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What is a Credit Network?

• Decentralized payment infrastructure introduced by
[DeFigueiredo, Barr, 2005] and [Ghosh et. al., 2007]

• Do not need banks, common currency

• Models trust in networked interactions



What is a Credit Network?

• Graph G (V ,E ) represents a network (social network, p2p
network, etc.)

• Nodes: (non-rational) agents/players; print their own
currency

• Edges: credit limits cuv > 0 extended by nodes to each other1

• Payments made by passing IOUs along a chain of trust

• Credit gets replenished when payments are made in the other
direction

1assume all currency exchange ratios to be unity



What is a Credit Network?

• Graph G (V ,E ) represents a network (social network, p2p
network, etc.)

• Nodes: (non-rational) agents/players; print their own
currency

• Edges: credit limits cuv > 0 extended by nodes to each other1

• Payments made by passing IOUs along a chain of trust

• Credit gets replenished when payments are made in the other
direction

1assume all currency exchange ratios to be unity



What is a Credit Network?

• Graph G (V ,E ) represents a network (social network, p2p
network, etc.)

• Nodes: (non-rational) agents/players; print their own
currency

• Edges: credit limits cuv > 0 extended by nodes to each other1

• Payments made by passing IOUs along a chain of trust

• Credit gets replenished when payments are made in the other
direction

1assume all currency exchange ratios to be unity



What is a Credit Network?

• Graph G (V ,E ) represents a network (social network, p2p
network, etc.)

• Nodes: (non-rational) agents/players; print their own
currency

• Edges: credit limits cuv > 0 extended by nodes to each other1

• Payments made by passing IOUs along a chain of trust

• Credit gets replenished when payments are made in the other
direction

1assume all currency exchange ratios to be unity



What is a Credit Network?

• Graph G (V ,E ) represents a network (social network, p2p
network, etc.)

• Nodes: (non-rational) agents/players; print their own
currency

• Edges: credit limits cuv > 0 extended by nodes to each other1

• Payments made by passing IOUs along a chain of trust

• Credit gets replenished when payments are made in the other
direction

1assume all currency exchange ratios to be unity



Applications

• Barter/Exchange economies like P2P networks.

• Combating social spam (Facebook, LinkedIn)

• Distributing proxy addresses to circumvent censorship in
repressive regimes



Liquidity Model

• Edges have integer capacity c > 0

• Transaction rate matrix Λ = {λuv : u, v ∈ V , λuu = 0}
• Repeated transactions; at each time step choose (s, t) with

prob. λst

• Try to route a unit payment from s to t via the shortest
feasible path; update edge capacities along the path

• Transaction fails if no path exists



Liquidity Model

Markov Chain

• Repeated transactions induce a Markov chain M with
(c + 1)m states

• State S of M captures the states of all edges in G

• Transition probability P(S,S ′) = λst , where s → t in S leads
to S ′

• P(S,S):= failure prob. at state S

Questions

• Steady-state distribution?

• Steady-state transaction success probability?

• Comparison with a centralized payment infrastructure
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Main Results

• Success probability independent of path along which
transactions are routed

• For symmetric transaction rates, the success probability for
• Complete Graphs: Goes to one with increase in network size

or credit capacity.
• Gc(n, p) networks (p > ln n/n): Goes to one with increase in

one of n, p or c keeping the other two constant.
• PA networks: Goes to one with increase in avg. node degree

or credit capacity (indepedent of network size).

• Success probability in Complete graphs and Erdös-Rényi
graphs only constant-factor worse than equiv. centralized
payment system.
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Analysis
Cycle-reachability

Definition
Let S and S ′ be two states of the network. We say that S ′ is
cycle-reachable from S if the network can be transformed from
state S to state S ′ by routing a sequence of payments along
feasible cycles (i.e. from a node to itself along a feasible path).

Transactions along a feasible cycle are “free”.



Analysis
Path-independence

Theorem
Let (s1, t1), (s2, t2), . . . , (sT , tT ) be the set of transactions of value
v1, v2, . . . , vT respectively that succeed when the payment is
routed along the shortest feasible path from si to ti . Then the
same set of transactions succeed when the payment is routed along
any feasible path from si to ti .



