Zurich Research Laboratory Advanced Thermal Packaging

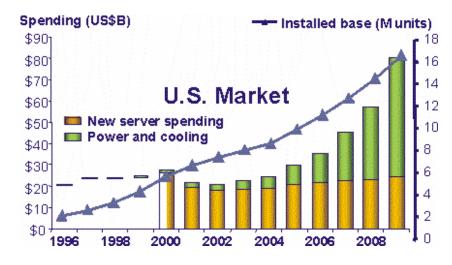
Towards Zero-Emission Datacenters through Direct Re-use of Waste Heat

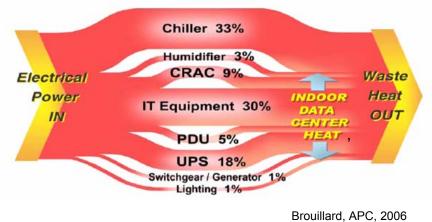
I. Meijer, T. Brunschwiler, S. Paredes and <u>B. Michel</u>, Advanced Thermal Packaging, IBM Research GmbH, Säumerstrasse 4, 8803 Rüschlikon, Switzerland, bmi@zurich.ibm.com

© IBM Research 2009

Overview

- Green Datacenter market drivers and trends
 Inefficient air cooled data centers: Waste of energy and exergy
- Thinking global about carbon footprint and energy usage
 - Role of IT to tackle climate change
 - Economic and political interest
- Thermal packaging and liquid cooling
 - Improved thermal conductivity and heat transfer
 - Water cooling and refrigerant cooling
 - Hotspot cooling
 - History of liquid cooling: Cold Warm Hot
 - Future interlayer cooling of 3D stacked chips
- Energy re-use in liquid cooled data centers
 - Reduction of carbon footprint with efficiency increase and community heating
 - Value of heating and cooling in different climates
 - Joint project with ETH: Aquasar
- Main messages and next steps
 - Efficiency investments have a short payback time
 - Concentrated photovoltaics with energy recovery



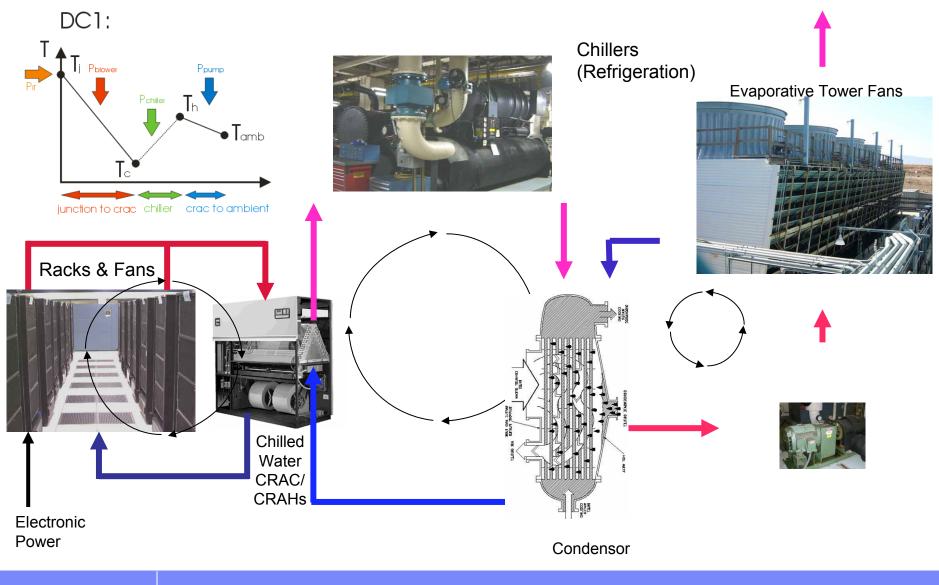


Green Datacenter Market Drivers and Trends

- Increased green consciousness, and rising cost of power
- IT demand outpaces technology improvements
 - Server energy use doubled 2000-2005; expected to increase15%/year
 - 15 % power growth per year is not sustainable
 - Koomey Study: Server use 1.2% of U.S. energy
- ICT industries consume 2% ww energy
 - Carbon dioxide emission like global aviation

Source IDC 2006, Document# 201722, "The impact of Power and Cooling on Datacenter Infrastructure, John Humphreys, Jed Scaramella"

Future datacenters dominated by energy cost; half energy spent on cooling


Real Actions Needed

IBM

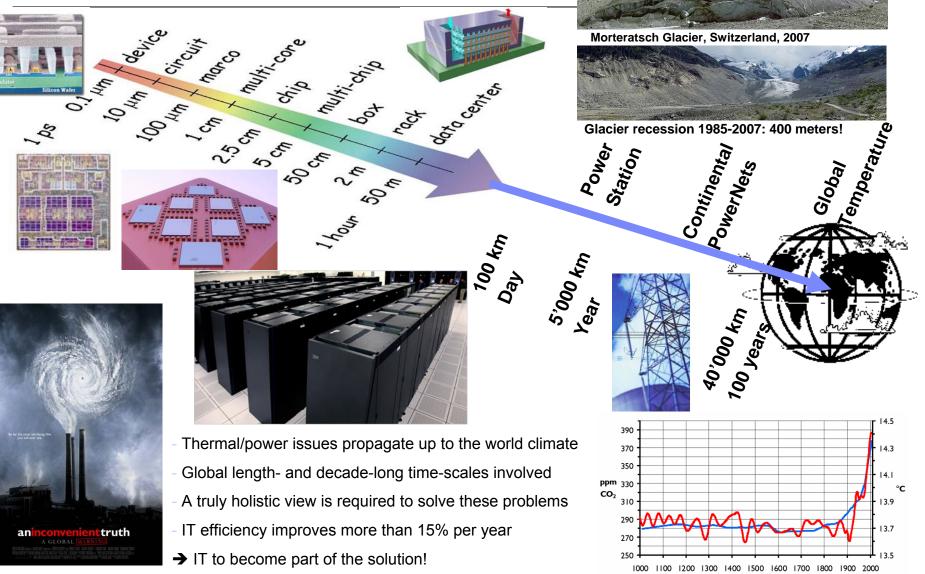
Datacenter: Cooling Infrastructure

What's Driving Demand

- Mobility cell/pda, broadband services, security, merchandising (13.6% CAGR from IT Mobile Tracker)
- Digital Media streaming, iptv, music, Radiology, Visualization (200% CAGR from e-week Jan 2005)
- 24x7 global e-commerce: financial & manufacturing sectors (26% CAGR

Source: United States Department of Commerce, 11/ 22/05)

- HPC: BioMed Pharma, genetic research, Oil & Gas, Virtualization in structural dynamics, Weather (10.5% CAGR source: IDC)
- Real time BI: Walmart, Amazon, Yahoo/Google/MSN (Google Growth 79% source: Wall Street Journal 4/21/06)
- Compliance Hippa, Sox ILM ("SOX may be your biggest informationtechnology expenditure this decade" source: e-week 8/1/03).



