Subscription Dynamics and Competition in Communications Markets

Shaolei Ren, Jaeok Park, and Mihaela van der Schaar

Electrical Engineering Department University of California, Los Angeles

October 3, 2010

Outline

1 Introduction

2 Model

- Oser Subscription Dynamics Equilibrium Analysis Convergence Analysis
- ④ Competition in Duopoly Markets
- Illustrative Example

6 Conclusion

Overview of Communications Markets

Interaction among technology, users and service providers

Introduction

Our Work

How does the technology influence the users' demand and the service providers' revenues?

- We consider a duopoly communications market.
- Given prices, how does QoS affect the subscription decisions (or demand) of users?
- How are prices determined through competition between the service providers?

Outline

Introduction

2 Model

 User Subscription Dynamics Equilibrium Analysis Convergence Analysis

④ Competition in Duopoly Markets

Illustrative Example

6 Conclusion

Model

Model

Network model

- network service providers: \mathcal{S}_1 and \mathcal{S}_2
- continuum model: a large number of users

Model

Service providers

• S_i : price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$

Model

Service providers

- S_i : price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$
- utility (revenue): $\mathcal{R}_i(p_i, p_{-i}) = p_i \lambda_i(p_i, p_{-i})$

Model

Service providers

- S_i : price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$
- utility (revenue): $\mathcal{R}_i(p_i, p_{-i}) = p_i \lambda_i(p_i, p_{-i})$

Users

• user k: $u_k = \alpha_k q_i - p_i$ if it subscribes to S_i

Model

Service providers

- S_i : price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$
- utility (revenue): $\mathcal{R}_i(p_i, p_{-i}) = p_i \lambda_i(p_i, p_{-i})$

Users

- user k: $u_k = \alpha_k q_i p_i$ if it subscribes to S_i
- α_k follows a distribution with PDF $f(\alpha)$

Model

Service providers

- S_i : price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$
- utility (revenue): $\mathcal{R}_i(p_i, p_{-i}) = p_i \lambda_i(p_i, p_{-i})$

Users

- user k: $u_k = \alpha_k q_i p_i$ if it subscribes to S_i
- α_k follows a distribution with PDF $f(\alpha)$

assumptions on $f(\alpha)$

- $f(\alpha) > 0$ if $\alpha \in [0, \beta]$ and $f(\alpha) = 0$ otherwise
- $f(\alpha)$ is continuous on $[0, \beta]$

Model

Service providers

- S_i : price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$
- utility (revenue): $\mathcal{R}_i(p_i, p_{-i}) = p_i \lambda_i(p_i, p_{-i})$

Users

- user k: $u_k = \alpha_k q_i p_i$ if it subscribes to S_i
- α_k follows a distribution with PDF $f(\alpha)$

QoS model

- q₁ is constant
- $q_2 = g(\lambda_2)$, where $g(\lambda_2) \in (0, q_1)$ is a differentiable and non-increasing function of $\lambda_2 \in [0, 1]$

Outline

Introduction

2 Model

Olser Subscription Dynamics Equilibrium Analysis Convergence Analysis

④ Competition in Duopoly Markets

Illustrative Example

6 Conclusion

- Discrete-time model $\{(\lambda_1^t, \lambda_2^t) \mid t = 0, 1, 2 \cdots\}$
- Users' belief model and subscription decisions
 - naive (or static) expectation: every user expects that the QoS in the current period is equal to that in the previous period (i.e., $\tilde{g}_k(\lambda_2^t) = g(\lambda_2^{t-1})$)
 - a user subscribes to whichever NSP provides a higher (non-negative) utility

- Discrete-time model $\{(\lambda_1^t, \lambda_2^t) \mid t = 0, 1, 2 \cdots\}$
- Users' belief model and subscription decisions
 - naive (or static) expectation: every user expects that the QoS in the current period is equal to that in the previous period (i.e., $\tilde{g}_k(\lambda_2^t) = g(\lambda_2^{t-1})$)
 - a user subscribes to whichever NSP provides a higher (non-negative) utility
- Dynamics of user subscriptions

- Discrete-time model $\{(\lambda_1^t, \lambda_2^t) \mid t = 0, 1, 2 \cdots\}$
- Users' belief model and subscription decisions
 - naive (or static) expectation: every user expects that the QoS in the current period is equal to that in the previous period (i.e., $\tilde{g}_k(\lambda_2^t) = g(\lambda_2^{t-1})$)
 - a user subscribes to whichever NSP provides a higher (non-negative) utility
- Dynamics of user subscriptions

if
$$rac{p_1}{q_1} > rac{p_2}{g(\lambda_2^{t-1})}$$
, then

$$\begin{split} \lambda_1^t &= h_{d,1}(\lambda_1^{t-1}, \lambda_2^{t-1}) = 1 - F\left(\frac{p_1 - p_2}{q_1 - g(\lambda_2^{t-1})}\right), \\ \lambda_2^t &= h_{d,2}(\lambda_1^{t-1}, \lambda_2^{t-1}) = F\left(\frac{p_1 - p_2}{q_1 - g(\lambda_2^{t-1})}\right) - F\left(\frac{p_2}{g(\lambda_2^{t-1})}\right) \end{split}$$

