
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Configuration Distribution System for Heterogeneous Networks

Gledson Elias de Silveira, Federal University of Rio Grande do Norte
Fabio Q.B. da Silva, Federal University of Pernambuco

A Configuration Distribution System
for Heterogeneous Networks

Glêdson Elias da Silveira – Federal University of Rio Grande do Norte
Fabio Q. B. da Silva – Federal University of Pernambuco

ABSTRACT

This article presents a configuration distribution system that assists system administrators with
the tasks of host and service installation, configuration and crash recovery on large and
heterogeneous networks. The objective of this article is twofold. First, to introduce the system’s
modular architecture. Second, to describe the platform independent protocol designed to support
fast and reliable configuration propagation.

Introduction

Service configuration is one of the most common
tasks for the system administrator. It is also one of the
most critical, since it impacts network performance,
resilience, predictability, and security. This task
becomes increasingly difficult as the size and hetero-
geneity of the networks increase. As pointed out in
[1], some of the reasons for this increase in complex-
ity are:

• configuration of each service must be uniform
over the network, requiring update on every
host anytime a configuration change is required;

• in general, there are great differences in the
actual format and location of the configuration
files of a service for each platform. Therefore,
to configure a service in a heterogeneous net-
work amounts to configure the service in each
platform;

• each operating system provides its own set of
non-standard configuration parameters for the
common network services. In most cases, it is
necessary to learn and use these non-standard
features to achieve optimal performance of the
service in each platform;

• usually, large networks are managed by a team
of system administrators. Configuration rules
and parameters must be effectively communi-
cated among team members to avoid inconsis-
tencies that can arise due to personal prefer-
ences during the configuration process.

Several works have proposed methods and tools
to assist service configuration and management
[1,2,3,4,5,6,7]. A common underlying characteristic
of those works is the existence of a (central or dis-
tributed) repository of configurations. The possibilities
of configuration consistency checking and easy recov-
ery of host configuration after a serious system’s crash
are just a few of the advantages of having a configura-
tion repository. In [1], the repository holds configura-
tion for various services and allows consistency analy-
sis to be performed among different services.

Once service configurations are stored in a
repository or database, they must be propagated to tar-
get hosts on the network. This article addresses the
problem of distributing service configuration from a
(possibly distributed) database to network hosts. It
presents a configuration distribution system and a
propagation protocol for configuration distribution in
large heterogeneous networks. Hereafter, the system
and protocol are referred to as CDS.

The following section provides an overview of
configuration management and establishes the scope
of the work presented in this article. Later, related
work is compared to the approach of this article, and
the CDS modular architecture is presented. Then, the
propagation protocol is described in depth and some
details of the CDS implementation are provided.
Finally, some conclusions are presented.

An Overview of Configuration Management

The Network File System (NFS) [8] is a widely
used service that provides file sharing among hosts in
the network. NFS is used here to illustrate the problem
of configuration management. The following steps are
usually performed to manually configure the NFS
service:1

1. Login on the server and edit the NFS configura-
tion file to export the desired filesystems to
client hosts.

2. Initialize the NFS daemons on the server.
3. Import desired filesystems on the client, either

manually or by editing the configuration files.
4. Under demand, unmount filesystems on the

client side.

This manual process only works for small net-
works or in situations in which changes in the configu-
ration of servers and clients are seldom necessary.
However, even in those situations system administra-
tors prefer to use some automated support to avoid
inconsistencies and insecurities that may arise from

1The configuration of most services uses similar sequence
of steps.

1998 LISA XII – December 6-11, 1998 – Boston, MA 109

A Configuration Distribution System . . . Silveira and da Silva

human error. Furthermore, this support can be critical
during crash recovery, when a machine must be
promptly reconfigured to its state prior to the crash.
Ideally, to configure the NFS on large and critical sys-
tems, the administrator should perform a number of
tasks in a coherent and consistent form:

• Service planning: to define the file systems
exported by the servers and imported by the
clients, as well as, their access and security
characteristics. This task should abstract away
from platform specific features.

• Configuration consistency checking: the plan-
ning of the service must be carefully checked
for consistency. For instance, it should not be
possible to plan a system in which clients
import a filesystem that is not exported by any
server.

• Generation of configuration files: from a con-
sistent service plan, the NFS export and import
files should be generated. At this stage, plat-
form specific features must be used to create
files on the right format for each supported
operating system and hardware platform.

