
Scalable, Good,
Cheap

a tale of sexiness, puppets, shell
scripts, and python

From this...

...to this!

Get your infrastructure
started right!

(not just preparing for incident and
rapid event response)

Who we are?

Avleen Vig (@avleen)
Senior Systems Engineer at Etsy
Good at: Scaling frontends, python
Previous companies: WooMe, Google, Earthlink

Marc Cluet (@lynxman)
Senior Systems Engineer at WooMe
Good at: Backend scaling, bash/python, languages
Previous companies: RTFX, Tiscali, World Online

Overview

Workflow

Why planning for scaling is important

How do you choose your software

Setting up your infrastructure

Managing your infrastructure

The background

Larger startup, $32m in funding
6 million+ active users
Dozens of developers
6 systems administrators
4 DBAs
10+ code releases every day
Geographically distributed employees

Brooklyn HQ
Satellites in Berlin, San Francisco
Small number of remote employees

The background

Small, funded start up
6 python developers
2 front end developers
3 systems administrators
1 DBA (moustache included)
Multiple code releases every day
Geographically distributed employees

Berlin, Copenhagen, Leeds, London, Los Angeles,
Oakland, Paris, Portland, Zagreb

Workflow

Ticket systems
Ticket, or it didn't happen!

Documentation
Wikis are good

Don't Repeat Yourself
If you keep doing the same thing manually, automate

Version control everything
All of your scripts
All of your configurations

Workflow

Everything will change

Technical debt vs Premature optimisation
If you try to be too accurate too early, you'll fail

Team integration

Be sure to hire the right people
Beer recruitment interview

Encourage speed
Release soon and release often

Embrace mistakes as part of your day to day
Learn to work with it

Ask for peer reviews for important components
Helps sanity checking your logic

Developers, Sysadmins, DBAs, one team

Team communication

Team communication is the most critical factor

Make sure everyone is in the loop

Useful applications
IRC
Skype
email
shout!

Don't be afraid to use the phone to avoid miscommunication

Layering! Not just for haircuts.

Separate your systems

Front end

Application

Database

Caching

Choosing your software

What does your software need to do?
FastCGI / HTTP proxy? Use nginx
PHP processing? Use apache

What expertise do you already have?
Stick to what you're 100% good at

 Don't rewrite everything
If it does 70% of what you need it's good for you

Release management

Fast and furious

Automate, automate, automate

Script your deploys and rollbacks

Continuous deployment

MTTR vs MTBF

MTTR vs MTBF

Logging

Centralize your logging

syslog-ng

Parsing web logs - the secret troubleshooting weapon

SQL

Splunk

Web logs in a database!
CREATE TABLE access (
 ip inet,
 hostname text,
 username text,
 date timestamp without time zone,
 method text,
 path text,
 protocol text,
 status integer,
 size integer,
 referrer text,
 useragent text,
 clienttime double precision,
 backendtime double precision,
 backendip inet,
 backendport integer,
 backendstatus integer,
 ssl_cipher text,
 ssl_protocol text,
 scheme text
);

Web logs in a database!

Monitoring

Alerting vs Trend analysis

Monitoring

Alerting vs Trend analysis
Nagios is great for raising alerts on problems

Monitoring

Alerting vs Trend analysis

Nagios is great for raising alerts on problems

Ganglia is great at long term trend analysis

Know when something is out of the "ordinary"

Monitoring

Alerting vs Trend analysis

Nagios is great for raising alerts on problems

Ganglia is great at long term trend analysis

Know when something is out of the "ordinary"

What should you monitor?

Anything which breaks once

Customer facing services

Monitoring

Alerting vs Trend analysis

Nagios is great for raising alerts on problems

Ganglia is great at long term trend analysis

Know when something is out of the "ordinary"

What should you graph?

Everything! If it moves, graph it.

Customer facing rates and statistics

Monitoring

Get statistics from your logs:

PostgreSQL: pgfouine

MySQL: mk-query-digest

Web servers: webalizer, awstats, urchin

Custom applications: Do it yourself! Integrate with Ganglia

Monitoring

Caching

Caches are disposable

Caching

Caches are disposable

But what about the thundering herd?

The importance of scaling

The importance of scaling

August 2003 Northeastern US and Canada blackout

Caused by poor process execution

Lack of good monitoring

Poor scaling

The importance of scaling

The importance of scaling

Massive destruction avoided!

