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Abstract—Detection and remediation of security incidents (e.g.,
attacks, compromised machines, policy violations) is an increas-
ingly important task of system administrators. While numerous
tools and techniques are available (e.g., Snort, nmap, netflow),
novel attacks and low-grade events may still be hard to detect
in a timely manner. In this paper, we present a novel approach
for detecting stealthy, low-grade security incidents by utilizing
information across a community of organizations (e.g., banking
industry, energy generation and distribution industry, govern-
mental organizations in a specific country, etc). The approach
uses netflow, a commonly available non-intrusive data source,
analyzes communication to/from the community, and alerts the
community members when suspicious activity is detected. A
community-based detection has the ability to detect incidents that
would fall below local detection thresholds while maintaining the
number of alerts at a manageable level for each day.

I. INTRODUCTION

Detection and remediation of security incidents (e.g., at-
tacks, compromised machines, policy violations) is an increas-
ingly important task of system administrators. While numerous
tools and techniques are available, novel attacks and low-
grade security events may still be hard to detect in a timely
manner. Specifically, system administrators typically have to
base their actions on observing the local traffic to and from
their own networks as well as global security incident alerts
from organizations such as SEI CERT1, Arbor Atlas2, or
software and hardware vendors. However, stealthy targeted
attacks may slip below detection thresholds both in the local
data alone or on the global scale.

Furthermore, the nature of internet-based attacks is changing
from random hacking to financially or politically motivated
attacks. For example, botnets are increasingly leased out to
highest bidders and DDoS attacks are often used as a means for
blackmail. Moreover, attacks targeting industries with financial
information (e-commerce, banking, gaming, insurance) are in-
creasing and the threat of attacks against SCADA (supervisory
control and data acquisition) systems in electrical power gen-
eration, transmission, and distribution (among other industrial
process control systems) is even considered a potential target
for terrorism [10].

1http://www.cert.org/
2http://atlas.arbor.net/

Targeted attacks might not leave a large traffic footprint in
the targeted organization since one machine with access to
the desired information or control system may be sufficient
for the attacker to achieve their goals. It is often difficult to
detect such low-footprint attacks based on local monitoring
alone because it is often necessary to set local alerting thresh-
olds high enough not to generate too many false positives
and overwhelm the system administrators. But as a result, a
stealthy attack or compromise may lay undetected. Therefore,
it is possible for an attacker to target many such organizations
without being detected. For example, the attacker may want to
maximize profit by attacking multiple financial organizations
concurrently before the vulnerability used is detected and
corrected. Similarly, terrorists may require the control of many
companies to achieve their goal of large scale damage.

In this paper, we present a novel approach for detecting
stealthy, low-grade security incidents by utilizing information
across a community of organizations (e.g., banking industry,
energy generation and distribution industry). We will show
by using an example that we can find possible attacks (or
attempts) that only transfer very little data (e.g., a few bytes)
and thus would remain undetected by conventional approaches.

The remainder of this paper is structured as follows. In
Section II, we present the technical approach based on netflow
data and construction of communities of interest. Section III
describes the implementation of the system, including the
algorithms used for the analysis. We evaluate the performance
of our system in Section IVi and present selected case studies
of suspicious activity we have identified in Section V .
Section VI outlines related work in the area and Section VII
concludes the paper.

II. APPROACH

A. Service vision

Our technique is based on the concept of community, in our
case defined as a collection of (at least two) organizations. A
community can be specified based on any criteria relevant for
attack detection. For example, it could consists of businesses in
a particular industry (e.g., banking, health care, insurance, etc),
organizations within a country (e.g., businesses and govern-
ment agencies in one country), or organizations with particular



type of valuable information (e.g., industrial espionage or
customer credit card information). We detect stealthy security
attacks by observing the communication to/from the member
organizations of a community. The intuition being that within
each organization only very few machines may be attacked
or compromised and as a result an attack can be very hard
to detect within each organization. However, by observing the
communication behavior across multiple organizations in the
community, such stealthy behavior may become visible.

Given that we analyze communication in the Internet, each
organization is defined by the list or range of IP addresses
belonging to the organization. We consider Internet communi-
cation connections (reported by netflow, for example) within
the communities and between communities and external IP
addresses who do not belong to any community. For our
analysis, all the IP addresses within an organization can be
collapsed into one identifier representing the organization.
Any communication between two IP addresses where neither
belongs to one of our communities and neither has com-
municated with a community in the past can be ignored.
Furthermore, communication with IP addresses belonging to
commonly used Internet services (e.g., search, news, social
media) can be white listed and removed from consideration.

