
Staging Package 
Deployment via 

Repository Management
Chris St. Pierre

Matt Hermanson



Background
(Mostly) homogeneous environment
Organizational structure
Bcfg2



Our Approach
Control what packages are available in the 

repository
Define classes of repositories
Upstream/Stable/Unstable
Infra/HPSS/clusters

Clients are always up-to-date with repository
Centralized management



Other solutions
Yum excludes
Spacewalk
Bcfg2 version specification
Yum versionlock



A solution: Pulp
Part of Red Hat’s CloudForms
Repos can be “cloned” efficiently
Sync mediated by filters
Manual manipulation



Workflow
Tiered repositories
Upstream – daily sync from upstream
Unstable – filtered sync from upstream
Stable – filtered sync from unstable

Custom repositories branched from upstream
Package promotion separated by time and/or 

manual intervention



Workflow
How do we implement filters
Whitelist and blacklist packages

Manual package promotion and removal



Workflow
Patches are promoted to stable after at least a 

week in unstable
Security patches receive immediate attention
Choosing Impactful packages
Kernel and kernel-space
Impacts customers
Lustre and Infiniband related



Results
Improved automation results in less overhead
Increased compartmentalization



Updates



Vulnerabilities



What's next?
Sponge

 Web frontend for pulp
 Django
 More intuitive repository management
 http://github.com/stpierre/sponge

Apply an age attribute to individual packages
Other packaging formats


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

