
Nfsight: NetFlow-based Network Awareness Tool

Robin Berthier
Coordinated Science Laboratory

Information Trust Institute
University of Illinois

Urbana-Champaign, IL, USA
rgb@illinois.edu

Michel Cukier
The Institute for Systems Research

Clark School of Engineering
University of Maryland
College Park, MD, USA

mcukier@umd.edu

Matti Hiltunen, Dave Kormann, Gregg Vesonder, Dan Sheleheda
AT&T Labs Research

180 Park Ave.,
Florham Park, NJ, USA

{hiltunen,davek,gtv}@research.att.com, dsheleheda@att.com

Abstract

Network awareness is highly critical for network and se-
curity administrators. It enables informed planning and
management of network resources, as well as detection
and a comprehensive understanding of malicious activ-
ity. It requires a set of tools to efficiently collect, process,
and represent network data. While many such tools al-
ready exist, there is no flexible and practical solution for
visualizing network activity at various granularities, and
quickly gaining insights about the status of network as-
sets. To address this issue, we developed Nfsight, a Net-
Flow processing and visualization application designed
to offer a comprehensive network awareness solution.
Nfsight constructs bidirectional flows out of the unidi-
rectional NetFlow flows and leverages these bidirectional
flows to provide client/server identification and intrusion
detection capabilities. We present in this paper the in-
ternal architecture of Nfsight, the evaluation of the ser-
vice, and intrusion detection algorithms. We illustrate
the contributions of Nfsight through several case studies
conducted by security administrators on a large univer-
sity network.

1 Introduction

Network awareness, i.e., knowledge about how hosts use
the network and how network events are related to each
other, is of critical importance for anyone in charge of
administering a network and keeping it secure [11]. The
goal of network awareness is to provide relevant infor-
mation for decision-making regarding network planning,
maintenance, and security. NetFlow is among the most-

used information sources for gaining awareness in large
networks because it offers a good trade-off between the
level of detail provided and scalability. As a result, a
majority of networks are already instrumented through
their routers to collect and export NetFlow, and a variety
of tools are available to process such data [18, 36, 27].
However, there is still no practical solution to visualiz-
ing network activity at various granularities and quickly
gaining insight about the status of network assets. Nu-
merous attempts have been made [37, 31, 5] and are de-
tailed in Section 4, but none has gained a broad audience.

We developed a tool calledNfsight to address these
challenges. The objective of Nfsight is to offer a compre-
hensive network awareness solution through three core
functions: 1) passive identification of client and server
assets, 2) a web interface to query and visualize network
activity, and 3) a heuristic-based intrusion detection and
alerting system. Nfsight is designed to be simple, ef-
ficient, and highly practical. It consists of three major
components: a Service Detector, an Intrusion Detector,
and a front-end Visualizer. The Service Detector com-
ponent analyzes unidirectional NetFlow flows to identify
client and server end points using a set of heuristics and
a Bayesian inference algorithm. The Intrusion Detector
component detects suspicious activity through a set of
graphlet-based signatures [13], and the front-end Visual-
izer allows administrators to query, filter, and visualize
network activity. We trained and evaluated the Service
Detector using two different datasets of 30 minutes of
packet dumps collected at the border of a large univer-
sity network. The Intrusion Detector was evaluated by
security experts over a period of four months. Based on
several months of testing in a production environment

of 40,000 computers, we believe Nfsight can greatly as-
sist administrators in learning about network activity and
managing their assets.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide an overview of Nfsight and we present
the implementation and evaluation of the different com-
ponents: the Service Detector (Section 2.2), the Intrusion
Detector (Section 2.3), and the front-end Visualizer (Sec-
tion 2.4). We discuss a number of use cases in Section 3
and we compare our approach to related work in Section
4. Finally, Section 5 offers some concluding remarks.

2 Architecture and Implementation

This section provides an overview of the architecture
of Nfsight and describes in detail the implementations
of the Service Detector, the Intrusion Detector and the
front-end Visualizer.

2.1 Nfsight Architecture Overview

The architecture of Nfsight is presented in Figure 1.
Nfsight uses non-sampled unidirectional NetFlow pro-
vided by a collector such as Nfdump/Nfsen [19]. A
network flow is defined as a unidirectional sequence of
packets that share source and destination IP addresses,
source and destination port numbers, and protocol (e.g.,
TCP or UDP). A NetFlow flow carries a wide variety
of network-related information about a network flow in-
cluding the timestamp of the first packet received, dura-
tion, total number of packets and bytes, input and output
interfaces, IP address of the next hop, source and desti-
nation IP masks, and cumulative TCP flags in the case of
TCP flows.

The Service Detector component takes NetFlow flows
and converts them into bidirectional flows in the IPFIX
format (bidirectional flow format specified by the IPFIX
working group [4]). During this process, it identifies
client and server end points using a set of heuristics and
a Bayesian inference algorithm. The bidirectional flows,
denoted byIPFIX in Figure 1, are stored in flat files,
while the server end points, denoted byAssetsin Figure
1, are stored in a MySQL database. The Intrusion Detec-
tor component detects suspicious activity through a set
of graphlet-based signatures [13] applied on the bidirec-
tional flows. The high-level network activity and event
alerts generated by the Intrusion Detector are stored in
a MySQL database. An aggregation script runs periodi-
cally to maintain a round-robin structure in the database
and to provide three aggregation levels: every five min-
utes, hourly, and daily. We detail the data storage and
representation solution of Nfsight in Section 2.4. The
front-end Visualizer allows administrators to query, fil-
ter, and visualize network activity. They can access the

application simply by using a web browser and they can
collaborate through a shared knowledge base of events
reported either automatically by the Service Detector and
Intrusion Detector or manually by operators.

2.2 Passive Service Detection

2.2.1 Definitions

In the rest of the paper we use the following definitions.
A serveris a network application that provides a service
by receiving request messages from clients and generat-
ing response messages. A server is hosted on a computer
identified by its IP address and accepts requests sent to a
specific port. In this paper, we focus on servers using the
UDP and TCP protocols. We are interested in both tran-
sient and permanent servers. Specifically, we consider
P2P transactions a part of the client/server model, even
if the server in this case may be handling client requests
for only a few minutes and for only specific clients. We
define anend pointas a tuple{IP address, IP protocol,
Port number}. An end point may represent either a client
or a server.

We define anetwork sessionas avalid communication
between one client end point and one server end point.
All UDP flows are considered to be valid, but TCP flows
are valid only if both the request and the reply flows carry
at least two packets and the TCP acknowledgement flag.
For example, if a server refuses a TCP connection hand-
shake by sending a reset flag to the source end point, the
communication is not considered valid. Finally, we use
the termnetwork transactionto describe any set of flows
between two end points during a time window smaller
than the maximum age limit of a flow (usually 15 min-
utes). There are two types of network transactions: uni-
directional and bidirectional. We assume that bidirec-
tional transactions are always between a client and a
server and that bidirectional transactions are always ini-
tiated by a client.