We construct a communication graph for each IP address
that communicates with at least one organization in a com-
munity as illustrated in Figure 1. This figure shows the
communication graph for an external IP address (i.e., some IP
address outside any of the communities of interest). This node
has communicated with two communities, one consisting of
organizations 7 and 8, and the other consisting of organizations
1 through 6. A directed edge from some node A to some other
node B in the graph indicates that A has sent messages to B.
Although not depicted in the figure, each edge may contain
additional information, such as the combinations of source and
destination ports used.

The weight of the edge is used to quantify the importance
of the communication. The importance can be based simply
on the number of messages or bytes sent, or the number
of contacted individual members in the targeted organization.
However, some communication may be more important than
others from security point of view. For example, some port
numbers are more often involved with malicious activity (e.g.,
based on CERT reports) and communication using such ports
can be weighted more heavily.

The weight is also used to limit the size of each graph. The
size of the graph is determined by the number of nodes it
contains. If the size exceeds a given threshold, we remove the
weakest links until the threshold is reached. This is necessary
because storing all communications would require too much
space even for a single day. For example, in our data set con-
sisting of heavily sampled netflow, a given weekday contains
about 860 million entries. These 860 million recorded netflows
originate in 28 million distinct IP addresses. Therefore, if we
would not filter unimportant IP addresses, we would need to
store 28 million graphs. Moreover, each of these 28 million IP
addresses often connects with 1 to 2 million other IP addresses.

Fig. 1: Communication graph for an IP address

Fig. 2: Communication graph for a community member

Thus, if we did not limit the size of each graph, we would
have some graphs that are too large to fit into memory. The
situation would be even more challenging if we analyzed the
data for one month or a week instead of the current one day
at a time.

As already stated, we also consider communication within a
community and across communities. With that, we are able to
detect already compromised computers inside an organization
when they try to attack further organizations as shown in
Figure 2. To reduce the number of false positives (many
organizations have frequent contact with other organizations
of the same or other communities), a computer inside an
organization that belongs to a community (or is contained in
the whitelist) has to show more suspicious behavior than an
external IP address before an alarm is generated. For example,
we do not consider communication via port 443 with or across
communities.

Given such communication graphs, a potential security
incident is suspected when an IP address communicates with
a specified number of community members. Typical examples
of security threats that can be detected using this approach
include botnet controllers managing a number of bots in the



community, compromised machines downloading stolen infor-
mation on a dedicated server, an attacker targeting machines
in multiple organizations, as well as many security policy
violations (e.g., illegal software download sites, etc). The
number of alarms can be controlled using thresholds and the
system can memorize IP addresses that have already been
reported recently. When there are false positives, the system
administrators can extend the whitelist.

An IP address may contact a large number of community
members either because the community is actually targetted
or if the attacker is targetting all or most of the Internet (e.g.,
broad port scan). The system administrators may want to react
differently to these alternative scenarios. Therefore, for each IP
address that has contacted a community member, our system
keeps track of how many times it has communicated with IP
addresses outside our communities of interest.

B. Input data

Our community-based alerting service uses netflow as its
input data source (although other types of information could
be utilized as well). Netflow is a standard data format collected
and exported by most networking equipment, in particular,
network routers. It provides summary information about each
network communication passing through the network equip-
ment. Specifically, a network flow is defined as an unidirec-
tional sequence of packets that share source and destination IP
addresses, source and destination port numbers, and protocol
(e.g., TCP or UDP). Each netflow record carries information
about a network flow including the timestamp of the first
packet received, duration, total number of packets and bytes,
input and output interfaces, IP address of the next hop,
source and destination IP masks, and cumulative TCP flags
in the case of TCP flows. Note, however, that the netflow
record does not contain any information about the contents
of the communication between the source and destination IP
addresses.

The community-based alerting service requires access to
netflow to/from each of the organizations in the community.
Such data can be collected by each of the organizations in the
community at their edge routers and then collected at a central
location for processing. Alternatively, it can be provided by
an ISP that serves a number of the organizations in the
community. Note that the netflow data may be sampled (to
reduce the volume of the data) and the actual IP addresses
of the computers within each organization can be obfuscated
prior to the analysis (e.g., all IP addresses belonging to an
organization can be collapsed into one address) if desired.