Morteratsch Glacier, Switzerland, 1985

From the Individual Transistor to the Globe

Energy Consumption of Transistor (Leakage Current)

Year of Production	2007	2008	2009	2010	2011	2012	2013	Essa.	
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)	68	59	52	45	40	36	32	-	+
MPU Physical Gate Lanath (nm)	25	22	20	18	16	14	13	20	nm
quivalent Oxide Thic	ckness				2753152				
		9	7.5	6.5	5.5	5			
UTB FD (Å)				7	6	5.5	5	5	5
DG (Å)		L			8	7	6	6	6
2011 IN 1971	Te Currer				8	7	6	6	6
laximum gate Leakag			1 005+02	1 115+02			6	6	6
No. 1 March 199			1.00E+03	1.11E+03		7 1.43E+03	6	6	6
laximum gate Leakag			1.00E+03			1.43E+03			
Extended Planar Bulk (A/cm ⁻)			1.00E+03		1.25E+03 1.25E+03	1.43E+03 1.43E+03		1.82E+03	2.00E+0
Extended Planar Bulk (A/cm ⁻) UTB FD (A/cm ²) DG (A/cm ²)	8.00E+02	9.09E+02			1.25E+03 1.25E+03	1.43E+03 1.43E+03	1.54E+03	1.82E+03	2.00E+0
Extended Planar Bulk (A/cm ⁻) UTB FD (A/cm ²) DG (A/cm ²) Ource/Drain Leakage	e Current	9.09E+02		1.11E+03	1.25E+03 1.25E+03 1.25E+03	1.43E+03 1.43E+03 1.43E+03	1.54E+03	1.82E+03	6 2.00E+0 2.00E+0
Instruction Instruction Extended Planar Bulk (A/cm ⁻) UTB FD (A/cm ²)	8.00E+02	9.09E+02			1.25E+03 1.25E+03	1.43E+03 1.43E+03	1.54E+03	1.82E+03	2.00E+
Instruction Instruction Instruction Extended Planar Bulk (A/cm ⁻) UTB FD (A/cm ²) UTB FD (A/cm ²) DG (A/cm ²) DG (A/cm ²) Instruction Cource/Drain Leakage	e Current	9.09E+02		1.11E+03	1.25E+03 1.25E+03 1.25E+03	1.43E+03 1.43E+03 1.43E+03	1.54E+03	1.82E+03	2.00E+0

Rethink: Green Datacenter Metric

New ranking list for supercomputers: Green 500

- Ranking of supercomputers which are listed in Top 500
- Energy needed for one floating point operation: MFLOPS / Watt
- Rank 1 to 20: PowerXCell, BlueGene, and MD GRAPE Accelerator

Earth Simulator 2002

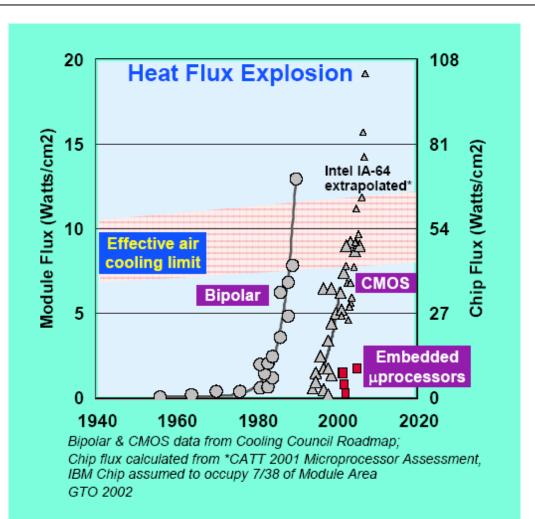
- Linpack: 40.9 TFlops
- Peak power: 11.9MW
- 3.4 MFlops/Watt

Roadrunner 2008

- PowerXCell 3.2GHz
- Linpack: 1100 TFlops
- Peak power: 2.5MW
- 445 MFlops/Watt
- → No. 1 Top500, No.4 Green500

27x computing performance, 1/5 power consumption, but harder to program

New metric needed that includes the site & facility energy consumption


Historic Heat Flux Trends

- Module and Chip Heat Flux Explosion
- Number of transistors doubles every 18 month
- CMOS scaling was power density invariant 1980 – 1995 → reduction of V_{dd}

 $P_{sw} = \frac{1}{2} C \cdot f \cdot V_{dd}^2$

 Energy per operation still shrinks

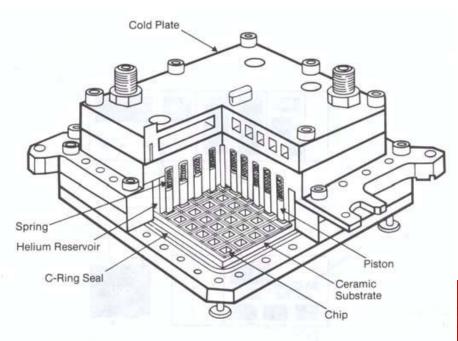
 Challenge: Transistor leakage

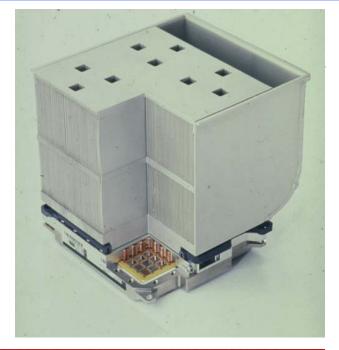
Thermal Packaging History

8088

Natural convection bare die

Pentium III Forced convection 50x50x40 mm³

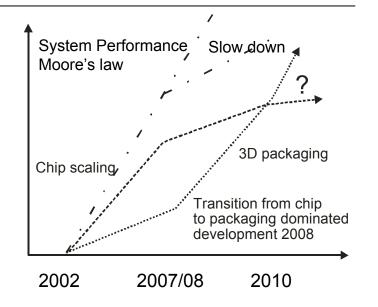

Pentium IV Forced convection 80x80x70 mm³


Apple G5

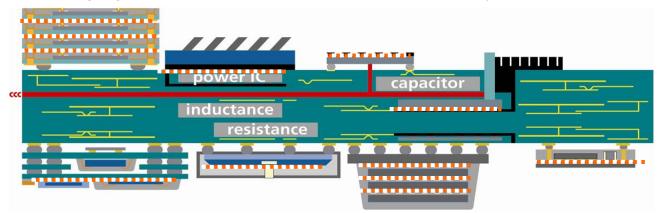
Liquid cooling 170x170x170 mm³

→ Increase 10x in volume, 10x in cost, 10x in complexity

History of Water Cooling at IBM



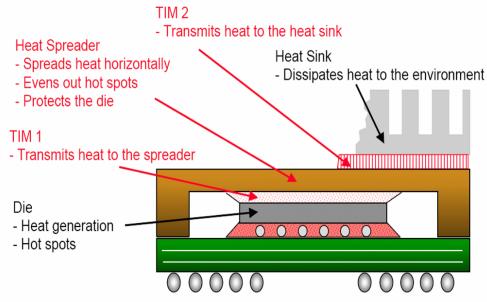
- Thermal conduction module for 3090 water cooled systems
- Used conventional water cooling for power densities up to 100 W/cm²



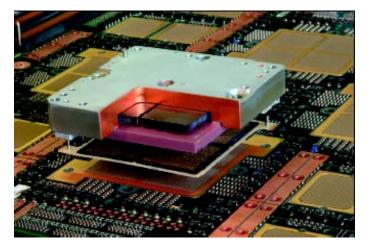
Motivation for Packaging Research

- Scaling beyond 22 nm decreases performance ~30% per generation
 - Needs to be compensated by new technologies like high k dielectrics, air gap, multicore
 - Will get more difficult with every generation
- ITRS reports "Acceleration of pace in assembly and packaging" and extensively revised roadmap in 2008 upgrade

Packaging compensates for slower chip efficiency improvements

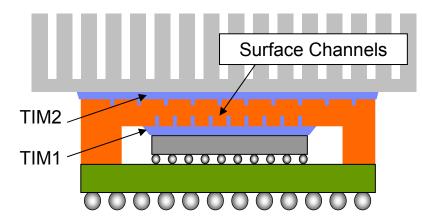

Why Thermal Packaging?