2.2.2 Approach

The task of accurately detecting servers based solely
on NetFlow flows is challenging because NetFlow does
not keep track of the logic of network sessions between
clients and servers. Specifically, we have to address the
following challenges:

1. NetFlow may break up a logical flow into multiple
separate flows;

2. NetFlow is made of unidirectional flows and there-
fore we need to identify the matching unidirectional
flows to make up bidirectional flows and identify
valid network sessions;

NetFlow Service Detector Assets Visualizer

IPFIX Intrusion Detector Alerts

Figure 1: Nfsight architecture

3. Identifying the server end point in a network session
is difficult because the TCP flags in the request and
reply flows are typically identical for valid bidirec-
tional flows. Furthermore, the flow timestamps have
proven to be sometimes unreliable and more often,
the request and reply flows have identical times-
tamps due to the granularity of the timestamps.

We solve the first and second challenges by match-
ing and merging the NetFlow flows as follows. First, for
each collection period (usually 5 minutes), we merge all
network flows that have the same source and destination
end points to eliminate any artificial breaking of unidi-
rectional flows. Then, to address the issue of combining
unidirectional flows into network sessions, we generate
bidirectional flows by merging all flows collected during
a given time window that have opposite source and desti-
nation end points. The network sessions are then selected
based on the number of packets and flags and accord-
ing to the definition of valid communication above. The
last step is to address the third challenge, i.e., to identify
client and server end points for every network session.
We describe below the approach we developed to per-
form this task.

2.2.3 Server Identification Heuristics

To correctly identify client and server end points for ev-
ery valid bidirectional flow, we developed a set of heuris-
tics that determine if an end point is a server (or not).
These heuristics were developed to cover a variety of in-
tuitions gathered from network experts. A heuristic may
be based on the attributes of an individual (bidirectional)
flow or it may consider a set of flows.

The heuristics implemented are:

H.0 Flow timing. Lett1 and t2 be the timestamps of
the unidirectional flows constituting a bidirectional
flow. The source of the flow with the larger (more
recent) timestamp is likely the server. The differ-
ence betweent1 and t2 provides an indication on
the probability that this heuristic will identify the
correct end point as a server. If the timestamps are
identical, they cannot be used to decide which end
point is the server.

H.1 Port number. Letp1 and p2 be the port numbers
associated with a bidirectional flow. The end point
with the smaller port number is likely the server. If
the port numbers are identical, they cannot be used
to decide which end point is the server.

H.2 Port number with threshold at 1024. If an end point
has a port number lower than 1024, then it is likely
a server. The value of 1024 corresponds to the limit
under which ports are considered privileged and
designated for well-known services. If both ports
are above or below 1024, this heuristic cannot be
used to decide which end point is the server.

H.3 Port number advertised in /etc/services. If the port
number of an end point is listed in the standard
UNIX file /etc/services that compiles assigned port
numbers and registered port numbers [12], then it is
likely a server. If both or neither port numbers are in
/etc/services, this heuristic cannot be used to decide
which end point is the server.

H.4 Number of distinct ports related to a given end
point. If two or more different port numbers (in dif-
ferent flows) are associated with an end point, the
end point is likely a server. The number of differ-
ent port numbers related to an end point provides an
indication on the probability that this heuristic will
correctly identify the server. This heuristic comes
from the fact that ports on the client-side are often
randomly selected. Therefore, ports on the client-
side of a connection are less likely to be used in
other connections compared to ports on the server-
side. If both end points are related to the same num-
ber of ports, then this heuristic cannot be used to
decide which end point is the server.

H.5 Number of distinct IP addresses related to a given
end point. This heuristic is identical to the previous
one but counts IP addresses instead of ports.

H.6 Number of distinct tuples related to a given end
point. This heuristic is identical to the previous
one but counts end points instead of single IP ad-
dresses. This heuristic is based on the observation
that each server typically has two or more clients
that use the service. Furthermore, even if only one

real user accesses the service (e.g., identified by the
IP address of the user’s machine), the communica-
tion will likely require multiple connections and the
client side of the access often uses different port
numbers. Thus, multiple end points will be de-
tected.

2.2.4 Evaluation of Individual Heuristics

We evaluated the accuracy of each heuristic by using
bidirectional flows generated by Argus [26] as the ground
truth. Argus is a flow processing application that gener-
ates bidirectional flows from packet data. We considered
Argus to be more accurate than Nfsight, and able to pro-
duce a baseline dataset for our evaluation, since it uses
detailed packet data as input instead of the high level flow
data used by Nfsight. We collected a dataset of 30 min-
utes of network traffic from the border of a large univer-
sity network and analyzed the data using Argus to iden-
tify bidirectional flows and their server end points. We
then processed the data using Nfsight to generate bidirec-
tional flows (6.2 million records) and applied the heuris-
tics to determine the server end points. We define the
accuracy of a heuristic as the probability that it correctly
identifies the server end point of a bidirectional flow. The
accuracy is estimated by dividing the number of bidi-
rectional flows correctly oriented based on ground truth
from Argus by the total number of bidirectional flows
correctly and incorrectly oriented.

For heuristics H.1, H.2 and H.3 the accuracy proba-
bility is a single value. Specifically, based on our in-
put data, we calculated the accuracies of these heuris-
tics to be 0.78, 0.75, and 0.74, respectively. Heuristics
H.0, H.4, H.5, and H.6 depend on parameter values, ei-
ther on time difference or number of distinct ports, IP
addresses, or tuples. Therefore, we can evaluate their
accuracy with regard to the parameter value as demon-
strated in Figures 2 to 5 (up to 10 seconds for H.0, and
up to 100 ports, IPs, and tuples for H.4, H.5 and H.6).
These plots show that the accuracy increases with the
time difference between requests and replies (Figure 2),
the number of related ports (Figure 3), IP addresses (Fig-
ure 4) and{IP, protocol, port} tuples (Figure 5) between
source and destination end points. Note that the simi-
larities between Figures 3 and 5 can be explained by the
fact that the client ports are randomly selected among
64,511 values. Therefore, the number of client ports and
the number of clients are different only in the case where
two clients communicating with the same server select
the same source port randomly.