Given the collected netflows and the IP address ranges
belonging to each member organization in the community,
our alerting service analyses the data (either real time or in
daily or hourly batches) and generates alerts to the system
administrators. The analysis algorithm is described in Sec-
tion III. A whitelist can be used to eliminate any legitimate
communication destinations from consideration (e.g., search
engines, CDNs, banking, on-line retailers, etc).

III. IMPLEMENTATION

A. Architecture

The architecture of our system is presented in Figure 3. We
use three different types of processing components that do not
share any state and are executed as individual processes: the
parse, the filter, and the graph components. Each component
can be replicated and executed by any number of processes
(e.g., L, M , N1, and N2 in the figure). Every process of every
component has a unique id (from 0 to the number of processes
for the component-1) that is used for message routing. Since
the parse component is connected to the filter component, each
parse process is connected to each filter process. The same is
true for the filter and graph components. Note that the system
supports multiple different kinds of graph components in one
system configuration as illustrated by Graph 1 and Graph 2 in
the figure. Different graph components can be used to realize
different alerting conditions as we will describe below.

The communication between components is based on event
messages that are sent via TCP-channels. A message consists
of a key and a body that are defined by the pair of interacting
components (e.g., parse and filter, or filter and graph) and may
contain any information desired by these components. For the
key, a hash function h must be available that maps the contents
of a key into an unsigned integer, which is used to route the
event message to the right receiving process. For example, if a
parse process is connected to 2 filter processes (i.e., M = 2),
the receiving filter process is chosen by calculating the modulo
of the hash of the key and 2. Thus, in this particular example,
all keys with even hashes would be routed to the first and all
keys with odd hashes to the second filter process.

The internal state maintained by each component is parti-
tioned by the same key, making it possible to distribute their
processing load onto multiple cores efficiently.

Fig. 3: Data processing architecture

Each network flow is processed as follows. First, the netflow
data is read from a local storage device (it could also be re-
ceived in real time from a router). The parse component trans-
forms the IP addresses from their original string representation
(i.e., “AAA.BBB.CCC.DDD”) into an integer representing the



IP address3 and constructs a message with 5 fields: sourceIP,
source-port, destinationIP, destination-port, and transferred-
bytes. The parse component sends this message to the filter
component. It uses the sourceIP field of the message as the
key. The filter component either forwards (using the same key)
or discards the received message. This decision is based on
various factors, like used ports and source and destination IPs.
If the message is forwarded, it is forwarded to one process of
every graph component (e.g., Graph 1 and Graph 2). Finally,
the graph components construct a community graph for each
source IP. The filtering and community graph construction are
described in detail below.

B. Filtering

The filter is an essential part of our analysis and its role is
to remove irrelevant flow records and to reduce the amount
of data that needs to be processed by the graph component.
For example, commonly used search, news, social media, and
entertainment web sites are used so frequently that they would
appear with almost every community. Furthermore, any traffic
that does not involve at least one community member is not
relevant for the analysis and is filtered out. Other filtering
actions can be chosen based on data volume and perceived
threat vectors. For example, HTTP-traffic may be filtered to
reduce data volume, but at the risk of missing attacks that use
HTTP (port 80).

1: Example Filter algorithm
input : (src-IP, src-port, dst-IP, dst-port, transferred-bytes)
output: The same as the input, if not filtered

//collapse IP addresses
src-IP, dst-IP = collapse(src-IP), collapse(dst-IP);
//filter IPs of commonly used web sites
if src-IP ∈ whitelist then

return ∅;
end
//filter web-accesses to community-members
if dst-IP ∈ community then

if src-IP /∈ community then
if src-port = 80 then

return ∅;
end

end
end
//only forward if one of the IPs is in the community
if dst-IP ∈ community OR src-IP ∈ community then

return (src-IP, src-port, dst-IP, dst-port, transferred bytes);
end

Algorithm 1 shows an example filter component that filters
connections based on their ports, and source and destination
IP addresses. First, the algorithm collapses IP addresses for an
organization into one address. If, for example, an organization
has the IP range from 141.1.0.0 to 141.85.255.255 and
either the src-IP or dst-IP are within this range, it is set
to 141.1.0.0. We then discard every connection from IP

3We will continue calling this identifier an IP address to enforce the one
to one connection between these numerical IDs and the IP addresses.

addresses that are contained in the whitelist. Second, accesses
to a community member’s web-server are filtered. Finally,
we only forward the event message if at least one of the
connection end-points is contained in the community.