Performance


- Increased mobility at lower temperatures
- Leakage current depends exponentially on temperature

Reliability

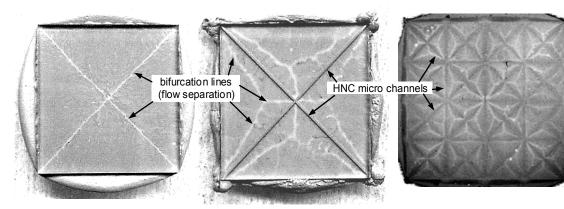
- Most failure mechanisms are accelerated with temperature
- Catastrophic failure can occur due to thermo-mechanical stress




Typical processor package

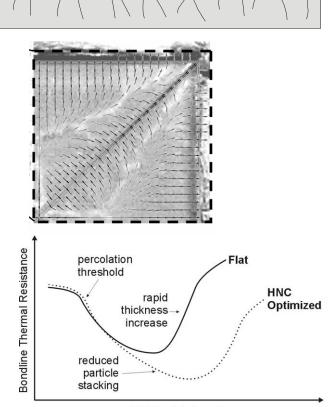
Packaging and Thermal Interfaces

- Interfaces are large portion of total resistance
 - Thermal interface materials TIM 1 and TIM 2 cause almost half the overall thermal resistance in a high performance processor package
- Particle filled materials have cost benefit
 - Easier processing, no metallization, flexibility for many applications
- Conductivity increase with higher particle loading
 - Viscosity and shear strength also increase
 - If bondline thickness increases No Gain!
- Assembly loads cannot be too high
 - C4 crushing, chip cracking
 - Substrates bend trapping thick TIM
- Hierarchical Nested Channel (HNC) creates thinner bondlines with higher conductivity materials using low assembly forces...



High Performance Thermal Interface Technology

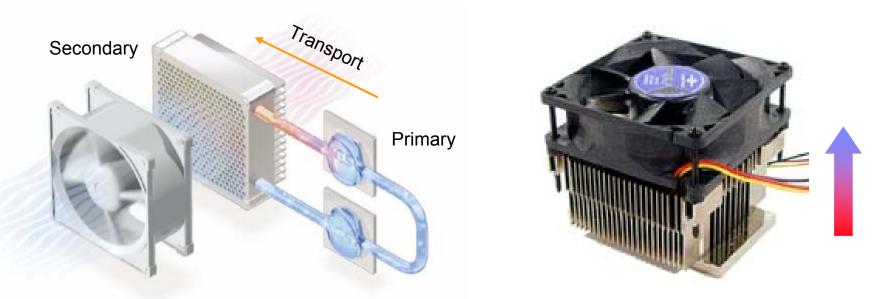
IEEE Harvey Rosten Award for Excellence in Thermal Sciences
 2008 R. Linderman, T. Brunschwiler, U. Kloter, H. Toy and B. Michel


Directed self-assembly

- Fluid-shear driven self-assembly
- Control of stacking with channel pattern

High performance thermal interface

- Increased particle density
- High performance with matched paste R_{th} (<5 mm²K/W)
- Quick integration into products possible


TIM Particle Loading

Motivation for Liquid Cooling

- Increase in heat removal performance:
 Superior thermal properties of liquids compared to air
- Design flexibility: Sensible heat transport to locations with available space
- Centralized secondary heat exchanger
- Efficient water-water heat exchanger

	Thermal conductivity [W/(m*K)]	Volumetric heat capacity [kJ/(m ^{3*} K)]
Air	0.0245	1.27
H ₂ O	0.6	4176

Disadvantage: Increased complexity



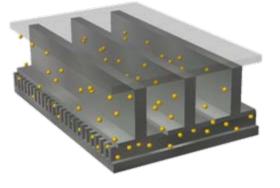
Long distance transport possible

Limited heat transport due to fin efficiency

Chip Scale Liquid Cooling

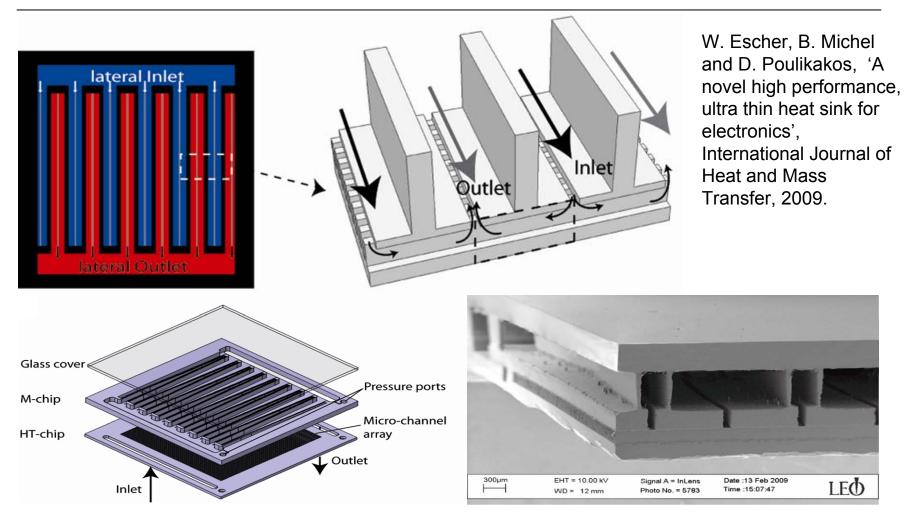
Direct Liquid Jet-Impingement Cooling with Micron-Sized Nozzle Array and Distributed Return Architecture, T. Brunschwiler et al., ITHERM 2006

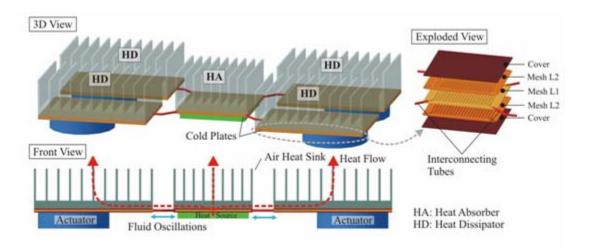
SEM cross-section of two-level jet plate with diameter of 35µm

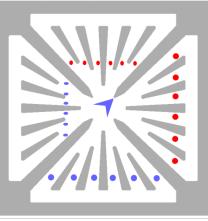

Ultra Thin High Efficiency Heat Sinks

- Motivation: Find the best coolant and the best structure for ultra-compact heatsinks (thickness < 2 mm)
- Nanofluid thermal properties explained by effective medium theory which means they cannot 'magically' improve heat transfer
- → Water provides the best combination of material properties

- Flat heatsinks reduce the board pitch of future systems from >30 mm (1U) to 3 mm (1/10 U)
- Optimum design provides a total thermal resistance of 0.09 cm²K/W @ V =1.3 l/min, $\Delta p = 0.22$ bar \Rightarrow maximum power density > 700 W/cm² for $\Delta T = 65$ K
- Increasing inlet temperature to 70°C (190 F) enhances the heat sink efficiency >40%