- Discrete-time model $\{(\lambda_1^t, \lambda_2^t) \mid t = 0, 1, 2 \cdots\}$
- Users' belief model and subscription decisions
 - naive (or static) expectation: every user expects that the QoS in the current period is equal to that in the previous period (i.e., $\tilde{g}_k(\lambda_2^t) = g(\lambda_2^{t-1})$)
 - a user subscribes to whichever NSP provides a higher (non-negative) utility
- Dynamics of user subscriptions

if $rac{p_1}{q_1} \leq rac{p_2}{g(\lambda_2^{t-1})}$, then

$$\lambda_1^t = h_{d,1}(\lambda_1^{t-1}, \lambda_2^{t-1}) = 1 - F\left(\frac{p_1}{q_1}\right),$$

$$\lambda_2^t = h_{d,2}(\lambda_1^{t-1}, \lambda_2^{t-1}) = 0.$$

Equilibrium Analysis

Stabilized fraction of subscribers will stabilize in the long run

Definition

 $(\lambda_1^*, \lambda_2^*)$ is an *equilibrium* point of the user subscription dynamics in the duopoly market if it satisfies $h_{d,1}(\lambda_1^*, \lambda_2^*) = \lambda_1^*$ and $h_{d,2}(\lambda_1^*, \lambda_2^*) = \lambda_2^*$.

Equilibrium Analysis

• Stabilized fraction of subscribers will stabilize in the long run

Proposition (uniqueness and existence of $(\lambda_1^*, \lambda_2^*)$)

For any non-negative price pair (p_1, p_2) , there exists a unique equilibrium point $(\lambda_1^*, \lambda_2^*)$ of the user subscription dynamics in the duopoly market. Moreover, $(\lambda_1^*, \lambda_2^*)$ satisfies

$$\begin{cases} \lambda_1^* = 1 - F\left(\frac{p_1}{q_1}\right), \ \lambda_2^* = 0, & \text{if } \frac{p_1}{q_1} \le \frac{p_2}{g(0)}, \\ \lambda_1^* = 1 - F\left(\theta_1^*\right), \ \lambda_2^* = F\left(\theta_1^*\right) - F\left(\theta_2^*\right), & \text{if } \frac{p_1}{q_1} > \frac{p_2}{g(0)}, \end{cases}$$

where $\theta_1^* = (p_1 - p_2)/(q_1 - g(\lambda_2^*))$ and $\theta_2^* = p_2/g(\lambda_2^*)$.

Equilibrium Market Shares

• $q_1 = 2.5$, $g(\lambda_2) = 1.2e^{-0.5\lambda_2}$, and α is uniformly distributed on [0, 1], i.e., $f_a(\alpha) = 1$ for $\alpha \in [0, 1]$.

• Convergence is not always guaranteed

• Convergence is not always guaranteed

Example: when the QoS of NSP S_2 degrades fast w.r.t. the fraction of subscribers

- **1** suppose that only a small fraction of users subscribe to NSP S_2 at period t and each subscriber obtains a high QoS
- **2** a large fraction of users subscribe at period t + 1, which will result in a low QoS at period t + 1
- **3** a small fraction of subscribers at period t + 2

• Convergence is not always guaranteed

Theorem

For any non-negative price pair (p_1, p_2) , the user subscription dynamics converges to the unique equilibrium point starting from any initial point $(\lambda_1^0, \lambda_2^0) \in \Lambda$ if

$$\max_{\lambda_2 \in [0,1]} \left\{ -\frac{g'(\lambda_2)}{g(\lambda_2)} \cdot \frac{q_1}{q_1 - g(\lambda_2)} \right\} < \frac{1}{K}$$

where $K = \max_{\alpha \in [0,\beta]} f(\alpha) \alpha$.

Outline

Introduction

2 Model

Oser Subscription Dynamics Equilibrium Analysis Convergence Analysis

4 Competition in Duopoly Markets

Illustrative Example

6 Conclusion

Cournot Competition

• We model competition between the NSPs using Cournot competition.