• Configuration propagation: the export and
import files must then be distributed to the cor-
responding hosts.

• Configuration activation: the necessary
actions must be performed on each host to acti-
vate the new configuration. It may be necessary
to reboot the host.

The CDS supports configuration propagation and
activation, and provides a platform to be used by any
system implementing the task of configuration plan-
ning, consistency checking and generation of configu-
ration files. A system that supports these tasks is fully
described in [9]. This system uses the CDS as its con-
figuration propagation and activation mechanism.

A Comparison with Related Approaches

Recently, several systems were developed to
assist the task of host/service configuration and man-
agement [2,3,4,5,6,7,10]. Generally, these solutions
were designed to resolve local requirements. However,
their technologies identify and evaluate various char-
acteristics of the configuration process. There are
many ways to classify and evaluate configuration dis-
tribution systems. This section addresses and com-
pares the main techniques used to distribute and acti-
vate service configuration from a database to network
hosts.

The configuration propagation can be performed
using several distribution mechanisms. Other works
[2,3,4,5,6,7,10] have used the following approaches:
remote commands, TCP/IP socket, NIS, NFS or a spe-
cific protocol developed using the Remote Procedure
Call (RPC) mechanism.

In UNIX systems, the rcp, rsh, and rdist com-
mands can be used to allow remote copy and

processing. The main drawback of r-commands is the
need for privileged access on the remote hosts, which
is a major security drawback. Config [4] uses rdist to
distribute the configuration files from the repository to
the network hosts. This repository is created in a
server host as hierarchical directories, which can be
replicated in other hosts. OMNICONF [6] also uses
r-commands (in particular rsh) to manipulate files and
directories that keep the configuration of the hosts in a
central database.

Mechanisms based in the client/server model can
be developed using the socket interface presented in
TCP/IP environments. Its disadvantage is the require-
ment to manipulate the data formats of each platform.
The main advantage is to require only the TCP/IP pro-
tocols running for using the solution. In addition, they
do not demand privileged access on the remote hosts.
However, it is very difficult and complex to work
directly using the socket interface.

Other approaches have used a combination of
NIS and NFS to distribute configuration information.
The lack of an incremental update mechanism causes
serious performance and network-traffic problems
when using NIS in large networks. Moreover, NIS has
notorious security problems. Furthermore, to use
these distribution mechanisms requires all services on
which they depend, to be up and running before any
configuration distribution can be performed. Another
drawback with NFS is to limit the database to be
implemented using only flat files.

The lcfg [2] uses NIS to distribute configuration
files that are stored in the central database. GeNUAd-
min [3] propagates the configuration information
using the rsh command, and retrieves data and pro-
grams using the NFS. Its database is centrally imple-
mented with directories and files. According to the
paper, it seems that Gutinteg [5] uses the NFS to prop-
agate the configuration files and software packages,
which are stored in directories and files in a central
server.

Another solution is to design and implement a
distribution protocol using RPC. One clear advantage
of this approach is that the configuration distribution
system only needs the RPC system to be running.
Therefore, it can be used to configure every service
that is started up after the RPC system in the boot pro-
cess. Besides, a simple and clear design can lead to a
safe and robust protocol because it uses a standard to
represent external data and does not need privileged
access on the remote hosts.

AUTOLOAD [10] and Aurora [7] use RPC
based protocols. The former implements the mecha-
nisms to propagate configuration and software pack-
age information from a central database that is imple-
mented using flat files.

For the reasons cited above, the design and
implementation of an RPC based protocol is the most
interesting approach, despite its inherent complexity.

110 1998 LISA XII – December 6-11, 1998 – Boston, MA

Silveira and da Silva A Configuration Distribution System . . .

This is also the approach used to implement the sys-
tem presented in this article.

Almost all the systems presented above make use
of a central database structured as a hierarchical set of
files and directories. The system that is proposed in
this article does not impose any database organization
or architecture. The database can be implemented
using a relation/object-oriented DBMS or flat files.
Moreover, it supports several architectures: central,
distributed or replicated.

When a configuration is modified in any host,
the systems cited above use either a pull or a push
mechanism, never both. CDS supports both pull and
push mechanisms to propagate configurations.

Figure 1: System’s Architecture.