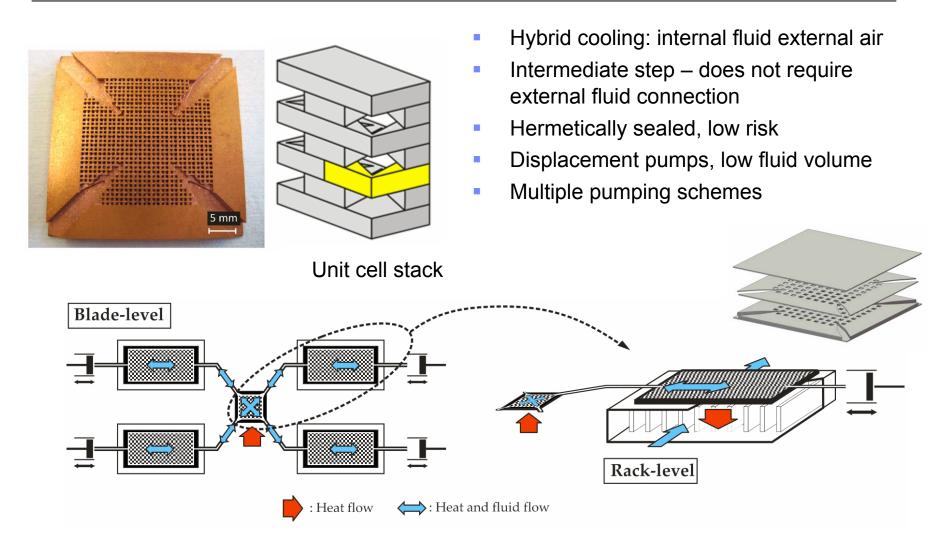





Manifold Micro-Channel Heat sink

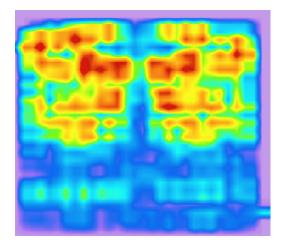
W. Escher, T. Brunschwiler, B. Michel and D. Poulikakos, 'Experimental Investigation of an Ultra-thin Manifold Micro-channel Heat Sink for Liquid-Cooled Chips', ASME Journal of Heat Transfer, 2009.

RADIally OScillating Flow Hybrid Cooling System - RADIOS


Schematic operation of fluid pumping and temperature oscillations

- Self-contained, thin form factor
- Spreader plates in base of air heat sinks
- Basic principle:
 - Cold plate on the chip (Heat Absorber, HA)
 - Heat transport to larger area
 - Cold plates in periphery (Heat Dissipator, HD)
- Keep chip area free, heat transfer to air at unpopulated area

- Heat shuttling via fluidic branches (N)
- Displacement actuator with membranes
 - Periodic phase difference ($\varphi = 2\pi/N$)
- Fluid periodically dispensed in all directions
- At the center:
 - Constant flow speed with radially oscillating direction


Oscillating Flow Liquid Cooling

Hot Spots are Everywhere

Power map of a dual core microprocessor

Temperature map of a data center

Hot spot heat flux 4x higher then mean

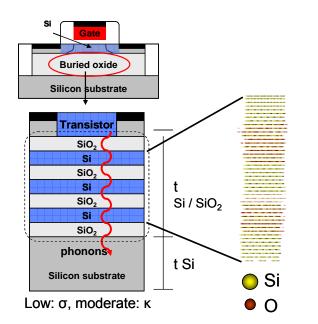
Current thermal management infrastructure is over-dimensioned to keep hot spots cool

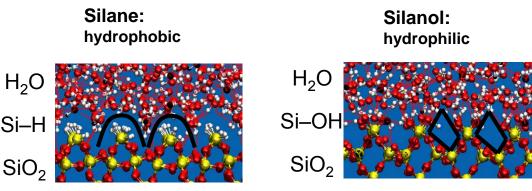
Improved efficiency:

- Thermal aware chip and datacenter design \rightarrow reduced hot spot peak heat flux
- Hot spot adapted cooling architectures \rightarrow minimal pumping power and thermal mixing

Phonon Transport Engineering

Investigation:


- Phonon relaxation times in channels
- Vibrational matching at interfaces
- Phonon tunneling in superlattice structures


Molecular Dynamics Modeling:

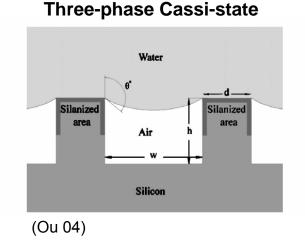
• Phonon transport considered, no electrons \rightarrow valid in dielectrics

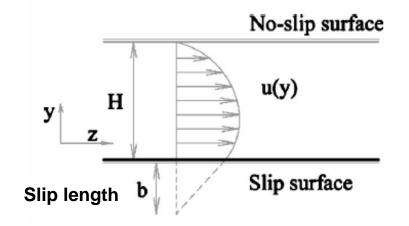
Hot spot mitigation in SOI channel:

Solid to fluid phonon transport engineering:

Improved phonon coupling at hydrophilic interfaces

H_2O Si–H

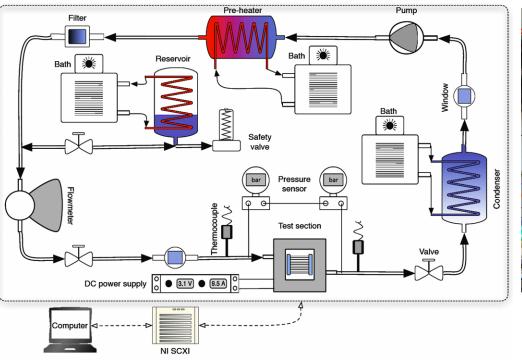

Slip Flow Induced Pressure Drop Reduction

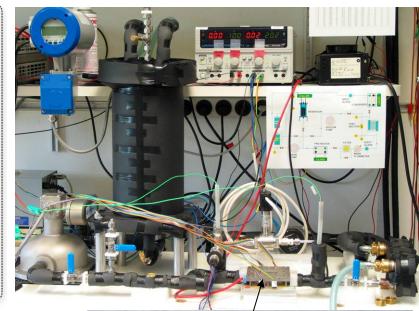

Super-hydrophobicity:

- Micron / nano-sized topography with low surface free energy
- Water droplet contact angle close to 180°C
- Pressure stability: according to Laplace pressure P ~ 1/r

Pressure drop reduction:

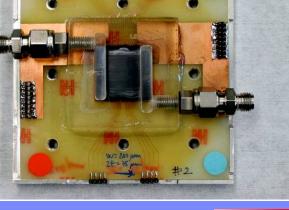
- Slip length as a result of finite velocity at fluid-air interface
- If slip length 1/10 of the hydraulic diameter
 - \rightarrow 60% reduction in pressure drop