 0

 20

 40

 60

 80

 100

0.1-0.9 1.0-1.9 2.0-2.9 3.0-3.9 4.0-4.9 5.0-5.9 6.0-6.9 7.0-7.9 8.0-8.9 9.0-9.9

A
cc

ur
ac

y
(%

)

Difference of timestamps (second)

Figure 2: Bidirectional flow orientation accuracy in-
creases with the timestamp difference between request
and reply flows (H.0)

 92

 93

 94

 95

 96

 97

 98

 99

 100

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99

A
cc

ur
ac

y
(%

)

Difference in number of related ports

Figure 3: Bidirectional flow orientation accuracy in-
creases with the difference between the number of source
and destination related ports (H.4)

 90

 92

 94

 96

 98

 100

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99

A
cc

ur
ac

y
(%

)

Difference in number of related IP addresses

Figure 4: Bidirectional flow orientation accuracy in-
creases with the difference between the number of source
and destination related IP addresses (H.5)

 92

 93

 94

 95

 96

 97

 98

 99

 100

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99

A
cc

ur
ac

y
(%

)

Difference in number of related tuples

Figure 5: Bidirectional flow orientation accuracy in-
creases with the difference between the number of source
and destination related tuples (H.6)

2.2.5 Combining heuristics

While individual heuristics can be used to identify server
end point, they cannot make a decision for all the flow
processed. For example, some flows have similar request
and reply timestamps, or similar source and destination
port numbers. To address this issue and to get a better
estimate, we combine the evidence provided by the dif-
ferent heuristics using basic Bayesian inference. We con-
sider each end point that is present in at least one bidirec-
tional flow. For each end pointX , we have two possible
hypotheses:

• Hs: end pointX is a server.

• Hc: end pointX is a client.

The different heuristics are used to identify evidenceE
in the bidirectional flows. For example, the fact that
there is a difference in unidirectional flow timestamps
provides evidence based on heuristic H.0. Bayesian in-
ference combines any prior knowledge (the prior prob-
ability of hypothesisHi being true denoted byP (Hi))
with information gained from new evidenceE to pro-
duce a new estimate of the probability that the hypothesis
is true using the formula:

P (Hi|E) =
P (E|Hi) ∗ P (Hi)∑
P (E|Hj) ∗ P (Hj)

whereP (E|Hi) denotes the probability that evidenceE
is present in a flow or set of flows given that hypothesis
Hi is true, that is, that a heuristic we use to generate the
evidence is accurate. While these conditional probabil-
ities could be assigned using expert knowledge, we use
the heuristic accuracies measured previously. We sum-
marize these empirical results in Table 1.

Table 1: Individual heuristic accuracies used as condi-
tional probabilities for Bayesian inference

Heuristic Output Accuracy

]0; 1.0[0.25
H.0 [1.0; 5.0[0.7

[5.0;∞[0.99
H.1 True 0.78
H.2 True 0.75
H.3 True 0.74

1 0.97
H.4 [2; 29] 0.9825

[30; 74] 0.9875
[75;∞[0.99

H.5 1 0.95
[2; ∞[0.98

1 0.97
H.6 [2; 29] 0.9825

[30; 74] 0.9875
[75;∞[0.99

Note that while the naive Bayesian formulation used
assumes independence of evidence, and some of the
heuristics are obviously correlated, we find the approach
still useful for combining the heuristics. We are evalu-
ating other combining techniques, such as Bayesian net-
works, that allow explicit representation of dependencies
between heuristics.

2.2.6 Evaluation of Bayesian Inference

We evaluated the accuracy of Nfsight to address two
related issues: 1) generating correctly oriented bidirec-
tional flows, and 2) accurately identifying server end
points. For the first issue, we applied the approach previ-
ously described to individually evaluate heuristics by us-
ing Argus to provide ground truth. For the second issue,
we compared server end points discovered by Nfsight
against Pads [23]. Pads is a packet-based passive ser-
vice discovery tool. Similarly to Argus, we considered
Pads to be more accurate than Nfsight and able to pro-
duce a baseline dataset for our evaluation, since it works
from detailed packet data instead of high level flow data.
In our evaluation, we are interested in measuring how
much accuracy we lose by working only with flows.

We collected a second dataset of 30 min of network
traffic from the border of the same large university net-
work. Note that the dataset used for determining the ac-
curacy of individual heuristics (summarized in Table 1)
and the dataset used for this evaluation were collected
five months apart.

Concerning the issue of generating correctly ori-
ented bidirectional flow, we analyzed 3,617,077 bidirec-

Table 2: Bidirectional flow orientation accuracy grouped
by confidence level from Bayesian inference

Heuristic Able to decide Accuracy

H.0 11.49% 94.54%
H.1 63,98% 85.54%
H.2 48.14% 98.15%
H.3 47.73% 98.17%
H.4 63.28% 93.72%
H.5 55.51% 88.76%
H.6 63.38% 92.58%

tional flows generated by both Nfsight and Argus. On
this dataset, Argus could decide on the orientation for
2,356,616 flows (65.15%) while Nfsight could make a
decision for 3,616,942 flows (99.996%). When Argus
could decide, we evaluated that Nfsight agreed on the
orientation for 2,183,440 flows. This represents an accu-
racy of 92.65%.

To understand further the contribution of the Bayesian
inference to combine heuristics, we expand the compar-
ison against Argus for each individual heuristic in Table
2. These results reveal that individual heuristics provide
high accuracies but they are able to decide for only a
fraction of the flows. For instance, H.0 agrees with Ar-
gus for 94.54% of the flows, but could decide for only
11.49% of the flows. The accuracies of H.1 to H.6 range
from 85.54% to 98.17%, while the decision capabilities
of H.1 to H.6 lie between 47.73% and 64.98%. These
results show the importance of the Bayesian inference to
combine heuristics, because it allows the overall decision
capability to reach almost 100% while keeping the over-
all accuracy above 92%.

The final step of the evaluation was to address the
second issue of accurately identifying server end points.
We compared server end points identified by Nfsight and
Pads. Out of 57,985 TCP servers detected by Pads from
the packet data, Nfsight was able to identify 45,932,
which represents an accuracy of 79.21%. We investi-
gated the services detected by Pads and not by Nfsight,
and we found that the majority of them were source end
points of unidirectional flows. This pattern indicates that
our evaluation dataset did not contain both directions of
network sessions for some flows. The lack of request or
reply flows can come from asymmetric routing or sam-
pling. We discuss in Section 3.4 the need to develop
additional heuristics that would allow Nfsight to handle
such cases.

2.3 Intrusion Detection

Once bidirectional flows have been generated by the
Service Detector, the Intrusion Detector identifies mali-

cious activity using a set of detection rules based on the
graphlet detection approach [13]. In this approach, the
patterns of host behavior are captured based on the flows,
and then these patterns are compared with intrusion de-
tection signatures. Patterns are generated for each host
and contain statistical information such as host popular-
ity, number of ports used, number of failed connections,
and total number of packets and bytes exchanged. Note
that working with bidirectional flows simplifies the defi-
nition of the detection rules and the pattern lookup since
the source and destination end points of each network
transaction are already known. We describe in detail the
data structure and the different detection rules we evalu-
ated in the remainder of this section.