The CDS Architecture

CDS allows host and service configuration infor-
mation to be consistently defined, stored in a database
and propagated to the corresponding hosts on a hetero-
geneous network. The propagation of the configura-
tion information is controlled by a uniform, simple
and efficient protocol, designed especially for the sys-
tem.

Using automated tools to define the service con-
figuration, the network administrator initializes the
configuration process of a given service. After this
initialization, the protocol reads the configuration
information from the database and transfers it to the
hosts, where specified operations are performed. The
database provides the following features to the system:

• Consistency and uniformity of the configura-
tions: achieved through the verification of con-
figuration information stored in the database,
according to pre-defined rules also coded in the
system.

• Automatic host and service reconfiguration:
enforced by the configuration stored in the
database that stays available even if the host is
down (provided the database server is running).

• Large-scale network scalability: accom-
plished by the automatic propagation of the
configuration information.

• Easy inclusion of new services and plat-
forms: supported by the capability of defining
meta-configurations in the database.

Figure 1 shows a schematic view of the CDS architec-
ture and its components. Each component of the

architecture is discussed below:
• Administration ToolBox (ToolBox): a set of

integrated tools used by the network adminis-
trator to define and configure hosts and services
in the database.

• Configuration Database (Database): a data
repository that holds information about the con-
figurations and their distribution. For each con-
figuration, the Database holds information
about the target hosts and the actions that must
be executed in each host after propagation. The
administrator manages the Database using the
automated tools presented by the ToolBox.

• Configuration Protocol (Protocol): compo-
nent that performs the distribution over the net-
work of the configuration information stored on
the Database to the hosts. It has two sub-com-
ponents:

• Configuration Protocol Server
(Server): software component responsi-
ble for reading the configuration infor-
mation from the Database and propagat-
ing it to the corresponding host through
the Protocol. The architecture supports
several Servers in a given network to
obtain high degree of performance and
resilience.

• Configuration Protocol Client
(Client): software component that inter-
acts with the Server to receive the con-
figuration information stored in the
Database and performs the operations to
configure the host on which it is running.
Every host on the network can be man-
aged as long as it executes this compo-
nent. In fact, hosts can run both the
Server and Client components if neces-
sary.

• Database Access Interface (Interface): com-
ponent used by the Server to interact with the
database management system (DBMS) to
access the configuration information held in the
Database.

• Trap: mechanism that allows the ToolBox to
indicate the presence of modifications in the
configuration of a given host. This element
defines an immediate method of distributing
configuration.

1998 LISA XII – December 6-11, 1998 – Boston, MA 111

A Configuration Distribution System . . . Silveira and da Silva

The system’s architecture provides the indepen-
dence between its components, allowing the design
and implementation of each component to be per-
formed in an autonomous way. This independence is
supported in the following way:

• Protocol/Database: the operations performed
by the Interface implement the independence
between the Protocol and Database. To use the
Protocol with a given DBMS, only the Interface
must be modified, preserving the Client and
Server codes.

• Protocol/ToolBox: the model and structure of
the configuration information stored in the
Database implement the independence between
the Protocol and the ToolBox.

• ToolBox/Database: another interface can be
used to implement the independence between
the ToolBox and Database. This interface has
not been implemented in this version of the sys-
tem.

The FLASH Project [12], where this work is
developed, has activities centered in each system’s
component. The following section presents the Proto-
col’s architecture, components and operations.

Figure 2: The Configuration Structure.

The Configuration Protocol

As discussed before, the Protocol was designed
using the Remote Procedure Call (RPC) paradigm.
RPC allows access to remote services through a proce-
dure-oriented interface, which is based on the client-
server model. The RPC server is a program that
implements a set of procedures that are called by the
RPC clients. A program number and procedure num-
bers internally represents the program and its proce-
dures.

To support differences in data representations
among several platforms and network technologies,
RPC uses the External Data Representation (XDR)
standard, which provides common data representation
over the network. RPC/XDR ensures portability across

different hardware platforms, operating systems, net-
work architectures and transport protocols.

Activation Modes
The configuration propagation must be robust

even in conditions of high network and CPU load. For
this reason, the Protocol ought to reduce the traffic
over the network and the processing load in the hosts.
In addition, the Protocol must offer a mechanism for
immediate configuration of services. The Protocol
reduces the traffic load using messages that carry a
small amount of information. Furthermore, the Proto-
col’s operations generate negligible traffic when the
host does not require modification in its configuration.