ergy Cotus-Effect

IBM

Flow-Boiling Loop

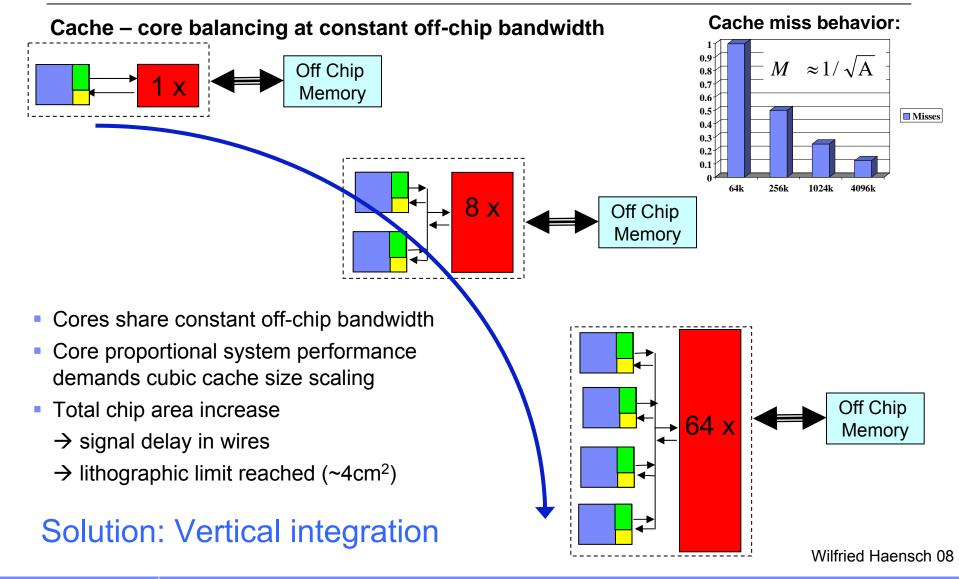


mun

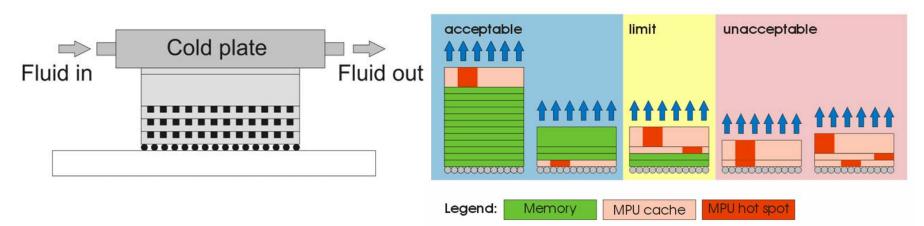
- Cooling with dielectric refrigerants R236fa and R245fa
 - Remove same chip heat flux
 - Eliminates risk for electronics
- More complex and more expensive to build and run
 - High system pressure (> 2 bar / 28 psi)

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

- Many more control points needed



THEFT



Multi-Core Architecture: Communication Bandwidth Limit

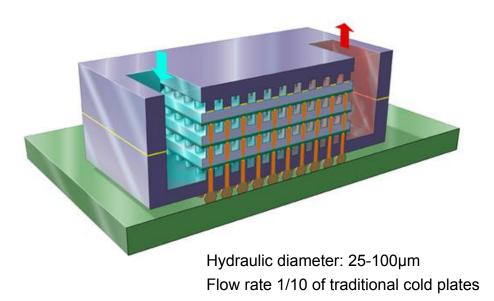
Limits of Traditional Back-Side Heat Removal

Guidelines from a thermal perspective:

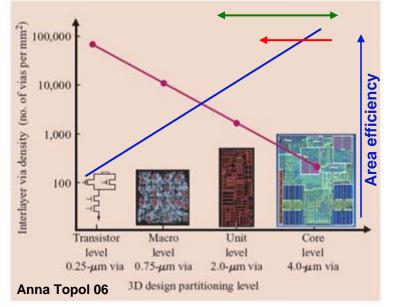
- MPU as close as possible to the cold plate
 - Lower peak temperature → high heat flux is conducted through minimum number of layers
 - Memory can handle 15K higher junction temperatures
- Non-identical hot spot locations

Unacceptable:

- Two identical MPU's with overlapping hot spot
- More then two MPU layers



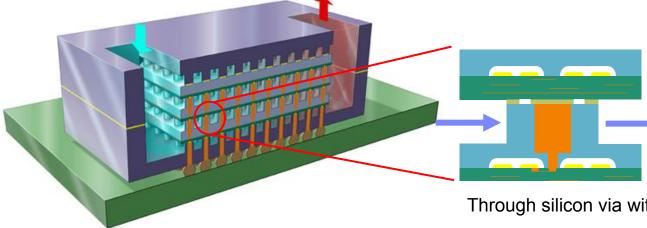
Heat removal limit constrains electrical design


Interlayer Thermal Management

Interlayer cooled chip stack

Interconnect density

Pitch optimum: electrical 1 - 100µm, cooling 50-200µm


Interconnect compatible heat transfer structures

Convective interlayer heat removal scales with the number of stacked tiers

Scalable Heat Removal by 3D Interlayer Cooling

- 3D integration will require interlayer cooling for stacked logic chips
- Bonding scheme to isolate electrical interconnects from coolant
- Heat removal scales with the number of dies

Solder functionality

sealing	Thermo-
electrical ∫	mechanical

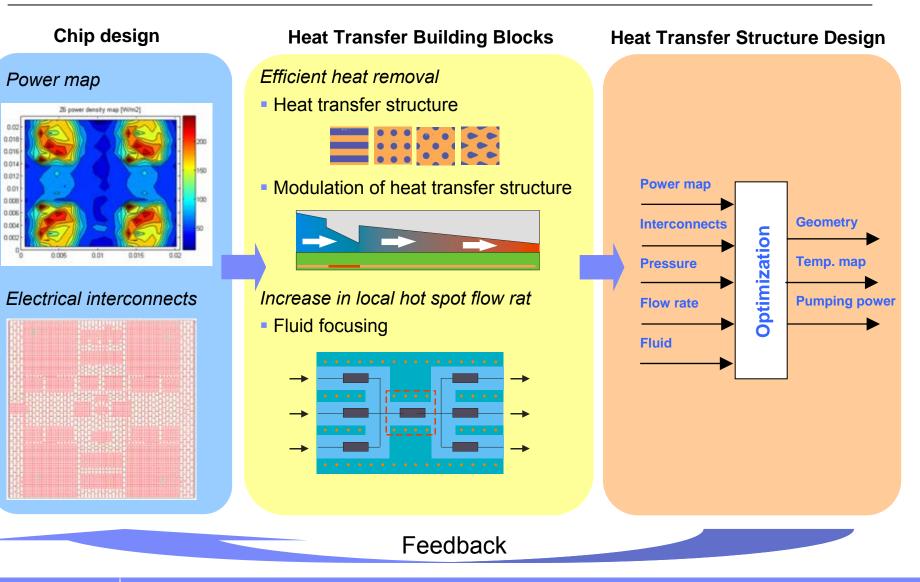
Through silicon via with bonding scheme

- Interlayer cooling of 3D stacked chips
 - Remove 180 W/cm² per layer or
 - Remove 7.2 KW from 10 layers with 4 cm²

Interconnect compatible heat transfer structures

- Microchannel
- Pin fin inline / staggered

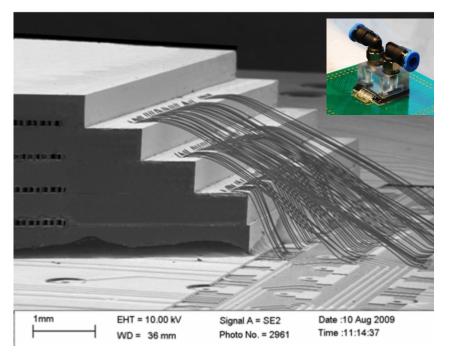
Interlayer cooling with lateral feed manifold


- Cool between logical layers with optimal vias
 - Best performance with 200 µm pin fins
 - Through-silicon via height limit, typically 150µm

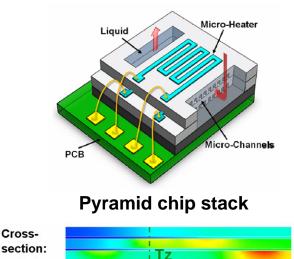
IBM Zurich Research Laboratory | 6-Nov-09