C. Community Graph

We build a fixed size (K) Community of Interest (COI)
graph for each IP address that is received by the graph
component. Essentially, we use a windowed top-K algorithm,
as described in [3]. However, there are two significant dif-
ferences in our implementation compared to [3]. First, our
window is not based on a fixed time interval, but rather on
the observed connections. This has the benefit that the COIs
of IP addresses with many connections will be updated more
often than of those with very few. Second, we introduce
several COI views ({V1, . . . ,Vn}) that use different methods
to determine the weight of a connection. We can, for example,
favor connections that transfer many bytes over those that
only transfer a few by using the transferred bytes as the
edge weight. Obviously, in this case we would not be able
to detect attacks that transfer only a small set of data if these
connections are dominated by large file transfers. Therefore,
we define another view that uses the port numbers involved in
security incidents to weight the edges (i.e., the more reported
security incidents for a port, the larger the weight). Our system
supports any number of such views running in parallel, as
depicted in Figure 3 (with Graph 1 implementing a different
view than Graph 2).

Algorithm 2 shows how the COI is constructed in more
detail. The algorithm uses two main data structures: a window
that is used to collect recent data and a COI graph that stores
the COI graph as seen from the beginning of the analysis run.
We first add the received connection to the window. If more
than 1000 connections have already been added, the window
is merged with the COI graph. To this end, for each IP in
the window, the weight of each edge is calculated, multiplied
with a damping factor 1 − θ and added to the weight in the
COI, which is first multiplied with θ. Since θ = 0.85, the
influence of the new connections in the window is dampened.
We also merge the port-mapping per destination-IP. It maps the
source-port to the destination-port and a counter, counting how
often this port-combination was used. Thereafter, the weights
of all contacts in the COI that have not been observed during
the current window are decayed by multiplying them with θ.
To keep the COI at a maximum size of K, we remove the
weakest links until the size of the COI is equal to K. Finally,
the window and the counter are reset.

D. Generating Alarms

We showed above how the COI graph is constructed. Here,
we provide two complementary algorithms to detect suspicious
IP addresses.

The first, shown in Algorithm 3, is used to pre-filter all IP
addresses that belong to a community. However, if a computer
inside the community is compromised, we still want it to be
checked further. To this end, we iterate over all connections in



2: Example Community graph construction
input : (src-IP, src-port, dst-IP, dst-port, transferred-bytes), s =

State[src-IP], F
output: None

//Save connection in window
s.window[dst-IP].transferred bytes += transferred-bytes;
s.window[dst-IP].port map[src-port][dst-port]++;
s.counter++;
//Merge window into topK after 1000 events
if s.counter > 1000 then

foreach IP ∈ s.window do
//θ has a value of 0.85 in our analysis.
s.topk[IP].weight = 1 - θ * V(s.window[IP])

+ θ * s.topk[IP].weight;
//Merge the window’s port map with the top-k’s
foreach {source-port, dest-port} ∈
s.window[IP].port map do

s.topk[IP].port map[source-port][dest-port] +=
s.window[IP].port map[source-port][dest-port];

end
end
//Decay weight of old connections
foreach IP /∈ s.window do

s.topk[IP].weight = θ * s.topk[IP].weight;
end
//Remove the weakest links
while size(s.topk) > K do

remove weakest link from(s.topk);
end
s.window = ∅;
s.counter = 0;

end

the IP’s top-K and check each pair of ports. The pairs of ports,
considered suspicious, are specified using a configuration file.

We call Algorithm 4 for all IP addresses returned by
Algorithm 3. It assures that (1) only those IP addresses that
connected to at least min_cnt members of the community
will be reported and (2) that the connections to the community
make at least min_part percent of all the connections of the
current IP address.