2.3.1 Data Structures

The intrusion detection algorithm processes each bidi-
rectional flow generated over the last batch of NetFlow
flows collected (5 minutes in our setup) and creates or
updates two dictionary structures: one for the source and
the other for the destination IP addresses of the flow un-
der review. The structure for source IP addresses cap-
tures the fan-out relationships, while the other captures
the fan-in relationships. These dictionaries are organized
in a three-level hierarchy, where the IP address and the
protocol are used as keys for the first and second lev-
els, respectively. The different fields at the third level are
therefore all related to a specific{IP, protocol}. These
fields are:

• Peer: the set of distinct related IP addresses;

• Port: the set of distinct related destination or source
ports;

• TCP flag: the set of distinct flag combinations used;

• Packet: the total number of packets sent or received;

• Byte: the total number of bytes sent or received;

• Flows: the total number of bidirectional flows sent
or received;

• Failed connections: the total number of unidirec-
tional flows sent or received;

• Last source end point: the source port, IP address
and TCP flag of the last flow captured;

• Last destination end point: the destination port, IP
address and TCP flag of the last flow captured.

The last two fields are not used by the detection rules
but were requested by our team of administrators as
an additional time-saving information when classifying
alerts sent by email. For example, consider a case where

a host is detected as initiating a large number of failed
connections over the last 5 minutes. If the last source
port appears to be random and the last destination port
is TCP/445, then the host will be immediately classified
as compromised by a malware that spreads over the Net-
bios service. On the other hand, if the last source port is
TCP/80 and the last destination port appears to be ran-
dom, then the host will likely be classified as a victim of
a denial-of-service attack.

2.3.2 Detection Rules

The next step performed by the intrusion detection al-
gorithm is to process each bidirectional flow again and
to try to match flow information and source and destina-
tion host patterns against a set of signatures. We cre-
ated a set of 13 rules organized in 3 categories: mal-
formed flows, one-to-many, and many-to-one relation-
ships. These rules and categories are described in Ta-
ble 3. They were based on expert knowledge and on a
study of attack traces to cover noisy malicious activity
such as scanning and denial-of-service activities gener-
ated by compromised hosts. We note that Nfsight pro-
vides the data structures and rule matching algorithm to
enable administrators to create and evaluate more fine-
grained rules.

As shown in Table 3, rules in the one-to-many and
many-to-one categories use thresholds. We defined these
thresholds empirically from a study of attack traces and
the feedback we received during the testing of the differ-
ent detection rules. These thresholds are likely specific
to a given network and a given time window of analysis.
Thus, they are subject for future tuning. The threshold
values used in our experiments weremax dst ip = 200,
maxdst port = 250,maxsrc ip = 500, andmaxsrc port
= 500. Rules in the malformed flow category use
three data structures to catch incorrectly formed pack-
ets. These are:invalid codeto detect incorrect ICMP
type and code combinations;invalid ip to detect forged
or misconfigured IP addresses sent to private or unallo-
cated subnets; andinvalid flag to detect incorrect TCP
flag combinations.

2.3.3 Evaluation

Flow-based intrusion detection implementations often
suffer from two problems: 1) the difficulty to validate
and tune anomaly detection rules and 2) the difficulty to
access and understand the root cause of the malicious ac-
tivity detected. The first problem is illustrated in the con-
text of application detection in [14], where the authors
observe that the tuning of the 28 configurable thresh-
old parameters of the original graphlet approach [13] is
too cumbersome. To simplify rule tuning and validation,

192.168.1.2 [One-to-many IP] IP contacting more than 200 distinct
targets in less than 5min

* Heuristic: 201

* First detected on: 2010-08-10 14:05:00

* Last detected on: 2010-08-10 16:55:00

* Number of occurrences: 52,908

* Total flows: 52,908

* Unanswered flow requests: 52,908 (100\%)

* Packets: 89,918

* Bytes: 4,316,160

* Average number of related host every 5min: 4,580

* Average number of related port every 5min: 2

* Last source port: 3317 (2,339 distinct port(s) used every 5min)

* Last related tuple: 192.168.26.198 TCP/445

* Last flag value (if TCP): 2

To visualize related Nfsight data:
https://nfsight/index.php?net=192.168.1.2&time=201008101655

Please rate this alert by clicking on one of the following links:

[+] True Positive:
https://nfsight/email_validation.php?q=156505&r=1&auth=r25kfGVk

[-] False Positive:
https://nfsight/email_validation.php?q=156505&r=-1&auth=r25kfGVk

[?] Inconclusive:
https://nfsight/email_validation.php?q=156505&r=0&auth=r25kfGVk

Figure 6: Example of an alert email with validation links

we developed an evaluation process using email alerts.
The objective is to leverage administrator expertise while
minimizing the time and effort required to validate detec-
tion rules. Specifically, each alert emailed to security ad-
ministrators contains three embedded links that allow the
alert receiver to rate the alert as true positive, false pos-
itive, or unknown. A fourth link allows administrators
to open the front-end Visualizer and display the network
activity related to the alert under review. An example of
an alert email with validation links is given in Figure 6.

The second problem is due to the fact that flows are
based on aggregated header information and lack details
on the payloads required to precisely identify attack ex-
ploits. It is not possible to fully address this problem
if we restrict ourselves to Netflow, but we note that the
different visualization solutions offered by Nfsight and
described in Section 2.4 help to understand and assess
the illegitimate nature of suspicious network activity.

We configured the email validation script to send no
more than five alert emails in two batches per day to
four experts: two security administrators and two grad-
uate students working in network security. Alerts were
ranked according to the number of flows and the num-
ber of detection occurrences. Then the top five internal
IP addresses for which no alerts email had been previ-
ously sent were selected. Table 4 presents the validation
results collected over a period of four months for the five
detection rules that triggered alerts. In this table,TP de-
notes the number of alerts labeled as “true positives”,FP
denotes the number of alerts labeled as “false positives”,
andUnknownrepresents alerts for which experts could
not decide if the activity was malicious. The results in-