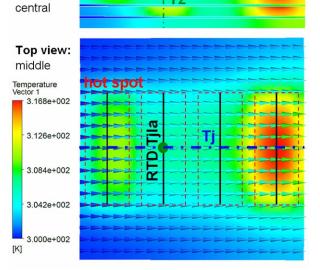
Microchannel, pin fins staggered/in line, drop shape

Electro-Thermal Co-Design


Experimental Validation: Pyramid Chip Stack

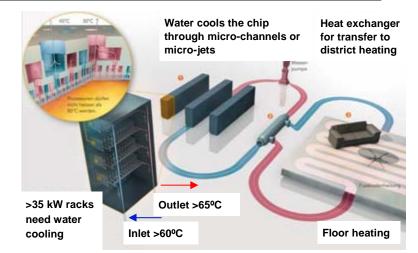
Thermal Demonstrator:

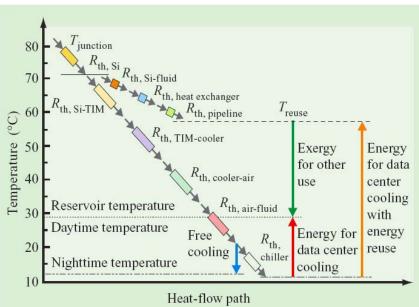

- Three active tiers, cooled with four cavities
- Polyimide bonding \rightarrow represents wiring levels
- Multi-scale modeling accuracy validated (+/-10%)


Realistic Product Style Stack:

Aligned hot-spot heat flux of 250W/cm² possible

Interlayer cooled chip stack

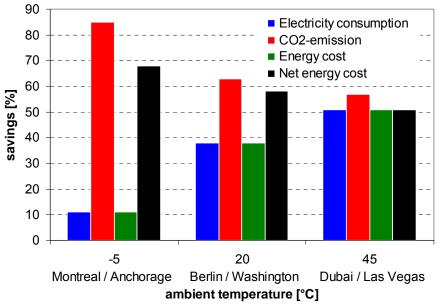

Random power map



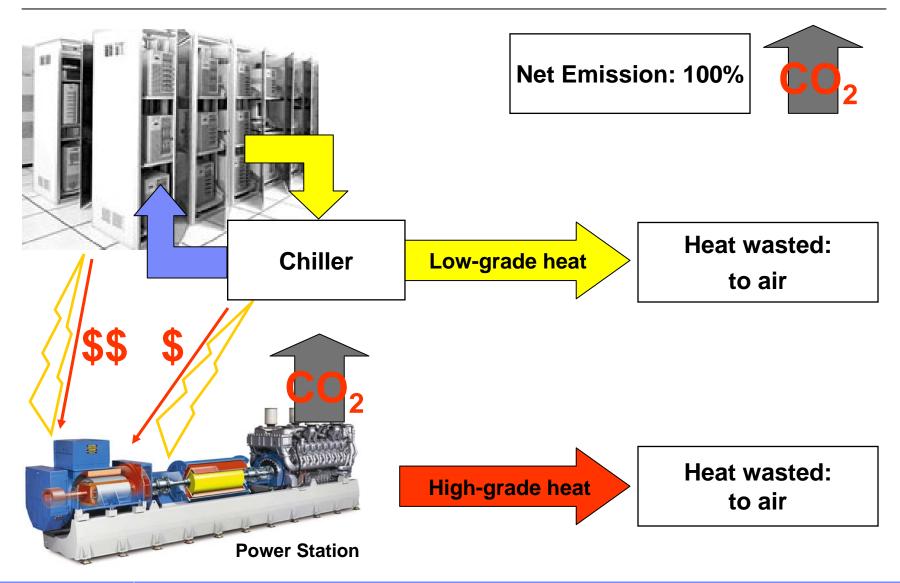
Zero-Emission Data Centers

High-performance chip-level cooling improves energy efficiency AND reduces carbon emission:

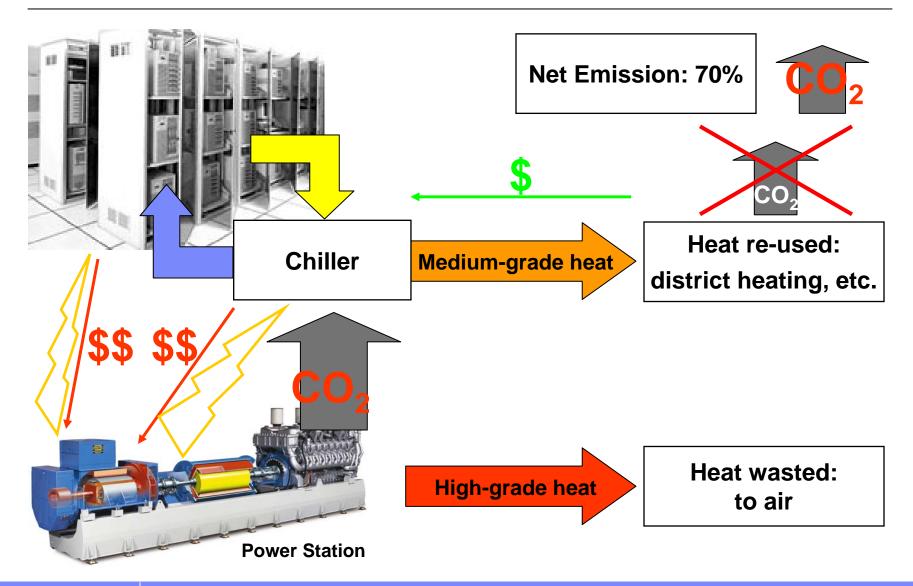
- Cool chip with $\Delta T = 20^{\circ}C$ (previously 75°C)
- and cool datacenter with T > 60°C (170 F)
 hot water; no chillers are required anymore
- Re-use waste energy in moderate climate,
 e.g., heat 700 homes with waste heat from 10 MW datacenter
- Necessity for carbon footprint reduction
 EU, IPCC, Stern report targets
- Note:
 - Chillers use ~50% of datacenter energy
 - Space heating ~30% of carbon footprint
- T. Brunschwiler, B. Smith, E. Ruetsche, and B. Michel, "Toward zero-emission datacenters through direct reuse of thermal energy", IBM JRD 53(3), paper 11.



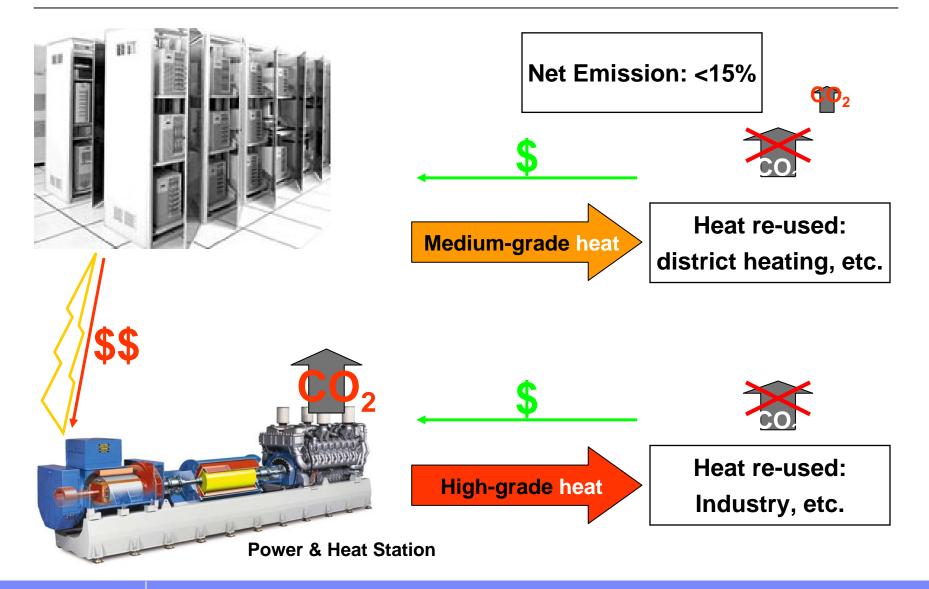
Thermal Energy Re-Use


- Zero-emission concept valuable in all climates
 - Cold and moderate climates:
 energy savings (no chiller required)
 and energy re-use
 (for >60°C outlet, district heating)
 - Hot climates: energy savings "only" (no chiller required)