The detection algorithm can be run either for all IP ad-
dresses at once or individually for each IP address. Therefore,
it is possible to provide different detection latencies. For
example, to detect a suspicious IP address the earliest possible,
the algorithm must be executed as soon as a message is
received for its source-IP’s top-K. If this is not necessary, the
algorithm can be run for all top-Ks in one graph process at
any desired interval.

The generated alarms can be emailed to the system admin-
istrators in the affected organizations or posted on a security
dashboard. The reports contain the complete top-K for each
suspicious IP address, including the port mappings.

IV. EVALUATION

A. Input data and general setup

We currently run the experiment on a per-day basis. This
means we fetch the netflow entries of the last 24 hours and

3: Suspicious IP detection (1)
input : IP, community, s = State[IP]
output: IP, if suspicious; ∅, if not

//blacklisted IPs are always suspicious
if IP ∈ blacklist then

return IP;
end
//check if IP is in the community
if IP ∈ community then

//iterate over all of IP’s connections
foreach conn ∈ s.topk do

//iterate over all ports of one connection
foreach p ∈ s.topk[conn].port map do

//check if src port and dst port are suspicious
if is suspicious(src port, dst port) then

return IP;
end

end
end
//no strange ports -¿ skip
return ∅;

end
//not in community -¿ check
return IP;

4: Suspicious IP detection (2)
input : IP, community, min cnt, min part, s = State[IP]
output: Alarm

//check if top-K connections of this IP are in the community
often enough

cnt = count community(community, s.topk);
part = cnt / size(s.topk);

if IP /∈ blacklist then
if cnt ≤ min cnt OR part ≤ min part then

return false;
end

end
return true;

run our analysis. We do not carry any state from one daily
run to the next. In principle, we could leave the system
running continuously or checkpoint the graph component and
re-initiate its state on the next day. However, we found it useful
to start with a clean system every day since this makes it easier
to reason about the impact of changes in the community and
white lists.

Moreover, we introduced the concept of different views in
June 2011. Since then, we use three different views: one that
weighs the bytes transferred, another that weighs the number
of connections made, and the last one that weighs the security
risk for the ports used (as described in Section III). For any
measurements that were conducted before this date, we only
used the view based on the bytes transferred.

Our input data-set is heavily sampled netflow from an ISP.
In the first step, we remove all unimportant fields, leaving only
the source-IP, destination-IP, source-port, destination-port, and
the number of transferred bytes. This sums up to roughly
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Fig. 4: Processed netflow-entries per second over the complete analysis execution

50GB of processed netflow per day.
The community lists define a community with the IP address

ranges of all its members and each community is stored in a
separate file (the white list is simply a “special” community).
For example, if we wanted to add “TU-Dresden” to a “univer-
sities community” we would add the following line into the
corresponding file:

141.1.0.0 - 141.85.255.255 TU.DRESDEN.DE

If a company or institution has more than one IP address
range assigned, we can simply add each range as a separate
entry. Moreover, an entry in one community is allowed to be
a member in other communities as well.

B. Performance

We implemented the parse, filter, and graph components on
top of StreamMine [12], a highly scalable stream processing
system. While StreamMine supports scaling to hundreds of
physical machines, a scalability and performance evaluation
involving multiple machines is out of the scope of this paper.
Therefore, we only used a single machine with 24GB of
RAM and 16 processing cores for the analysis. For the top-K
algorithm we used a value of 100 for K.

Figure 4 shows the read-throughput of the parse component
of one such run in which we processed one day of netflow
data (using only one view). The measurement was taken every
second throughout the whole run. The parse component can
read around 400,000 netflow entries per second with this single
machine. Each entry is converted into a message and sent to
the filter component. The filter component discards a large
fraction of these messages and only send around one in a

hundred of the incoming messages to the graph component.
Naturally, the read throughput varies over time, since the
amount of processing that needs to be done in the system
depends heavily on the content of the input data. However, it
is important to note that the mean throughput stays constant,
i.e., the system performance does not decline with time as
more graphs are added.

In the experiments reported in this paper, the filter com-
ponent uses 13 of the available cores, since it has to filter
the 400,000 netflow entries arriving every second. The graph
component uses only one core since the amount of data it has
to process is only a fraction of the data the filter receives. Note
that even if one would assign more processing resources (i.e.,
cores) to the graph component, it would still be impossible
to process unfiltered traffic (i.e., system without the filter
component)— the system would simply run out of memory.
The parse component uses the remaining two cores for reading
the input files and parsing their contents.