The network’s resources are used more inten-
sively only when an action requires the transference of
a file stored in the Database. However, in this case, the
Protocol divides the file in blocks that are transferred
over independent messages. This message partitioning
avoids peaks of network traffic.

To minimize CPU load on the Servers and to
allow the immediate configuration of services, the
Protocol has two activation modes:

• Pull Mode: the Client periodically activates the
Protocol at time intervals defined by the admin-
istrator. In such case, the activation control is
distributed among the Clients, and thus, reduces
the processing load on the Servers.

• Push Mode: the Client activates the Protocol
upon the receipt of a trap signal sent from the
ToolBox. This signal forces the immediate
propagation of a new configuration towards the
corresponding Clients.

Structure of the Configuration Information
The Protocol employs the concepts of tasks and

actions to define the configuration structure, as shown
in Figure 2. A host configuration is an ordered set of
tasks, where each task is responsible for configuring a
given service. A task defines an ordered set of actions,
where each action performs a phase in the configura-
tion process of a given service, and thus, must be

112 1998 LISA XII – December 6-11, 1998 – Boston, MA

Silveira and da Silva A Configuration Distribution System . . .

transferred to and sequentially executed on the Client
side. Upon the execution of all tasks, the services of
the Client host are properly configured.

For instance, to configure a given NFS server to
export a new file system, the actions would be first to
copy the modified NFS export file onto the server and
then either to execute a command to export the new
file system or reboot it and activate the changes.

The result of executing the actions is the installa-
tion, execution or removal of programs, scripts or con-
figuration files on the Client. There are five types of
actions implemented by the Protocol:

• Execute: executes a binary program on the
Client.

• Script: interprets a shell script on the Client.
• Copy: transfers a file to the Client.
• Remove: removes a file from the Client.
• Reboot: reboots the Client.

The Reboot action can appear in any position of
the action list of a given task. When a Reboot action
appears in the middle of an action list, the Client is
rebooted and then resumes the execution from the first
action that follows the Reboot in the list. The Execute,
Script, and Copy actions perform their operations over
a file identified in the action. The Protocol defines that
this file can be stored in the following places:

Figure 3: Service Architecture.

• Client’s File System: the file is directly manip-
ulated by the action.

• Configuration Database: the file must be
transferred from the Database to the Client, and
then, manipulated by the action.

Architecture of the Service
The Protocol is based on the RPC’s client-server

programming model, where the RPC client requests
the configuration information and the RPC server pro-
cesses the request and transmits the result to the client.
Hence, as illustrated in Figure 3, the RPC client and
server are implemented on the Client and Server,
respectively.

The trap mechanism is also based on the RPC
model. In such case, the RPC client sends the trap sig-
nal to the RPC server, which processes the signal ini-
tializing a new Protocol iteration. On that account, as
shown in Figure 3, the RPC client and server are
implemented on the ToolBox and Client, respectively.

The Protocol uses the concept of stateless Server,
which does not need to keep information about the
Protocol’s state on the Clients. This feature allows the
recovery from failure on the Server to be performed in
a simple way.

The Protocol’s Operations
The Protocol is defined by a set of procedures

called by the Clients and processed by the Servers.
These procedures are synchronous, that is, once the
procedure finishes its execution, the Client can assume
that the operation has been completed and any data
bound to the request are stable in the Database.

The Protocol is defined by the following proce-
dures:

• Request Server: identifies the Servers cur-
rently available on the network.

• Send Program: stores in the Database the RPC
program number used by the Client to process
the trap signals.

• Request Tasks: retrieves the task list to be con-
figured on the Client.

• Request Actions: retrieves the action list of a
given task.

• Read File: retrieves from the Database a file
associated with an action.

• Confirm Action: stores in the Database the
successful conclusion of an action.

• Confirm Task: stores in the Database the suc-
cessful conclusion of a task.

• Confirm Configuration: stores in the
Database the successful configuration of the
Client.

• Send Error: stores in the Database some infor-
mation about an error identified by the Client
while an action was being performed.

The Protocol represents each host, task and
action using a single identifier stored in the Database.
These identifiers are used as arguments for and
answers from the procedures. Their representation for-
mats are dependent of the DBMS used to implement
the Database. Therefore, the Clients and Servers must
manipulate the identifiers as a set of non-interpreted
bytes that indicate the host, task or action manipulated
by the procedures. The ToolBox generates the identi-
fiers when a host, task or action is created in the
Database. These identifiers implement a simple pro-
tection mechanism since the Server can check, for

1998 LISA XII – December 6-11, 1998 – Boston, MA 113

A Configuration Distribution System . . . Silveira and da Silva

instance, if a given action belongs to the specified task
or a given task belongs to the specified Client.