Table 3: Intrusion detection rules
Id Name Category Filter

101 Identical source and destination Malformed flow src ip = dst ip
102 Invalid ICMP flow size Malformed flow proto= ICMP and total byte≤ 64000
104 Invalid ICMP code Malformed flow proto= ICMP and icmp code∈ invalid code
105 Invalid IP address Malformed flow (src ip or dst ip) ∈ invalid ip
106 Invalid TCP flag Malformed flow proto= TCPand flag∈ invalid flag
201 One-to-many IP One-to-many failed connection ≥ 1 and uniquedst ip ≥

max dst ip and uniqueflag≤ 1
301 One-to-many Port One-to-many failed connection ≥ 1 and uniquedst port ≥

max dst portand uniqueflag≤ 1
401 Many-to-one IP on TCP flows Many-to-one proto = TCP and flag /∈ {19, 27, 30, 31} and

uniquesrc ip ≥ max src ip and uniqueflag≤ 1
402 Many-to-one IP on ICMP flows Many-to-one proto= ICMP and uniquesrc ip ≥ max src ip
403 Many-to-one IP on UDP flows Many-to-one proto= UDPand uniquesrc ip ≥ max src ip
501 Many-to-one Port on TCP flows Many-to-one proto = TCP and flag /∈ {19, 27, 30, 31}

and uniquesrc port ≥ max src port and
uniquedst port= 1 and uniqueflag= 1

502 Many-to-one Port on ICMP flows Many-to-one proto= ICMP and uniquesrc port≥ max src port
and uniquedst port= 1

503 Many-to-one Port on UDP flows Many-to-one proto= UDP and uniquesrc port≥ max src port
and uniquedst port= 1

dicate that rules105and201are relatively accurate. We
note that these two rules allowed our team of adminis-
trators to detect 18 internal compromised hosts. How-
ever, rules106, 301, and501 have a high rate of false
positives. The poor performance of rule106 can be ex-
plained by the facts that invalid TCP flag combinations
may be due to misconfigured hosts or legitimate TCP
connections may be broken over different flows. The
false positives for rules301 and501 are mainly due to
heavily used servers for which the thresholdsmaxsrc ip
and max src port were too low. The feedback offered
by this validation process and the labeled alerts help ad-
justing the parameters and thresholds of the detection
rules. We are working towards implementing an auto-
mated process to adjust these values and revise the de-
tection rules.

2.4 Data Visualization

The front-end Visualizer allows administrators to query,
filter, and visualize network activity. This section
presents the web interface of Nfsight and the underlying
data storage solution.

2.4.1 Hybrid Data Storage

Alerts and client/server end points identified by the Ser-
vice Detector and Intrusion Detector modules are stored
in a MySQL database at three aggregation levels: five

minutes, hourly, and daily. An aggregation script that
expires data at different granularities runs periodicallyto
maintain a round-robin structure in the database. This
structure allows the storage of a large volume of data (88
million records organized in 107 tables in our implemen-
tation) while offering a fixed database size (11GB in our
implementation) and a fast access to network end points
at different time granularity levels. We configured the
5-minute granularity data to expire after two weeks.

2.4.2 Web Front-end

The front-end is developed in PHP and consists of a
search engine, a dashboard, and a network activity vi-
sualization table. The dashboard presents the latest gen-
erated alerts and the top 20 servers, services, scanned
services, and internal scanners. The search form and
the network activity visualization table are represented
in Figure 7. We note that IP addresses in Figure 7 and
in Section 3 have been pixelated on purpose. The search
form enables administrators to filter activity per subnet,
IP, time period, and type of activity (i.e., internal or ex-
ternal client and/or server).

The visualization table is organized by host IP, port
number, and type of activity (either client for source port
or server for destination port). For each end point, the
tool provides both statistical information and a visualiza-
tion of the activity over the given time period. The sta-
tistical information includes the confidence value given

Table 4: Validation results for each detection rule triggered
Id Total Validated TP FP Unknown Accuracy: TP/(FP+TP)

105 23 11 4 8 73.3%
106 27 3 19 5 13.6%
201 68 40 21 7 65.6%
301 94 30 41 23 42.3%
501 78 21 38 19 35.6%

Figure 7: Nfsight front-end Visualizer

by the Bayesian inference algorithm and the number of
flows, packets, and bytes. The network activity is repre-
sented as a time series using a heat map that visually re-
veals the number and type of flows detected over the time
period. A color code enables network operators to sep-
arate client activity (blue) from server activity (green),
and also to identify the fraction of invalid, i.e., non-
answered (red), flows sent/received by an end point. The
intensity of the color is used to represent the number of
flows. Some servers may receive both unidirectional and
bidirectional flows, represented by a block divided into
green and red parts that represent the proportion of uni-
directional and bidirectional flows received by the server.
These unidirectional flows may be due to invalid packets
that the server rejected, an overwhelming number of re-
quests, or unidirectional flows that the Service Detector
component failed to pair correctly. Additional examples
of the visualization capabilities of Nfsight are provided
in Section 3.

3 Use Cases

We present in this section different use cases to demon-
strate how Nfsight can help security administrators and
network operators in their daily tasks.

3.1 Network Awareness

3.1.1 Server Identification

Nfsight can be used to rapidly identify the population
of internal servers. The passive service detection algo-
rithm identifies servers actively used in the organization
network. Through the front-end, operators can query

monthly, weekly, or daily network activity by port num-
ber. For example, one can query all internal IP addresses
hosting a VNC server (port TCP/5900), and display the
daily average number of peers each of the IP addresses
has been connected to over the past few weeks. The dash-
board also provides the top 20 hosted services ranked by
the number of internal servers.

3.1.2 Network Monitoring

In addition to filtering activity by port, one can query ac-
tivity by subnet to check for anomalies in a specific part
of the network. An example of anomaly is the loss of
network connectivity for a set of hosts. We illustrate this
case in Figure 8, which represents the effect of a power
outage from the perspective of both the servers which
lost power (activity in green) and the clients which could
no longer reach the servers (activity in red). The visu-
alization provided by Nfsight makes it easy to determine
the duration of the event (it started at 12:10 PM and activ-
ity was fully restored at 12:40 PM) and the list of internal
hosts affected.

3.1.3 Policy Checking

In most organizations, critical subnets are subject to a
tight security policy to prevent exposure of sensitive
hosts. Nfsight can be used to check that these policies
are properly implemented and are not compromised. The
front-end Visualizer organizes assets per IP address and
service, providing the operators an instant view to detect
rogue hosts or rogue services. A watchlist allows one to
register hosts with a service profile and be alerted when
an unknown service is detected. For example, the pro-

Figure 8: Effect of a power outage on connectivity

file for an email server could consist of three services:
TCP/25 (mail), TCP/143 (IMAP), and TCP/993 (IMAP
over SSL). Any additional open port detected on this host
would raise an alert automatically. This functionality can
also be achieved by active scanning tools such as PBNJ
[24], but the passive approach provided by Nfsight is less
intrusive and offers a continous view of the service activ-
ity.