To avoid queuing, StreamMine uses the TCP back-pressure
mechanism on the network-connections. Hence, if a message
cannot be processed by the filter component because all its
threads are already busy processing other messages, the parse
component will eventually stop sending new messages (the
TCP send blocks if messages are not read fast enough on the
other side). This will eventually lead to the parse component
not reading any new netflow entries, because all its threads
are blocked trying to send messages.

Figure 5 shows the size of the daily alarm report (=
number of suspicious IPs communicating with the community)
and community sizes (approximately the number of member
organizations) over time for several months. The size of the
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Fig. 5: Community and alarm sizes over time

alarm report is subject to a weekly pattern with larger sizes
for weekdays (for alarm reports produced from Tuesday to
Saturday) and smaller for weekend traffic. The community
lists and the white list were updated manually on a daily basis.
Given a fixed community, the community list would typically
stay relatively fixed but in our case we occasionally identified
additional community members. For the alarm reports, we only
plot the report sizes for communities E and C. We did not
generate reports for the other communities because (1) we
found E and C to be the most interesting ones and (2) because
of time-constraints as we need to scan the reports manually for
attacks and new members of the community or white lists. It is
natural that the reports, especially initially, contain a number of
false positives. Some of them will be new community members
that have to be added to the community list, while others are
companies and organizations that can be added to the white
list. The white list is used to filter out trusted traffic, i.e., from
well known search engines, entertainment web sites, social
media, popular CDNs, banking, government services, etc.

In an actual usage of the system, the system administrators
analyzing the alarm reports would also add other known
“good” IP addresses to the white list to prevent them from
being reported daily. Lacking such domain knowledge, our
experiments used the white list conservatively. The bottom plot
approximates the size of the daily alarm report under real us-

age scenario where suspected IP addresses are processed daily
and either added to the white list or the suspect communication
is stopped (e.g., clean up infected machine, add firewall rules).
This alarm size is approximated simply by only listing the IP
addresses that have not been reported before.

V. CASE STUDIES

While we do not typically know the ground truth, we have
observed a number of suspicious cases in our analysis. In this
section, we outline some of these examples.

A. Case 1

Table I shows an anonymized part of the report, generated
for the netflow on May 13th, 2011. The report was obtained
using the view based on the number of bytes transferred. It
depicts the anonymized source-IP address (X.Y.Z.W) and the
communities it was connected to, which ports were used (to
help identify the application or service used), and a measure
of the frequency of communication—the “Occurence” field
indicates how often this connection was observed in the COI.
In the actual report, the IP address and the exact community
member are visible, of course.

In the next step, we usually use the whois service, to
determine to whom the IP address belongs. This way, we may
also find new members of the community by looking up the
company names, displayed in the whois information. For this



IP Address Src Port Community Dst port Occurrences

X.Y.Z.W 6000 E 1433 2
X.Y.Z.W 6000 E 1433 2
X.Y.Z.W 6000 E 1433 1
X.Y.Z.W 6000 E,C 1433 1
X.Y.Z.W 6000 B 1433 1
X.Y.Z.W 6000 E,C 1433 1

TABLE I: Anonymized report-snippet (port-mapping) from
May 13th, 2011

particular example, the only information we could get, was
that it belongs to an Asian ISP. Since the IP address likely
does not belong to a company that the community members
would typically collaborate with, we have a closer look at
the ports being used. We assume that the lower port number
(1433) belongs to the server and the higher port-number to the
client (6000). Figures 6 and 7 show the output of the “SANS
Internet Storm Center” web-site4 related to port 1433. The
web-site shows the services that usually run on these ports—
in this example, “Microsoft-SQL-Server”. The SANS reports
indicate many potential vulnerabilities, which may be used,
for example, to steal data.

Unfortunately, this is usually everything we are able to
derive from the netflow alone. While we consider this to be
a potential attack, final certainty could only be provided by
the system administrators of the individual companies, given
they have deeper knowledge about legitimate communication
connections of each organization and access to lower-level logs
on the targeted machines.