- each NSP chooses the fraction of subscribers independently
- prices are determined such that the equilibrium market shares equate the chosen quantities

Cournot Competition

- We model competition between the NSPs using Cournot competition.
 - each NSP chooses the fraction of subscribers independently
 - prices are determined such that the equilibrium market shares equate the chosen quantities
- $\mathcal{G}_{C} = \{\mathcal{S}_{i}, R_{i}(\lambda_{1}, \lambda_{2}), \lambda_{i} \in [0, 1) \mid i = 1, 2\}$

Cournot Competition

- We model competition between the NSPs using Cournot competition.
 - each NSP chooses the fraction of subscribers independently
 - prices are determined such that the equilibrium market shares equate the chosen quantities
- $\mathcal{G}_{C} = \{\mathcal{S}_{i}, \mathcal{R}_{i}(\lambda_{1}, \lambda_{2}), \lambda_{i} \in [0, 1) \mid i = 1, 2\}$
- $(\lambda_1^{**},\lambda_2^{**})$ is a (pure) NE of $\mathcal{G}_{\mathcal{C}}$ (or a Cournot equilibrium) if it satisfies

 $R_i(\lambda_i^{**},\lambda_{-i}^{**}) \geq R_i(\lambda_i,\lambda_{-i}^{**}), \ \forall \ \lambda_i \in [0,1), \forall \ i=1,2.$

Lemma

Suppose that $f(\cdot)$ is non-increasing on $[0,\beta]$. Let $\tilde{\lambda}_i(\lambda_{-i})$ be a market share that maximizes the revenue of NSP S_i provided that NSP S_{-i} chooses $\lambda_{-i} \in [0,1)$, *i.e.*, $\tilde{\lambda}_i(\lambda_{-i}) \in \arg \max_{\lambda_i \in [0,1)} R_i(\lambda_i, \lambda_{-i})$. Then $\tilde{\lambda}_i(\lambda_{-i}) \in (0,1/2]$ for all $\lambda_{-i} \in [0,1)$, for all i = 1, 2. Moreover, $\tilde{\lambda}_i(\lambda_{-i}) \neq 1/2$ if $\lambda_{-i} > 0$, for i = 1, 2.

Lemma

Suppose that $f(\cdot)$ is non-increasing on $[0,\beta]$. Let $\tilde{\lambda}_i(\lambda_{-i})$ be a market share that maximizes the revenue of NSP S_i provided that NSP S_{-i} chooses $\lambda_{-i} \in [0,1)$, *i.e.*, $\tilde{\lambda}_i(\lambda_{-i}) \in \arg \max_{\lambda_i \in [0,1)} R_i(\lambda_i, \lambda_{-i})$. Then $\tilde{\lambda}_i(\lambda_{-i}) \in (0,1/2]$ for all $\lambda_{-i} \in [0,1)$, for all i = 1, 2. Moreover, $\tilde{\lambda}_i(\lambda_{-i}) \neq 1/2$ if $\lambda_{-i} > 0$, for i = 1, 2.

- Implication
 - when the strategy space is specified as [0,1) and $f(\cdot)$ satisfies the non-increasing property, strategies $\lambda_i \in \{0\} \cup (1/2,1)$ is strictly dominated for i = 1, 2
 - if a NE $(\lambda_1^{**}, \lambda_2^{**})$ of $\tilde{\mathcal{G}}_C$ exists, then it must satisfy $(\lambda_1^{**}, \lambda_2^{**}) \in (0, 1/2)^2$

Theorem

Suppose that $f(\cdot)$ is non-increasing and continuously differentiable on $[0, \beta]$. If $f(\cdot)$ and $g(\cdot)$ satisfy some conditions (Eqn. 18 and Eqn. 19 in the paper), then the game $\tilde{\mathcal{G}}_{C}$ has at least one NE.

Corollary

Suppose that the users' valuation of QoS is uniformly distributed, i.e., $f(\alpha) = 1/\beta$ for $\alpha \in [0, \beta]$. If $g(\lambda_2) + \lambda_2 g'(\lambda_2) \ge 0$ for all $\lambda_2 \in [0, 1/2]$, then the game \mathcal{G}_C has at least one NE.

- Interpretation
 - if the elasticity of the QoS provided by NSP S_2 with respect to the fraction of its subscribers is no larger than 1 (i.e., $-[g'(\lambda_2)\lambda_2/g(\lambda_2)] \leq 1$), the Cournot competition game with the strategy space [0, 1) has at least one NE
 - the condition is analogous to the sufficient conditions for convergence in that it requires that the QoS provided by NSP S_2 cannot degrade too fast with respect to the fraction of subscribers.

Outline

Introduction

2 Model

- User Subscription Dynamics Equilibrium Analysis Convergence Analysis
- ④ Competition in Duopoly Markets

5 Illustrative Example

6 Conclusion

Numerical Results

Figure: Dynamics of market shares under the best-response dynamics. Solid: $g(\lambda_2) = 1 - \frac{\lambda_2}{8}$; dashed: $g(\lambda_2) = 1 - \frac{\lambda_2}{2}$.