3.2 Malicious Activity

3.2.1 Scanning Activity and Vulnerable Servers

The filtering features of the front-end Visualizer allows
one to query external clients generating unidirectional
flows. These clients are often scanners targeting the orga-
nization IP addresses randomly or sequentially, and try-
ing to find open services to compromise. As shown in
Figure 9, the dashboard of Nfsight also provides the top
20 probed services ranked by number of scanners. Op-
erators can click on a service to display the details of
the scanning activity and more importantly, the list of
internal hosts that scanners were able to find. This in-
formation is critical when a new vulnerability linked to
a specific service is discovered, because security admin-
istrators can use Nfsight to learn, first, if attackers are
actively trying to exploit it, and, second, what are the in-

ternal hosts that potentially need to be patched or closed.
Figure 10 illustrates this feature by showing the activ-

ity for port TCP/10000 over a period of 19 days. This
port is known to host the Webmin application, which has
been vulnerable to remote exploits [34]. We can see
two parts in Figure 10: the top part in red shows ex-
ternal hosts scanning the organization network to find
vulnerable applications on port TCP/10000. The bot-
tom part in green represents internal hosts listening on
port TCP/10000. The coloring is automatic based on the
number of unanswered unidirectional flows (red) versus
valid bidirectional flows (green). Moreover, the average
number of peers displayed for each end point in the met-
ric section clearly discriminates scanning activity (be-
tween 16 and 27,200 peers scanned per day) and server
activity (1 client on average per day).

3.2.2 Compromised Hosts

In addition to external scanners, Nfsight can detect and
display internal hosts generating an abnormal volume of
unidirectional flows. These hosts are often compromised
by a malware that tries to spread. The Intrusion Detector
notifies the operators by means of automatically gener-
ated alarms when such a host is observed in the network.
As described in Section 2.3.3, each alert contains a link
that shows the service activity detected by Nfsight and

Figure 10: Scanners targeting port 10000 and internal servers hosting a service on this port

Figure 9: Top 20 scanned services

the details of flows related to the event. Consequently,
operators can check if these alerts are due to malicious
behavior or normal server behavior.

Figure 11 illustrates the activity of an internal host
which was compromised and started at midnight to send
a massive number of probes to random destination IP ad-
dresses on port TCP/445. Nfsight provides information
about the scanning rate, on average 23,300 IP every 5
minutes, and the uniform distribution of targets from the
parallel plot provided by Picviz [33]. Security adminis-
trators who tested Nfsight indicated that they cannot con-
figure their IPS devices to detect and block this type of
massive scanning activity, because the IPS devices would
be at risk of becoming overloaded. Therefore, Nfsight
complements other security solutions by leveraging Net-
Flow for scalable security monitoring.

3.2.3 Distributed Attacks

The visualization feature of Nfsight enables security ad-
ministrators to identify coordinated attacks and to under-
stand their scope. An example of a distributed scan orig-
inating from a set of internal SSH servers is provided
in Figure 12. A total of 19 servers were compromised
because the password for one shared account was deter-
mined through brute-force attack. Attackers installed a
remote control software on each host and then launched
a distributed scan at 8 PM to find additional SSH servers
to compromise. The timeseries representation and the
distinction between client/server activity allows admin-
istrators to immediately see the coordinated nature of the
attack.

Figure 11: Compromised internal host scanning a large rangeof destination IP on port TCP/445 (Netbios service)

Figure 12: Set of 19 compromised SSH servers remotely controlled (server activity in green) and launching a synchro-
nized distributed scan towards port TCP/22 (client activity in blue and red)

Figure 13: User comment window for information shar-
ing about a specific host

3.3 Forensic and Collaboration

The different case studies described previously show that
Nfsight can be efficiently used to perform forensic tasks.
The overview representation and detail-on-demand capa-
bility offer a fast and easy solution to understand what
happened in the network. This functionality is aug-
mented by several collaboration features. First, operators
can click on any IP address or service to leave a comment
and rate its criticality (low, medium or high). The com-
ment window is illustrated in Figure 13. Second, email
alerts contain links that the operators can use to rate the
alert as true positive, false positive, or unknown. The
web page displayed after clicking on these links allows
operators to write a comment and rate the criticality of
the alert. These comments are displayed on the dash-
board of Nfsight and colored by criticality. Operators can
reply to comments left by others and share their finding
or expertise.

3.4 Limitations and Future Work

Nfsight provides a practical network situational aware-
ness solution based on NetFlow flows. The main con-
tributions are 1) passive service discovery, 2) intrusion
detection and 3) automated alert and visualization. We
showed with different use cases how Nfsight can help
network administrators and security operators in their
monitoring tasks. However, Nfsight has still important
limitations that we plan to address in our future work.

First, Nfsight works with non-sampled flows. We note
that results from other evaluations of passive detection
techniques indicate that sampling has a limited impact
on the overall accuracy. For example, [1] reports that
capturing only 16% of the data results only in an 11%

drop in discovered servers. However, we believe that
random flow sampling will likely break our algorithm for
identifying bidirectional flows. We plan on assessing the
effect of sampling on the detection accuracy of the dif-
ferent heuristics. Furthermore, asymmetric routing can
challenge our approach. Specifically, we assumed in
this study that NetFlow collectors covered the pathways
for both requests and replies. In some organization net-
works, replies and requests can sometimes take different
routes for which there is no NetFlow collector deployed
and therefore, we would not be able to pair the unidirec-
tional flows into bidirectional flows.

We also note that Nfsight works at the network layer
and therefore heavily relies on port numbers. As a con-
sequence, it can be difficult or impossible for a network
operator to identify the application behind a service de-
tected by Nfsight. This issue arises from the fact that
some applications use random ports or hide behind well-
known ports. For example Skype is famous for using
port 80 or port 443, normally reserved to web traffic, in
order to evade firewall protection. Related work [6] on
flow-based traffic classification proved that it is possible
to accurately identify applications using only NetFlow.
We plan on developing additional heuristics for Nfsight
to be able to classify traffic regardless of the port num-
bers used. These heuristics can work on 1) relationships
between flow characteristics, such as the ratio between
number of packets and number of bytes or the time dis-
tribution of flows, and 2) relationships between hosts.
We believe that discovering communication patterns be-
tween hosts would be critical to identify not only appli-
cations but also large communication structures such as
those used by P2P networks or botnets.

Finally, the current intrusion detection rules are rudi-
mentary and the fact that most of them are threshold-
based means that they are prone to generate a significant
volume of false positives. We implemented a feedback
mechanism to leverage human expertise and facilitate the
task of tuning the detection rules, but this process still in-
volves important manual development. We plan to auto-
mate this task and integrate a machine-learning approach
to create and tune rules based on samples of true and false
positives.

4 Related Work

NetFlow is highly popular among network operators and
researchers because it offers a comprehensive view of
network activity while being scalable and easy to deploy
in large networks. As a result, an important number of
tools and publications have been produced over the past
decade, as shown by [28] and [17]. We present in this
section an overview of these resources organized accord-
ing to our areas of interests: Netflow processing and vi-

sualization, and service detection.

4.1 NetFlow Processing and Visualization
Applications

Working with NetFlow is a multi-step process. First,
flow records are generated by a compatible network de-
vice, typically a router, or by a software probe such as
[29, 21, 36]. These flows are then sent over the network
in UDP packets to collectors according to the NetFlow
protocol. The role of a collector is to store flow records
in flat files or in a database. The collector is often linked
to a set of processing tools to allow a network operator
to read and filter flow records. Processing tools include
CAIDA Cflowd [2], OSU flow-tools [27], SiLK [8] and
more recently Nfdump [18].