B. Case 2

Table II shows a summary of the COI of another
anonymized IP address for August 8th, 2011. It shows the
IP address, each community and two numbers. The report
was generated using the view based on the security risk of
used ports. The first number is simply a count of how many
members of the current community had an entry in the COI
of this IP address. The second number shows how often the
IP address connected to other IP addresses that are in none of
the communities. We stated in Section II that this number is
a good indicator of the severity and specificity of an attack.
Here, it is relatively low, which leads to the assumption that
the connections were not driven by a brute-force or port-scan-
like technique.

To verify this intuition, Table III shows the used ports
for each community member individually. In contrast to the
previous example, the source port is not constant anymore but
seems to be chosen randomly. The destination port, however,
is constant 445. Port 445 is usually used by “Win2k+ Server
Message Block”. Note that every connection only appeared
once in the netflow. This either means there was in fact just
one connection being used or the attempt to connect failed.

In the next step, we use again the whois service, to deter-
mine that the IP address belongs to an European ISP. However,

4http://isc.sans.org

IP Address Community # in
Top-K

# outside
Community

X.Y.Z.W A 0 42
X.Y.Z.W B 0 42
X.Y.Z.W C 1 42
X.Y.Z.W D 0 42
X.Y.Z.W E 1 42
X.Y.Z.W F 6 42

TABLE II: Anonymized report-overview-snippet from August
8th, 2011. The last two columns contain the following num-
bers: (1) Number of members of the current community which
had an entry in the COI of the current IP address and (2)
number of connections to non-community members after the
first connection to a community-member.

IP Address Src Port Community Dst port Occurrences

X.Y.Z.W 4798 F 445 1
X.Y.Z.W 1238 F 445 1
X.Y.Z.W 1256 F 445 1
X.Y.Z.W 1682 F 445 1
X.Y.Z.W 3143 C,E,F 445 1
X.Y.Z.W 4243 F 445 1

TABLE III: Anonymized report-snippet from August 8th, 2011

it is not clear if this address belongs to a community member.
An attempt to ping the address did not succeed. A query
to “SANS Internet Storm Center” (Figure 8) shows a long
list of reports about worms using this port with the famous
“Conficker” being one of them.

As with the previous example, we cannot determine if this
case is a true attack. To this end, we would need the help of the
system administrators of the various community members who
have access to the log-files of the corresponding machines.
However, there are two interesting points concerning this IP
address. First, there are only a total of 69 entries in the netflow,
where this address is the source of communication. Second, all
connections transfer only a very small amount of data—around
60 bytes each. Even in total, this only sums up to several kilo
bytes. Therefore, this address only appears in the ports view
and not in the other views that consider either the number of
bytes or connections. Hence, an administrator would need to
set the detection threshold very low to see an alarm concerning
this address.

C. Case 3

In contrast to the previous two cases, this case is not an
attack. It occurred in all views and if one only looks at the
report (an excerpt is shown in Table IV), it is not immediately
clear what service is being used since the address seems to be
using random ports on both ends of the communication. The
query to whois does also not reveal any useful information,
except that the address belongs to a US ISP.

However, looking at the connections with IP addresses
outside of the communities provides a hint that this is not
targeted against any of our specified communities as shown in



Fig. 6: Screenshot of “http://isc.sans.org/port.html?port=1433” from September 8th, 2011

Fig. 7: Screenshot of “http://isc.sans.org/port.html?port=1433” from September 8th, 2011



Fig. 8: Screenshot of “http://isc.sans.org/port.html?port=445” from September 8th, 2011

IP Address Src Port Community Dst port Occurrences

X.Y.Z.W 13397 B 38426 1
X.Y.Z.W 41748 F 41387 1
X.Y.Z.W 49534 C 23068 1
X.Y.Z.W 16249 C 22654 1
X.Y.Z.W 29167 C 43183 2
X.Y.Z.W 20 F 7205 4
. . . . . . . . . . . . . . .

TABLE IV: Anonymized report-snippet from August 8th, 2011

Table V. Moreover, the use of port 20 (the last line in Table IV)
gives a hint that at least some part of the communication
involved anonymous ftp, which uses port 20 to initiate the
connection but uses random ports thereafter. Finally, using
an ftp-client (i.e., a web-browser) revealed indeed that this
is simply an ftp server hosting software updates. As a result
of this analysis, we added the address to the white list.