The Configuration Process
In both pull and push mode, the configuration

process is implemented through the following
sequence of operations on the Client side:

• Select Server: Client calls the Request Server
procedure to identify Servers currently avail-
able on the network (Figure 4). This procedure
must be called in broadcast mode, allowing
every available Server to respond. Once the
Servers have been identified, the Client selects
one using an availability criterion. If no Server
responds, the Request Server procedure will be
called after waiting for a random period of
time.

Figure 4: Select Server.

Figure 5: Send Program Number.

Figure 6: Request Configuration.

• Send Trap Program Number: Client calls the
Send Program procedure to register in the
Database the RPC program number used to
process traps (Figure 5). This procedure is
called only during the first activation of the
Protocol.

• Request Configuration: Client calls the

Request Tasks procedure to request the task list
[T1,. . . , Tn] to be configured. The Server
retrieves the Client’s task list from the Database
and transfers it to the Client. If the Server does
not find any task to be configured, it will send
an empty list. In such case, the Client finishes
the current interaction (Figure 6).2

• Process Tasks: for each task Ti, the Client
sequentially requests, performs and confirms
each action that composes its action list
[Aij, . . . , Aim]. This is explained in detail below:

• Request Action List: Client calls the
Request Actions procedure to request the
action list [Ai1, . . . , Aim] of the task Ti.
The Server retrieves the action list of the
task Ti from the Database and transfers it
to the Client. If the Server does not find
any action to be performed, it will send
an empty list. In such case, the Client
must confirm the task calling the Con-
firm Task procedure.

2All other procedures have similar interaction model..

114 1998 LISA XII – December 6-11, 1998 – Boston, MA

Silveira and da Silva A Configuration Distribution System . . .

• Process Actions: Client sequentially
performs and confirms each action Aij of
task Ti:

• Perform Action: Client performs
the action Aij executing the spe-
cific functions of the action type.
In Execute, Script, and Copy
actions, if the file to be manipu-
lated is stored in the Database, the
Client will use the Read File pro-
cedure to read data blocks of the
file.
If the Client detects an error dur-
ing this phase, it will call the Send
Error procedure to register in the
Database an information about
the error. Immediately after the
error is registered, the Client sus-
pends the current iteration and
disables the pull mode of the Pro-
tocol’s activation. By doing that, a
new iteration will be started only
upon the reception of a trap. This
behavior avoids the Client to be
kept trying to perform an action
that has an error. The administra-
tor must correct the action and
then send a trap signal to the
Client.

Figure 7: Send Trap.

• Confirm Action: upon the suc-
cessful conclusion of the action
Aij, the Client calls the Confirm
Action procedure to confirm the
action in the Database.

• Confirm Task: if all actions of the task
Ti were confirmed, then the Client calls
the Confirm Task procedure to confirm
the task in the Database.

• Confirm Configuration: if all tasks of the
Client were confirmed, then the Client calls the

Confirm Configuration procedure to define the
conclusion of the configuration in the Database.

In case of failure of a given Server, the Client
can continue the current Protocol iteration with
another Server, exactly from the point where the fail-
ure has happened. To do that, the Client must identify
other Servers using the Request Server procedure, and
then, continue the interaction with the selected Server.
So, when the Client receives an RPC error, it must call
the Request Server procedure to identify another
Server and continue with the Protocol iteration.

The confirmation procedures allow a given
Client to reboot and continue the configuration pro-
cess without redoing actions and tasks previously con-
firmed. In such case, when the Client calls the Request
Tasks and Request Actions procedures, the Server
informs only the tasks and actions that were not con-
figured yet.

The Trap Mechanism
The trap mechanism allows the administrator to

indicate modifications in the configuration of a given
host. It is composed by a single RPC procedure. This
mechanism forces the Protocol activation without
waiting for the pull mode. Taking into account the
Client’s state when a trap is received, its processing
can be performed in two ways:

• Immediate Mode: the Protocol is immediately
activated on the Client when the trap is
received during the waiting time of the pull
mode.