- Europe: 5000 district heating systems
 - Distribute 6% of total thermal demand
 - Thermal energy from datacenters easily absorbed
 - Largest sustainable energy source
 - Thermal re-use: 3X (wind + solar)

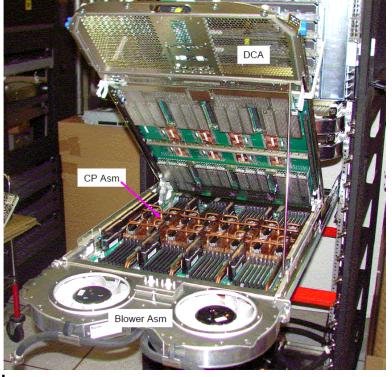


Energy and Emission Conventional Data Centers



Conventional Data Centers with Energy Re-Use

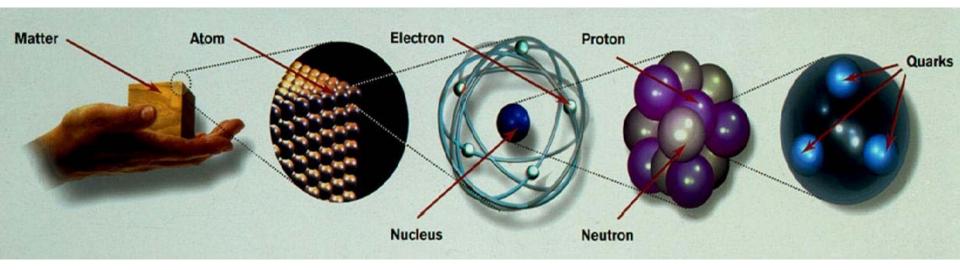
Zero – Emission Data Centers


Evolution of Liquid Cooled Systems

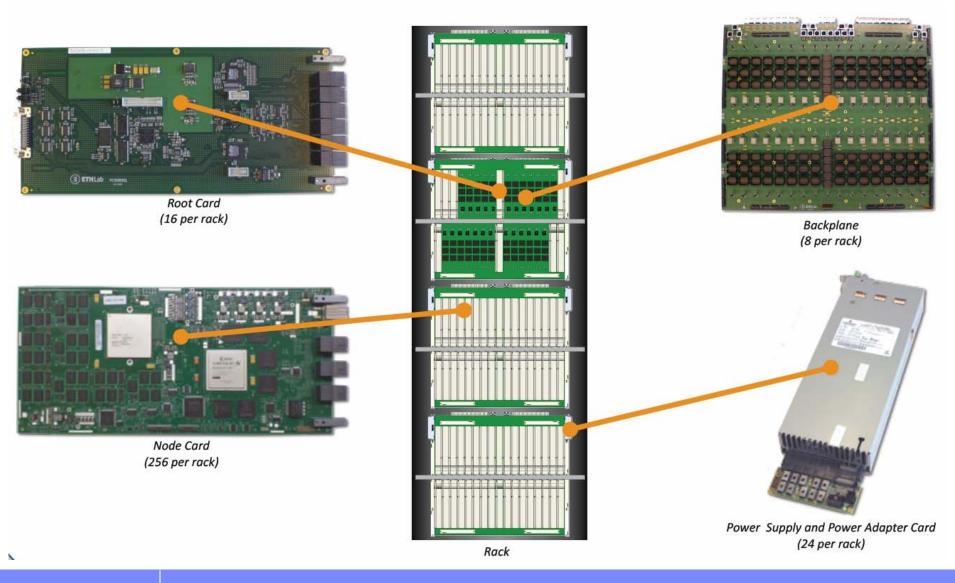
Left: Rear door cooler removing heat from air with cold water

Right: P575 with cold water processor cooling

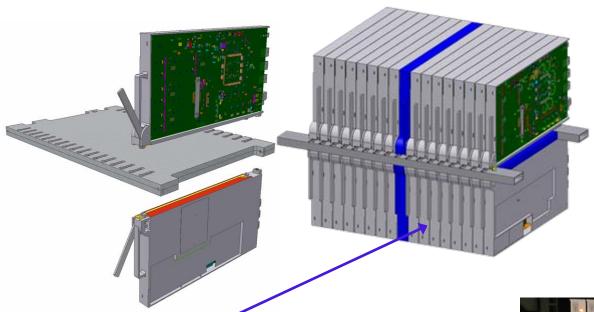
 Water slowly approaches chips....

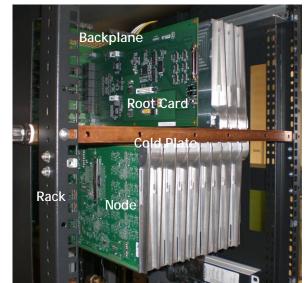

- Water cooled CRACs / CRAHs in Datacenters
- Rear door coolers, intercoolers etc. in Racks
- The closer water comes the hotter it can be while having the same cooling performance

The QPACE Project


<u>**OPACE = Quantum Chromodynamics PArallel computing on CEII**</u>

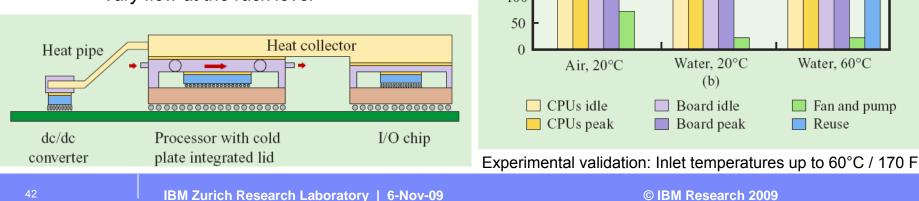
- Research collaboration of IBM Development and European universities and research institutes
- Goal to build a prototype of a cell processor-based supercomputer.
- Funded by the German Research Foundation (DFG Deutsche Forschungsgemeinschaft) as part of a Collaborative Research Center (SFB – Sonderforschungsbereich [TR55]).