Analysis
Path-independence

Proof Sketch.
Proof by induction on T .
Sk := state of the network when transactions (s1, t1), . . . , (sk , tk)
are routed along the shortest feasible path
S ′k := state of the network when not all of the transactions
(s1, t1), . . . , (sk , tk) are routed along the shortest feasible path
From S ′k undo transactions (sk , tk), (sk−1, tk−1), . . . , (s1, t1) and
redo (s1, t1), . . . , (sktk) along their shortest feasible paths. This
results in state S.
But undoing and redoing is equal to k transactions along cycles.
Therefore, Sk and S ′k are cycle-reachable.
So if (sk+1, tk+1) is feasible in state Sk , it is also feasible in state
S ′k .
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Analysis
Cycle-reachability

Cycle-reachability induces a partition C on the set of states in M.

Fact
For any equivalence class C ∈ C, if a transaction (s, t) is feasible in
some state S ∈ C , it is feasible for all states S ′ ∈ C (since S is
cycle-reachable from S ′).

Fact
If a transaction (s, t) is feasible in two states Si ,Sj ∈ C and results
in transitions to states S ′i and S ′j respectively, then S ′i and S ′j are
cycle-reachable (in other words, belong to the same equivalence
class).

Corollary
If a transaction (s, t) in some state in the equivalence class Ci

results in a transition to a state in equivalence class Cj , then the
reverse transaction (t, s) from any state in Cj will result in a
transition to a state in Ci .
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Analysis
Steady-state Distribution

Theorem
Consider a Markov chain MS0 starting in state S0 induced by a
symmetric transaction rate matrix Λ. Let CS0 ⊆ C be the set of
equivalence classes accessible from S0 under the regime defined by
Λ. Then MS0 has a uniform steady-state distribution over CS0 .



Analysis
Steady-state Distribution

Proof.
Tij := {(s, t) | s → t in state S ∈ Ci leads to state S ′ ∈ Cj}
Define transition probability between Ci ,Cj ∈ CS0 as

P(Ci ,Cj) =
∑

(s,t)∈Tij

λst

Since (s, t) ∈ Tij ⇔ (t, s) ∈ Tji and Λ is symmetric, therefore P is
a symmetric stochastic matrix.
=⇒ uniform distribution over CS0 is stationary w.r.t. P.

Corollary
If M is an ergodic Markov chain induced by a symmetric
transaction rate matrix Λ, it has a uniform steady state distribution
over C.
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Convert Credit Network → Centralized Model
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∑
v
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=⇒ Total credit in the system is conserved during conversion
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Analysis
Centralized Payment Infrastructure

Theorem
If M is ergodic and Λ is symmetric, then M has a uniform
steady-state distribution.

Corollary
If M is ergodic and Λ is symmetric, then the steady-state success
probability is c/(c + 1).
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Liquidity Comparison

Credit Network Centralized System

Star-network Θ(1/c) Θ(1/c)
Complete Graph Θ(1/nc) Θ(1/nc)

Gc(n, p)2 Θ(1/npc) Θ(1/npc)

Table: Steady-state Failure Probability in Credit Network v/s
Centralized System

2bankruptcy probability



Simulations

Setup

• Repeated transactions on Gc(n, p) and PA graphs.

• Stopping criterion: success-rate in consecutive time windows
≤ ε

• Studied effect of varying network size, network density, and
credit capacity

• For each run, recorded following metrics:
• Number of (weakly) connected components
• Avg. path length of successful transactions
• Number of “sink”/“source” nodes

• Averaged metrics over 100 runs



Simulations
Effect of Variation in Credit Capacity

n = 100; p = 0.10; d = 5
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Simulations
Effect of Variation in Network Size

c = 1; p = 0.10; d = 5
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Simulations
Effect of Variation in Network Size
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Open Problems

• Effect of node failures on liquidity and how it varies with
network topology

• Effect of non-zero payment routing fees on liquidity

• Endow nodes with rationality: how do nodes initialize and
update trust values?

Questions?
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