IP Address Community # in
Top-K

# outside
Community

X.Y.Z.W A 0 14250
X.Y.Z.W B 2 14250
X.Y.Z.W C 1 14250
X.Y.Z.W D 0 14250
X.Y.Z.W E 0 14250
X.Y.Z.W F 6 14250

TABLE V: Anonymized report-overview-snippet from August
8th, 2011. The last two columns contain the following num-
bers: (1) Number of members of the current community which
had an entry in the COI of the current IP address and (2)
number of connections to non-community members after the
first connection to a community member.

D. Building Communities

In real use of the system, the community members might
be known a priori and even stay relatively fixed. However,
in our case we built the community lists incrementally by
identified new community members based on the COIs gener-



ated. Specifically, we assumed that members of a community
exchange information with one another and often the data
exchange is encrypted. Therefore, we focused on new IP
addresses that used the https-port (443) for communication.
However, a certain minimal set of known members is needed
before reports can be generated. This set should be as large as
possible for two reasons. First, the likelihood that an unknown
address that belongs to the community (and thus, should be
added) connects to one or more entries of a large set of
members is higher than if the set contains only very few
entries. Second, if the set is large, one can set the reporting
threshold higher and reduce the amount of noise.

Building a community this way is a task that lasts for
weeks, depending on how much communication is observed
between the individual members and how large the community
is initially. We start by adding the new community to the list of
communities. With every subsequent report, we scan for new
members and add them to the corresponding lists. This way,
the community grows every day, and with it the likelihood
of finding any missing members. The community stabilizes
eventually with fewer and fewer new members per day.

VI. RELATED WORK

A number of tools and techniques have been developed to
process and visualize netflow data(see [17] for a survey). Net-
flow processing tools include OSU flow-tools [16], SiLK [7],
and Nfdump5. In addition to command line tools, numerous
graphical user interfaces exist to visualize and query network
activity, including NTOP6, Nfsen [9], NfSight [1], VisFlow-
Connect [20], FlowScan [14], NetPY [2], FloVis [18], VIAssist
[5], and NFlowVis [6]. While visualization tools allow the
users to view the netflow data from different perspectives
to locate suspicious activity, our approach analyzes the data
and produces small number of meaningful alarms each day.
Also, our focus on communities allows us to detect attacks
and suspicious behavior that is focused on a potentially small
community, but would not show significantly on a global scale.

Detection of similar communication behavior in multiple
hosts has been used previously to raise suspicion that hosts
with the correlated behavior may be members of the same
botnet. For example, [21] uses netflow data to identify sets of
suspicious hosts and then uses host level information (collected
on each host by a local monitor) to confirm or reject the
suspicions. However, detection of botnets is simplified by the
fact that the bots typically act in unison (e.g., start spamming
or DDoS attack against a target at the same time). Indeed,
much of the work in this area (e.g., BotMiner [8]) specifically
build detection mechanisms based on the assumptions of the
communication behavior required for a botnet. Furthermore,
to our knowledge, prior work is limited to detecting similar
behavior within one organization.

The concept of using a community to help detect security
events has been used in the past. For example, the Ensemble

5http://nfdump.sourceforge.net
6http://www.ntop.org

[15] system detects applications that have been hijacked by
using the idea of a trusted community of users contributing
system-call level local profiles of an application to a com-
mon merging engine. The merging engine generates a global
profile that can be used to detect or prevent anomalies in
application behavior at each end-host in real time. A similar
concept of collaborative learning for security [13] is applied
to automatically generate a patch to the problematic software
without affecting application functionality. PeerPressure [19]
automatically detects and troubleshoots misconfigurations by
assuming that most users in the community have the correct
configuration. Cooperative Bug Isolation [11] leverages the
community to do statistical debugging based on the feedback
data automatically generated by community users. Vigilante
[4] apply the community concept for containment of Internet
worms by community members running detection engines on
their machines, where the detection engines distribute attack
signatures to other community members when a machine is
infected.

VII. CONCLUSIONS

In this paper, we have presented a community-based analy-
sis and alerting technique for detecting small-footprint attacks
targeting communities of interest for attackers such as financial
institutions, e-commerce web site, or the electricity generation
and distribution infrastructure. By comparing communication
behavior across the member organizations in the community,
it is possible to detect suspect behavior that may fall below
detection thresholds at individual member organizations. A
white list can be used to avoid repeating false positives.
We have implemented the analysis algorithm in a scaleable
distributed architecture that can process large volumes of
netflow data efficiently.
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