In addition to command line tools, several graphical
user interfaces exist to visualize and query network ac-
tivity. NTOP [22] and Nfsen [10] are two popular solu-
tions that provide a web interface to network operators.
We note that we developed Nfsight as a plugin of Nfsen
because of its simplicity, extensibility and processing ca-
pability.

An important body of research has been conducted on
the topic of NetFlow visualization. The NCSA research
center at the University of Illinois produced NvisionIP
[16] and VisFlowConnect [38]. NvisionIP provides a
two-dimensional map to visualize the network character-
istics of up to 65,536 hosts in a single view. It has been
extended to include a graphical filtering rule system [15]
to allow operators to easily spot abnormal activity. Vis-
FlowConnect offers a parallel-plot view with drill-down
features. Compared to Nfsight, the main limitation of
these two tools is that they work offline, while our solu-
tion processes NetFlow flows in near real time.

Researchers at the University of Wisconsin developed
FlowScan [25] and NetPY [3]. NetPY is an interac-
tive visualization application written in Python on top
of flow-tools. It provides an automated sampling algo-
rithm and enables operators to understand how network
traffic is used through heatmaps, timeseries and hierachi-
cal heavy hitters plots. FlowScan works at a higher level
by providing traffic volume graphs of network applica-
tions. The architecture of FlowScan, which consists of
Perl scripts and uses RRDTool, is very similar to the ar-
chitecture of Nfsen. Also, Nfsight shares with FlowS-
can the idea of using heuristics to classify flow records.
However, FlowScan lacks alerting capabilities and does
not determine client/server relationships.

Other research projects on the topic of flow visualiza-
tion include FloVis [31], VIAssist [5] and NFlowVis [7].
FloVis offers a set of modules such as Overflow [9] and
NetByte Viewer [30] to display the same network activ-
ity through different perspectives in order to gain a better

understanding of host behavior. VIAssist and NFlowVis
adopt the same objective with drill-down features and
multiple visualization techniques. NFlowVis integrates
state-of-the art plots by making use of treemap and a hi-
erachical edge bundle view. Similarly to Nfsight, VI-
Assist offers collaboration features to allow operators to
share items of interest and to communicate findings. We
note that none of these three visualization frameworks
are publicly available.

4.2 Service Detection and Bidirectional
Flows

Solutions for service discovery can be divided into ac-
tive and passive techniques. Active techniques send net-
work probes to a set of targets to check the presence of
any listening service, while passive techniques extract in-
formation about services from network sniffing devices.
A well-known open source active scanner is Nmap [20].
The drawbacks of active techniques are: 1) they provide
only a snapshot in time of the network, 2) they cannot de-
tect services protected by firewalls, 3) they are intrusive
and not scalable, and 4) aggressive scanning may also
cause system and network disruptions or outages [35, 1].
Passive solutions offer a continuous view of the network,
their results are not impacted by firewalls, and they are
highly scalable. The main limitation of the passive ap-
proaches is that they detect only active services, i.e., any
unused services with no incoming traffic cannot be dis-
covered. However, by providing a low overhead contin-
uous passive discovery approach, services that do com-
municate will be detected. A well-known open source
passive service detector working on packet data is Pads
[23].

A passive and accurate detection of network services
working on network flows would be trivial with bidirec-
tional flows where request flows initiated by clients and
reply flows initiated by servers can be easily identified.
However, most organization networks are currently in-
strumented with traditional unidirectional flow solutions
such as NetFlow, and they lack the capability to gener-
ate and collect bidirectional flows. This motivated us to
design a solution based only on unidirectional flow. We
note that the IPFIX IETF working group has recently in-
troduced a new standard format to export network flows
based on NetFlow version 9 [4], which includes the ca-
pability to export bidirectional flows generated directly at
the measurement interface [32]. We see our approach as
a robust intermediate solution between the current large
scale deployment of NetFlow, which is unidirectional,
and the future implementation by router vendors and de-
ployment by organization networks of IPFIX, which can
be bidirectional.

Rwmatch from SiLK [8] shares the same motivation of

generating correctly oriented bidirectional network flows
from unidirectional flows. Rwmatch uses two heuristics
to decide on the orientation of bidirectional flows: times-
tamp of request and reply flows, and server port num-
ber being below 1024. However, we have observed that
both of these heuristics can be fallible by themselves.
Therefore, we use five additional heuristics and combine
heuristic outputs through Bayesian inference in order to
improve the accuracy of server detection over time. We
note that another tool similar to rwmatch called flow-
connect, developed as part of the OSU Flow-tools frame-
work, has been suggested in [27] but has actually never
been implemented.

Finally, two alternative approaches YAF from CERT
[36] and Argus [26] generate bidirectional flows not
from unidirectional flows but from packet data. Both
tools work by processing packet data from PCAP dump
files or directly from a network interface, and then export
bidirectional flows following the IPFIX format.

5 Conclusion

Timely information on what is occurring in their net-
works is crucial for network and security administrators.
Nfsight provides an easy to use graphical tool for admin-
istrators to gain knowledge on the set of services running
in their networks, as well as on any anomalous activi-
ties. Nfsight is non-intrusive since it relies on passively
collected NetFlow data, provides a near real-time report
on network activities, allows data to be viewed at dif-
ferent time granularities, and supports collaboration be-
tween system administrators. Nfsight uses a combination
of heuristics and Bayesian inference to identify services
and graphlet-based technique to detect intrusions. In this
paper, we described the architecture and heuristics used
by Nfsight, evaluated its accuracy in service discovery,
and presented a number of real use-cases. Our future
work includes development and evaluation of additional
server discovery heuristics. We also plan to revise the in-
trusion detection rules and to complete the implementa-
tion of the feedback mechanism to adjust detection thesh-
olds automatically.

6 Acknowledgments

We would like to thank Gerry Sneeringer, Kevin Shivers
and Bertrand Sobesto for their ideas and their help la-
beling and investigating malicious activity. We are also
grateful to Virginie Klein for her contribution on the In-
trusion Detector. Finally we would like to thank William
Sanders, Jenny Applequist, Danielle Chrun, Eser Kando-
gan and the anonymous reviewers for their guidance and
comments on the paper.

7 Availability

The documentation and the source code of Nfsight are
freely available at:

http://nfsight.research.att.com

References

[1] BARTLETT, G., HEIDEMANN , J., AND PAPADOPOULOS, C.
Understanding passive and active service discovery. InProc. 7th
ACM Internet Measurement Conference(2007), pp. 55–60.

[2] Caida cflowd. http://www.caida.org/tools/measurement/cflowd/,
2010.