• Delayed Mode: the Protocol activation is
delayed in the Client when the trap is received
during an iteration of the Protocol. In this case,
the trap must wait the conclusion of the current
iteration, and then, it activates a new iteration.

The trap mechanism has a single RPC procedure,
called Send Trap, which is responsible for sending the
signal from the ToolBox to a given Client (Figure 7).

1998 LISA XII – December 6-11, 1998 – Boston, MA 115

A Configuration Distribution System . . . Silveira and da Silva

Initially, the ToolBox reads the Client program
number from the Database. This number was previ-
ously stored when the Client activated the first itera-
tion of the Protocol and called the Send Program pro-
cedure (Figure 5). Then, the ToolBox calls the Send
Trap procedure to notify the presence of modifications
in the Client’s configuration. According with the
Client’s state, the Protocol is immediately activated or
delayed, as discussed above.

Upon the receipt of the trap signal, the Client
instantly sends a status code to the ToolBox. This code
indicates the current state of the Client: executing the
Protocol or waiting the timer of the pull mode. The
ToolBox is unblocked when it receives this status
code.

The Database Access Interface
The Interface is composed of a set of eleven pro-

cedures, directly related to the operations supported by
the Protocol. These procedures perform the data repre-
sentation format conversion between the Protocol and
the Database:

• Open Connection: opens the connection with
the Database. Before accessing the Database, a
Server must open a connection with the DBMS.

• Close Connection: closes the connection with
the Database. After identifying any error, the
Server must close the connection with the
DBMS.

• Request Host_Id: retrieves the Client’s identi-
fier from the Database. The Client retrieves its
identifier through the Request Server procedure
(Figure 4).

The other eight procedures of the Interface have
names and functionality that are similar to the Proto-
col’s procedures: Send Program, Request Tasks,
Request Actions, Read File, Confirm Action, Confirm
Task, Confirm Configuration, and Send Error.

For example, when the Client calls the Request
Tasks procedure of the Protocol, the Server activates
the same procedure of the Interface to retrieve the
information from the Database (Figure 8). In this
case, the Interface converts the data format between
the DBMS and Server representation, and then, the
Server sends the information to the Client.

Figure 8: Interface’s Procedures.

The Interface allows the Protocol to be indepen-
dent of the DBMS. To use the Protocol with another
DBMS, only the Interface has to be changed. The

Interface allows the Server to remain connected to the
Database during its execution, without opening a new
connection for each request. This behavior enhances
the performance of the system.

The Implementation

An implementation was developed to validate
and evaluate the system’s architecture and the Proto-
col. This implementation was developed in C lan-
guage for Sun Solaris 2.5.1. The availability of the
current implementation to others platforms depends on
the portability of the C language and RPC library.

The design and implementation of the ToolBox,
the data model of the Database and the interaction
mechanism between ToolBox and Database are not
included in this paper. However, to validate the Proto-
col implementation, these elements (ToolBox and
Database) were developed.

The Database was implemented using the O2
object-oriented database management system [13].
The Database has a set of object classes to represent
the configuration structure, pointed out previously.
The Toolbox was implemented as a set of programs in
O2C, a language that belongs to the O2 System. It has
been used and tested to perform some tasks to config-
ure the NFS service.

The Protocol was developed using Remote Pro-
cedure Call (RPC) [11] and its Client and Server pro-
grams were written in C. The Interface was coded in C
to access the O2 database and was integrated to the
Server.

The implementation has full functionality
according to the specification of the Protocol. Future
works must include security and access control mech-
anisms among Clients and Servers. Initially, we have
to evaluate the encryption mechanisms provided by
RPC platform, for instance, the Data Encryption Stan-
dard (DES).

The Client can be protected by defining a new
kind of service that identifies the trusted Servers for a
given Client. So, when the Client retrieves the list of
available Servers through the Request Server proce-
dure, it can check if the Servers are reliable. The
Server processes any request only when the host, task
and action identifiers belong to the host sending the
request.

116 1998 LISA XII – December 6-11, 1998 – Boston, MA

Silveira and da Silva A Configuration Distribution System . . .

The broadcast mechanism used by the Protocol
facilitates the initialization of the Clients and Servers,
but does not allow a Client to use a Server in a differ-
ent physical network. Multicast mechanism can be
used to allow Servers and Clients to be in different
networks.

