

should extend the movement protocol to include freezing \ve thank Rahul Sami for many invaluable suggestions.
the state of the original query, transferring the query withpye thank Jaeyeon Jung and Dave Andersen from MIT,

that state, and re-starting the query from the state at thgq Noah Case from Syptec, for providing us the network
new location. We plan to explore the movements of statennection traces.

ful operators in future work.

Time (sec)

Figure 13: Load at three Medusa nodes running the networ
intrusion detection query over network connection traces.
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