

Modifications to the storage stack to
better support tgt, sg, st and bsg.

● Scatterlist building and userspace <-> kernel
data transfer.

● Userspace interface and SG v4 requirements.

Userspace<->Kernel Data Transfer

● sg, st, tgt, bsg and scsi_ioctl.c have implemented their own methods to
copy or map data between userspace and the kernel. Reasons:

– Block layer helpers provides basic functionality for sg v3, but sg
and st have lots of features:

● Reserved buffer support
● mmap helper functions
● Large requests using contiguous segments

– tgt cannot control what size commands that will be sent to it.

Merging Data Transfer Code
● Move sg and st features to the block layer.

– Do we need a new abstraction like sg_limits?

● Supporting real limits of hardware.

– Modern Emulex and Qlogic hardware do not have scatter gather or
IO size limits as they are defined by scsi_host_template and q limits
today.

● Increase SG_ALL and SCSI_MAX_PHYS_SEGMENTS.
– Still have hard limit, but might be able to handle most case.

● Is there a way to make scatterlist allocation not reliant on
scsi_sg_pools for SG_IO and tgt requests?

Merging Data Transfer Code (cont)

● Pass through permission table

– sg and SG_IO use the different permission tables

– cmdfilter enables userspace to change permissions

– Where should the permission tables be attached? gendisk, request
queue, or something?

– How to handle ATA passthrough?

sgv4: Basic Design Issues
● Who needs this?

– Command (with task tag and attribute) and TMF

– Transport level request & responses

– Non request & response protocol?
● requests from kernel & responses from user (tgt)

● How should sgv4 be implemented?

– bsg, sg.c, or both

– How to support bsg for non devices (like FC crasses)?
● bsg-devicess attached to gendisk
● Make bsg devices to everything via resest queue

● How should sgv4 be compatible with sgv3?

– iovec -> 32/64 bit compat problem

– mmap -> only one outstanding semantics

sgv4: Basic Design Issues (cont.)
● The interface between user and kernel

– write/read system call
● Writes buffer containing requests / reads buffer containing

responses
● A bit hacky & not effective

– consumer/producer ring buffer
● Use just two pointers
● Not work well with multiple processes/threads

– Ring buffer with new system calls
● kevent is trying this
● Common code for ring buffer (share with kevent, tgt, etc)

sgv4: Task Tag

● sgv4 needs task tag for task abort

– TMF request to abort a task from user space
● User can sends a command with tag or sg returns a tag to user?

– The block layer tagging might work in the latter case

– The block layer tagging happens a bit later after user sends a
command.

– Only few LLDs use the block layer tagging
● Task tag collision

● Some LLDs simply can't support task tag

sgv4: Task Management Functions

● Where should hooks for tmf be added?
– transport classes?