The Server is executed as a single thread. This
feature imposes some processing delays in medium-
size networks. In large networks, these delays can
become noticeable. To eliminate this problem, a new
version of the Server can be developed using multi-
threads.

Deployment and Use of the System

To use the system, the administrator must install
and activate its components appropriately. Figure 9
shows a typical installation and activation of the sys-
tem.

Figure 9: Typical Environment.

First, the DBMS used to keep the Database must
be activated in the network. In our case, the O2 Sys-
tem must be activated. The Clients do not access the
Database directly. They retrieve their configuration
information through the Servers. So, the Client hosts
do not need execute any software related to the
DBMS. On the Server side, when the DBMS supports
access over the network, only one host executing the
DBMS is needed. The current implementation needs
only a single host executing the O2 System.

The next step is to choose the hosts that will act
as Servers. There must be at least one Server in each
network segment. To obtain higher levels of resilience,
it is suggested to install more than one Server in each
segment. To minimize traffic on the network and
increase the performance of the system, it is suggested
to install a Server and the DBMS software on the
same host.

Since the Servers are installed, the administrator
must install and activate the Client in each host that
needs its configuration to be managed. Even the

Servers have to execute the Client code if they need to
be managed. This is also valid for hosts executing the
DBMS software.

At this point, the system is running and the ser-
vices can be configured using the ToolBox. As dis-
cussed before, different implementations of the Tool-
Box, with different functionality, can be constructed
using the CDS as the configuration propagation and
activation platform. In [9], a full-scale configuration
management system is described, that uses CDS as the
underlying distribution mechanism.

Concluding Remarks

The Configuration Distribution System (CDS)
presented in this article has several important features,
including:

• Simplicity: the action types of the Protocol are
simple to implement and understand, avoiding
the complexity of specific commands for each
service.

• Flexibility: the Protocol is sufficiently flexible
since it supports arbitrary commands in a
sophisticated way.

• Adaptability: the set of action types allows any
service to be configured on a host.

• Genericity: the distribution system is generic
and can be used with any other tool that support
configuration planning, consistency checking
and configuration file generation, as explained
above. It can also be used without such system,
in which case the configuration files would be
manually generated.

• Stability: the Protocol is stable since its defini-
tion (and therefore its implementation) remains
fixed even if new services or platforms need to
be added to the system.

• Performance: the experiments have shown that
the Protocol has an excellent performance,
obtained by the simplicity of its operations and
incremented by the dynamic distribution of the

1998 LISA XII – December 6-11, 1998 – Boston, MA 117

A Configuration Distribution System . . . Silveira and da Silva

processing load on the Servers, that is implicit
in the selection process of the Server.

• Resilience: the stateless behavior of the Proto-
col and the possibility of defining several
Servers in a given network confer a high level
of resilience to the system.

• Robustness: the set of facilities pointed out
above makes the system robust even in high
load situations.

This set of features gives to the system exceptional
advantages in large-scale heterogeneous networks:

• Service and Platform Independence: the Pro-
tocol’s operations are suitable to support the
configuration of any service across different
platforms. The particularities of the services
and platforms were abstracted away for the
Protocol and inserted in the files and com-
mands manipulated by the actions.

• Database Independence: the Interface pro-
vides independence from the particular choice
of implementation of the Database. To support
a new kind of DBMS, only the Interface must
be developed. Standard access mechanisms, for
instance, ODBC or JDBC, can implement a
generic interface, which operates on any
DBMS supporting the mechanism.

• Integration of Administration Tools: the Pro-
tocol allows the integration of administration
tools through the Database. In such view, dif-
ferent tools access and store configuration
information in a common database, and, the
Protocol propagates that information to the
hosts, independently of how the configuration
has been generated.

The facilities of the Interface can be used to
design a new architecture based in multiple Databases
with different structures and formats. In such architec-
ture, the Database must store the location of the host’s
configuration. Prior to process a request, the Server
identifies the location of the Client’s configuration,
and then processes the request.

When compared with existent solutions, in par-
ticular those presented in [2,3,4,5,6,7,10], the system
presents a number of advantages: a) new services and
platforms can be added naturally by constructing their
specifications in the Database. b) consistency is
greatly improved by the DBMS, instead of flat files, as
in all works cited above. c) the configuration informa-
tion can be used by several others system administra-
tion tools merely by accessing the Database. d) the
system is, in fact, a generic framework that can be
extended to support application and software package
management, although to show how this can be done
is out of the scope of this paper.