256 power stations automatically shut down

85% after disconnecting from the grid

Power lost but plants saved!

Caching

Caches are disposable

But what about the thundering herd?

Increase backend capacity along with cache capacity

Plan for cache failure

Reduce demand when cache fails

Caching

Find out how your caching software works

Memcache + peep!

Is it better with lots of keys and small objects?

Or fewer keys and large objects?

How is memory allocated?

Caching

Caches are disposable
Solved!

But what about the thundering herd?
Solved!

Now we get into database scaling!
Over to Marc...

Databases

Databases...

or how to live and die dangerously

Databases

SQL or NoSQL?

Databases

SQL
Gives you transactional consistency
Good known system
Hard to scale

NoSQL
Transactionally consistent "eventually"
New cool system
Easy to scale

Databases

SQL
Gives you transactional consistency
Good known system
Hard to scale

NoSQL
Transactionally consistent "eventually"
New cool system
Easy to scale

You may end up using BOTH!

Databases

Be smart about your table design

Databases

Be smart about your table design
Keep it simple but modular to avoid surprises

You need to design your database right!

Databases

Be smart about your table design
Keep it simple but modular to avoid surprises
Don't abuse many-to-many tables, they will just give you
hell

Databases

Be smart about your table design
Keep it simple but modular to avoid surprises
Don't abuse many-to-many tables, they will just give you
hell

YOU WILL GET IT WRONG
You'll need to redesign parts of your DB semi-regularly
Be prepared for the unexpected

Databases

The read dilemma

As the tables grow so do read times and memory.
Several options:

Check your slow query log, tune indexes

Partition to read smaller numbers of rows

Master / Slave, but this adds replication lag!

Databases

The read dilemma

As the tables grow so do read times and memory.
Several options:

Check your slow query log, tune indexes
Single most common problem with slow queries and
capacity
Be careful about foreign keys

Databases

The read dilemma

As the tables grow so do read times and memory.
Several options:

Check your slow query log, tune indexes

Partition to read smaller numbers of rows
By range (date, id)
By hash (usernames)
By anything you can imagine!

Databases

The write conundrum

As the database grows so do writes

Writes are bound by disk I/O
RAID1+0 helps

Don't shoot yourself in the foot!
Don't try to solve this early
Have monitoring ready to foresee this issue
Bring pizza

Databases

Divide writes!
 Remember about modular? This is it

Databases

How to give a consistent view to the servers?

Use a query director!

pgbouncer on Postgres

gizzard on MySQL

Web frontend

Hardware load balancers - Good but expensive!

Software load balancers - Good and cheap! (more pizza)

Web server frontends
nginx, lighttpd, apache

Reverse proxies
varnish, squid

Kernel stuff
Linux ipvs

Web frontend

Which way should I go?

Web servers as load balancers
Gives you nice add on features
You can offload some process in the frontend
Buffering problems

Reverse proxies
Caching stuff is good
Fast reaction time
No buffering problems

Web frontend

Divide your web clusters!

You can send different requests to different clusters

You can use an API call to connect between them

Configuration management

Be ready to mass scale
Keep all your machines in line

Automated server installs
Use it to install new software
Also to rapidly deploy new versions

Writing tools

If you do something more than 2 times it's worth scripting

Write small tools when you need them

Stick to one or two languages
And be good at them

Writing tools

Even better

Have your scripts repo in a cvs and push it everywhere

Backups

It's important to have backups

Backups

It's important to have backups

It's even more important to exercise them!
Having backups without testing recovery is like having
no backups

Backups

It's important to have backups

It's even more important to exercise them!
Having backups without testing recovery is like having
no backups

 How can we exercise backups for cheap?

Backups

It's important to have backups

It's even more important to exercise them!
Having backups without testing recovery is like having
no backups

 How can we exercise backups for cheap?
Cloud computing!

Cloud computing

Cloud computing help us recreate our platform on the cloud

Giving us a more than credible recovery scenario

Also very useful to spawn more instances if we run into
problems

Interesting things to read

Wikipedia
http://en.wikipedia.org/wiki/DevOps

Web Operations and Capacity Planning
http://kitchensoap.com

High scalability (if you get there)
http://highscalability.com/

If you really fancy databases, explain extended
http://explainextended.com/

Questions?

Work at Etsy!
http://etsy.com/jobs

Work at WooMe!
http://bit.ly/work4woome

@lynxman@avleen