[3] CIRNECI, A., BOBOC, S., LEORDEANU, C., CRISTEA, V., AND

ESTAN, C. Netpy: Advanced Network Traffic Monitoring. In
Proc. Int Conf. on Intelligent Networking and Collaborative Sys-
tems (INCOS’09)(2009), pp. 253–254.

[4] CLAISE, B., QUITTEK , J., BRYANT, S., AITKEN , P., MEYER,
J., TRAMMELL , B., BOSCHI, E., WENGER, S., CHANDRA , U.,
WESTERLUND, M., ET AL . RFC 5101 Specification of the IP
Flow Information Export (IPFIX) Protocol for the Exchange of
IP Traffic Flow Information, 2008.

[5] D’A MICO, A., GOODALL , J., TESONE, D., AND KOPYLEC, J.
Visual discovery in computer network defense.IEEE Computer
Graphics and Applications 27, 5 (2007), 20–27.

[6] ERMAN , J., MAHANTI , A., ARLITT, M., AND WILLIAMSON ,
C. Identifying and discriminating between web and peer-to-peer
traffic in the network core. InProceedings of the 16th interna-
tional conference on World Wide Web(2007), ACM, p. 892.

[7] FISCHER, F., MANSMANN , F., KEIM , D., PIETZKO, S., AND

WALDVOGEL , M. Large-scale network monitoring for visual
analysis of attacks. InProc. Workshop on Visualization for Com-
puter Security (VizSEC)(2008), Springer, p. 111.

[8] GATES, C., COLLINS, M., DUGGAN, M., KOMPANEK, A.,
AND THOMAS, M. More NetFlow tools: For performance and
security. InProc. 18th USENIX Large Installation System Ad-
ministration Conf. (LISA)(2004), pp. 121–132.

[9] GLANFIELD , J., BROOKS, S., TAYLOR , T., PATERSON, D.,
SMITH , C., GATES, C., AND MCHUGH, J. OverFlow: An
Overview Visualization for Network Analysis. InProc. 6th Int.
Workshop on Visualization for Cyber Security (VizSec)(2009),
pp. 11–19.

[10] HAAG , P. Watch your Flows with NfSen and NFDUMP. In50th
RIPE Meeting(2005).

[11] HUGHES, E., AND SOMAYAJI , A. Towards network awareness.
In Proc. 19th USENIX Large Installation System Administration
Conf. (LISA)(2005), pp. 113–124.

[12] Iana assigned port numbers.
http://www.iana.org/assignments/port-numbers, 2010.

[13] KARAGIANNIS , T., PAPAGIANNAKI , K., AND FALOUTSOS, M.
BLINC: multilevel traffic classification in the dark. InProc. ACM
SIGCOMM Conference(2005), pp. 229–240.

[14] K IM , H., CLAFFY, K., FOMENKOV, M., BARMAN , D.,
FALOUTSOS, M., AND LEE, K. Internet traffic classification de-
mystified: myths, caveats, and the best practices. InProceedings
of the 2008 ACM CoNEXT conference(2008), ACM, pp. 1–12.

[15] LAKKARAJU , K., BEARAVOLU , R., SLAGELL , A., YURCIK,
W., AND NORTH, S. Closing-the-loop in NVisionIP: Integrat-
ing discovery and search in security visualizations. InProc.
IEEE Workshop on Visualization for Computer Security (VizSEC)
(2005).

[16] LAKKARAJU , K., YURCIK, W., AND LEE, A. NVisionIP: net-
flow visualizations of system state for security situational aware-
ness. InProc. ACM Workshop on Visualization and Data Mining
for Computer Security (VizSEC/DMSEC)(2004), pp. 65–72.

[17] LEINEN, S. FloMA: Pointers and Software, NetFlow. Tech. rep.,
SWITCH, 2010.

[18] Nfdump. http://nfdump.sourceforge.net, 2010.

[19] Nfsen. http://nfsen.sourceforge.net, 2010.

[20] Nmap. http://www.nmap.org, 2010.

[21] Nprobe: Netflow/ipfix network probe.
http://www.ntop.org/nProbe.html, 2010.

[22] Ntop: Network traffic probe. http://www.ntop.org, 2010.

[23] Pads. http://passive.sourceforge.net, 2010.

[24] Pbnj. http://pbnj.sourceforge.net, 2010.

[25] PLONKA , D. Flowscan: A Network Traffic Flow Reporting and
Visualization Tool. InProc. 14th USENIX Large Installation Sys-
tem Administration Conf. (LISA)(2000), pp. 305–318.

[26] QOSIENT, L. Argus: Network Audit Record Generation and
Utilization System.

[27] ROMIG, S., FULLMER , M., AND LUMAN , R. The OSU flow-
tools package and CISCO NetFlow logs. InProc. 14th USENIX
Large Installation System Administration Conf, (LISA)(2000),
pp. 291–304.

[28] SO-IN, C. A Survey of Network Traffic Monitoring and Analysis
Tools. Cse 576m computer system analysis project, Washington
University in St. Louis, 2009.

[29] Softflowd: fast software netflow probe.
http://www.mindrot.org/projects/softflowd/, 2010.

[30] TAYLOR , T., BROOKS, S.,AND MCHUGH, J. NetBytes viewer:
An entity-based netflow visualization utility for identifying intru-
sive behavior. pp. 101–114.

[31] TAYLOR , T., PATERSON, D., GLANFIELD , J., GATES, C.,
BROOKS, S., AND MCHUGH, J. FloVis: Flow Visualization
System. InProc. Cybersecurity Applications and Technologies
Conference for Homeland Security (CATCH)(2009), pp. 186–
198.

[32] TRAMMELL , B., AND BOSCHI, E. RFC 5103: Bidirectional
Flow Export Using IP Flow Information Export (IPFIX), 2008.

[33] TRICAUD, S.,AND SAAD É, P. Applied parallel coordinates for
logs and network traffic attack analysis.Journal in computer vi-
rology 6, 1 (2010), 1–29.

[34] Webmin vulnerability, cve-2006-3392, 2006.

[35] WEBSTER, S., LIPPMANN, R., AND Z ISSMAN, M. Experience
using active and passive mapping for network situational aware-
ness. InProc. 5th IEEE Int. Symp. on Network Computing and
Applications (NCA)(2006), pp. 19–26.

[36] Yaf. http://tools.netsa.cert.org/yaf/, 2010.

[37] YURCIK, W. Visualizing NetFlows for security at line speed: the
SIFT tool suite. InProc. 19th Large Installation System Admin-
istration Conf. (LISA)(2005), USENIX, pp. 169–176.

[38] YURCIK, W. VisFlowConnect-IP: a link-based visualization of
Netflows for security monitoring. In18th Annual FIRST Conf. on
Computer Security Incident Handling(2006).