The implementation is stable and has been used
to assist the administration of the network of the
Department of Informatics, UFPE.

Acknowledgements

The FLASH project is co-funded by the Brazil-
ian Government agency CNPq, through the ProTeM-
CC Program (Phase III) and by the Center for
Advanced Studies and Systems at Recife (CESAR).
Glêdson E. da Silveira receives a scholarship from
CAPES.

Availability

The system is currently packaged for distribution
and can be retrieved from http://www.di.ufpe.br/˜flash.

Author Information

Glêdson E. da Silveira is a lecturer of the Depart-
ment of Informatics at the Federal University of Rio
Grande do Norte (DIMAp/UFRN), Brazil. He holds a
M.Sc. in Computer Science from the Catholic Univer-
sity (PUC) from Rio de Janeiro, Brazil. Currently, he
is a Ph.D. student in the Department of Informatics at
the Federal University of Pernambuco (DI/UFPE),
Brazil. Reach him electronically at ges@di.ufpe.br.

Fabio Q. B. da Silva is an Associated Professor
of the Department of Informatics at the Federal Uni-
versity of Pernambuco, Brazil, where he coordinates
the FLASH Project. He holds a Ph.D. in Computer
Science from the University of Edinburg, Scotland. He
is also the Finance Director of the Center for
Advanced Studies and Systems at Recife (CESAR), a
not-for-profit organization dedicated to promote
Industry/University interaction (http://www.cesar.org.
br). Reach him electronically at fabio@di.ufpe.br.

References

[1] J. S. da Cunha, G. E. Silveira, F. Q. B. da Silva
and J. N. de Souza. ‘‘An Object-Oriented Service
Configuration Management System.’’ Interna-
tional Conference on Telecommunication
(ICT-98), Chalkidiki, Greece, June, 1998.

[2] P. Anderson. ‘‘Towards a High-Level Machine
Configuration System.’’ 8th USENIX System
Administration Conference (LISA VIII), San
Diego, September, 1995.

[3] M. Harlander. ‘‘Central System Administration
in a Heterogeneous UNIX Environment: GeNU-
Admin.’’ 8th USENIX System Administration
Conference (LISA VIII), San Diego, September,
1994.

[4] J. P. Rouillard and R. B. Martin. ‘‘Config: A
Mechanism for Installing and Tracking System
Configurations.’’ 8th USENIX System Adminis-
tration Conference (LISA VIII), San Diego,
September, 1994.

[5] M. Fisk. ‘‘Automating the Administration of
Heterogeneous LANs.’’ 10th USENIX System
Administration Conference (LISA X), Chicago,
September, 1996.

118 1998 LISA XII – December 6-11, 1998 – Boston, MA

Silveira and da Silva A Configuration Distribution System . . .

[6] I. Hideyo. ‘‘OMNICONF: Making OS Upgrades
and Disk Crash Recovery Easier.’’ 8th USENIX
System Administration Conference (LISA VIII),
San Diego, September, 1994.

[7] Xev Gittler, W. Moore, J. Rambhaskar. ‘‘Morgan
Stanley’s Aurora System: Design a Next Genera-
tion Global Production Unix Environment.’’ 9th
USENIX Systems Administration Conference
(LISA IX), 1995.

[8] Hal Stern, Managing NIS and NFS, O’Reilley &
Associates Inc., 1991.

[9] Fabio Q. B. da Silva, Juliana S. da Cunha,
Danielle M. Franklin, Luciana S. Varejao and
Rosalie B. Belian. ‘‘An NFS Configuration and
Management System and its Underlying Object-
Oriented Model.’’ 12th USENIX System Adminis-
tration Conference (LISA XII), Boston, Decem-
ber, 1998.

[10] D. Pukatzki e J. Schumann. ‘‘AUTOLOAD: The
Network Management System.’’ 6th USENIX
System Administration Conference (LISA VI),
Long Beach, October, 1992.

[11] Sun Microsystems Inc. RPC: Remote Procedure
Call – Protocol Specification V2. RFC 1057,
June, 1988.

[12] FLASH Project. <http://www.di.ufpe.br/˜flash>.
[13] O2 Technology Inc. The O2 System User Refer-

ence. November, 1995.

1998 LISA XII – December 6-11, 1998 – Boston, MA 119

120 1998 LISA XII – December 6-11, 1998 – Boston, MA