Numerical Results

Figure: Iteration of revenues under the best-response dynamics. Solid: $g(\lambda_2) = 1 - \frac{\lambda_2}{8}$; dashed: $g(\lambda_2) = 1 - \frac{\lambda_2}{2}$.

Outline

Introduction

2 Model

- User Subscription Dynamics Equilibrium Analysis Convergence Analysis
- ④ Competition in Duopoly Markets
- Illustrative Example

6 Conclusion

Conclusion

Study the impacts of technologies on the user subscription dynamics

- · constructed the dynamics of user subscription based on myopic updates
- showed that the existence of a unique equilibrium point of the user subscription dynamics
- provided a sufficient condition for the convergence of the user subscription dynamics: the QoS provided by NSP S_2 should not degrade too fast as more users subscribe

Conclusion

Study the impacts of technologies on the user subscription dynamics

- constructed the dynamics of user subscription based on myopic updates
- showed that the existence of a unique equilibrium point of the user subscription dynamics
- provided a sufficient condition for the convergence of the user subscription dynamics: the QoS provided by NSP S_2 should not degrade too fast as more users subscribe

Study the impacts of technologies on competition between the NSPs

- modeled the NSPs as strategic players in a non-cooperative Cournot game
- provided a sufficient condition that ensures the existence of at least one NE of the game

Selected References

- J. Musacchio and D. Kim, "Network platform competition in a two-sided market: implications to the net neutrality issue," TPRC: Conference on Communication, Information, and Internet Policy, Sep. 2009.
- D. Bertsimas and G. Perakis, "Dynamic pricing: a learning approach," Models for Congestion Charging/Network Pricing, 2005.
- G. Bitran and R. Galdentey, "An overview of pricing models for revenue management," Manufacturing & Service Operational Management, vol. 5, no. 3, pp. 203-229, Summer 2003.
- F. Kelly, "Charging and rate control for elastic traffic," European Transactions on Telecommunications, vol. 8, pp. 33-37, 1997.

Related Publications

- S. Ren, J. Park, and M. van der Schaar, "Dynamics of Service Provider Selection in Communication Markets," accepted and to appear in *Proc. IEEE Globecom* 2010.
- S. Ren, J. Park, and M. van der Schaar, "Subscription Dynamics and Competition in Communication Markets," in Proc. ACM NetEcon 2010.
- S. Ren, J. Park, and M. van der Schaar, "User Subscription Dynamics and Revenue Maximization in Communication Markets," UCLA Tech. Report, Aug. 2010 (available at http://arxiv.org/abs/1008.5367).

Proof.

Show that

$$\begin{aligned} \|\mathbf{h}_{d}(\lambda_{1,a},\lambda_{2,a}) - \mathbf{h}_{d}(\lambda_{1,b},\lambda_{2,b})\|_{\infty} \\ &= K \left[-\frac{g'(\lambda_{2,c})}{g(\lambda_{2,c})} \cdot \frac{q_{1}}{q_{1} - g(\lambda_{2,c})} \right] |\lambda_{2,a} - \lambda_{2,b}| \\ &\leq \kappa_{d} \|\lambda_{a} - \lambda_{b}\|_{\infty}. \end{aligned}$$

where $\kappa_d = K \cdot \max_{\lambda_2 \in [0,1]} \left\{ \left[-g'(\lambda_2)/g(\lambda_2) \right] \cdot \left[q_1/(q_1 - g(\lambda_2)) \right] \right\}$

Proof.

1 Show that

$$\begin{split} \|\mathbf{h}_{d}(\lambda_{1,a},\lambda_{2,a}) - \mathbf{h}_{d}(\lambda_{1,b},\lambda_{2,b})\|_{\infty} \\ &= K \left[-\frac{g'(\lambda_{2,c})}{g(\lambda_{2,c})} \cdot \frac{q_{1}}{q_{1} - g(\lambda_{2,c})} \right] |\lambda_{2,a} - \lambda_{2,b}| \\ &\leq \kappa_{d} \|\lambda_{a} - \lambda_{b}\|_{\infty}. \end{split}$$

where $\kappa_d = K \cdot \max_{\lambda_2 \in [0,1]} \{ [-g'(\lambda_2)/g(\lambda_2)] \cdot [q_1/(q_1 - g(\lambda_2))] \}$ 2 If $\max_{\lambda_2 \in [0,1]} \left\{ -\frac{g'(\lambda_2)}{g(\lambda_2)} \cdot \frac{q_1}{q_1 - g(\lambda_2)} \right\} < \frac{1}{K}$, then the mapping is contraction!