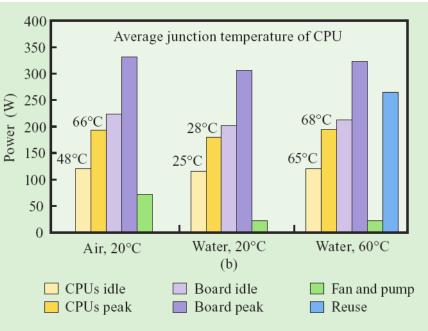
The QPACE System

Warmwater Cooled System

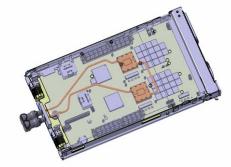

- 56 coldplates/backplanes (8 per rack)
- 32*56 = 1792 nodecards
- 100% energy recovery with warm water operaration 35°C (100 F)
- Medium thermal resistance
- Gottfried Goldrian, Michael Malms, Juergen Marschall, and Harald Pross IBM Research & Development, Boeblingen, GER

First Prototype at IBM Rüschlikon

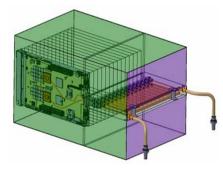
- Reduce cooling energy by tailored water cooling system
 - Cooling the chip with "hot" water (up to 60°C / 170 F)
 - Free cooling: no energy-intensive chillers needed
- Reuse waste heat for remote heating
 - The prototype reuses 75% of the energy for remote heating
 - Obtain recyclable heat (60°C) for remote heating.
 - Best in a cold climate with dense population


Prototype

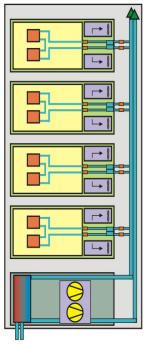
- Similar Power of CPU and main board for air / liquid 60°C cooled version
- Large fan power reduction
- Liquid pump much more efficient and can vary flow at the rack level



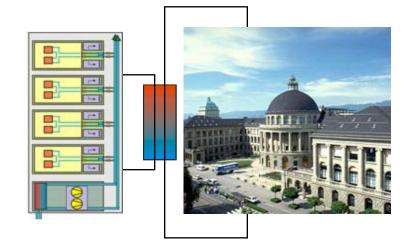
Direct attached / integrated microchannel cold plate with one interface



Technical Objectives for Aquasar System



QS/HS22 Blades with fluid-loop



2. Fully populated BladeCenter® servers with manifold

System uses a mixed population of 11QS22 IBM PowerXCell 8i and 3 H22 Intel Nehalem Blades per Blade Center® server.

3. Populated Rack with Blade Center® servers and pumps

4. Connection to heat distribution system of ETH for 50-60°C hot water

Two Blade Center® servers are liquid cooled and one is air cooled for reference. The rack also holds communication equipment and a storage server. The closed cooling loop holds 10 liters of water, the coolant flow is 30 liters per minute.

Aquasar: Objectives and Deliverables

Objectives

- Use high-performance "hot"-water cooling to allow 2x energy cost reduction and large reduction of carbon emission
- Show that "zero"-emission datacenter operation is possible & profitable
- Validate concept and accelerate path to commercialization

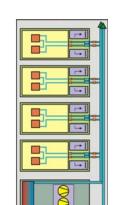
Deliverables and Next Steps

- Zero-emission datacenter prototype (2 hot water cooled blade centers in a rack)
- Deploy system with 33 QS22 Cell blades + 9 HS22 Intel Nehalem blades at ETH
- Joint IBM-ETH-EPFL CCEM project to started August 2009
- 3-year CCEM project to optimize system for 100% energy recovery at > 60°C / 170 F
- Optimize efficiency and carbon footprint with different loads and clock speeds
- Use experience to create future standards and best practices for datacenter operation with Green Grid

Aquasar: Milestones and Status

Current Status

- Cooling loops for blades and blade centers designed and conversion to hot water cooling pending
- ETH location is being prepared to connect system to water cooling system

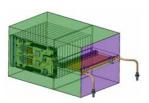

Milestones

- December 2009: Hot water cooled components assembled (blade center and rack)
- April 2010: Hybrid Cell/Nehalem System operative and initial parameters study completed and system connected to ETH energy re-use.

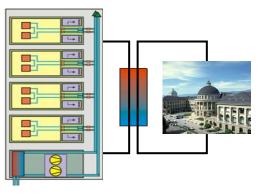
Target

- Reach world record in performance (MFlops/W) and low emission (MFlop/gCO₂)
- Lead standardization for future datacenters
- PUE_{reuse} less than 1
- This FOAK will deliver an innovative solution to run future datacenters

IBM Zurich Research Laboratory | 6-Nov-09

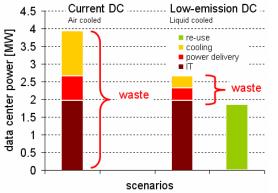


Populated rack with


pump and metrology

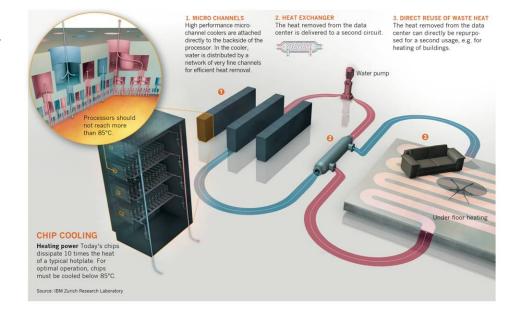
Blade with fluidloopHS22 (Intel) and QS22 (Cell)

BladeCenter with manifold



Connection to ETH

Going Green Impact Tool



- Assess a clients data center with two basic scenarios:
- (A) Status quo and no green solutions are implemented
- (B) Green solutions are implemented
- Assess energy efficiency and financial impact of scenario A and B
- Simplified) total cost of ownership (TCO) analysis
- Run a ROI analysis of a project
- Contact: Hannes Engelstaedter

Summary

- Thinking global about energy usage
 - Total cost of ownership perspective
 - Demand and supply of sensible heat
 - Thermal energy re-use
- Energy re-use in liquid cooled data centers
 - Reduction of thermal resistance from junction to coolant by chip water cooling
 - Optimization of exergy efficiency
- Aquasar low-emission demonstrator
 - Cooling chips with "hot" water to obtain recyclable heat (65°C / 178 F) for remote heating
 - Best in a cold climate with dense population
 - Free cooling in all climates: No energy-intensive chillers needed
- Aquasar specifications
 - Saves 40% of energy
 - Reduces emission by 85% through heat re-use on ETH campus

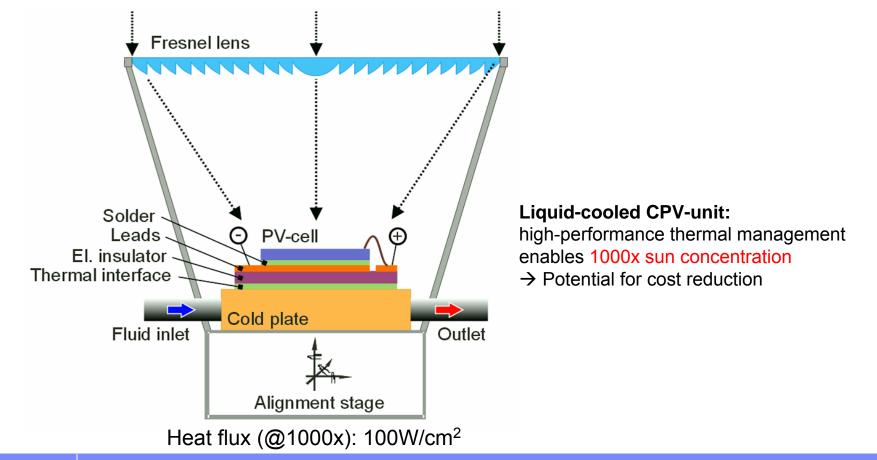
Main Messages and Next Steps

Key Component for Future Datacenters

- Chip cooling technology exists but needs to be combined with current computers
- Centralized computing more efficient and emission free
- Roadmap for large efficiency increase in 10 years
 - 3D interlayer cooling and electrical-thermal codesign

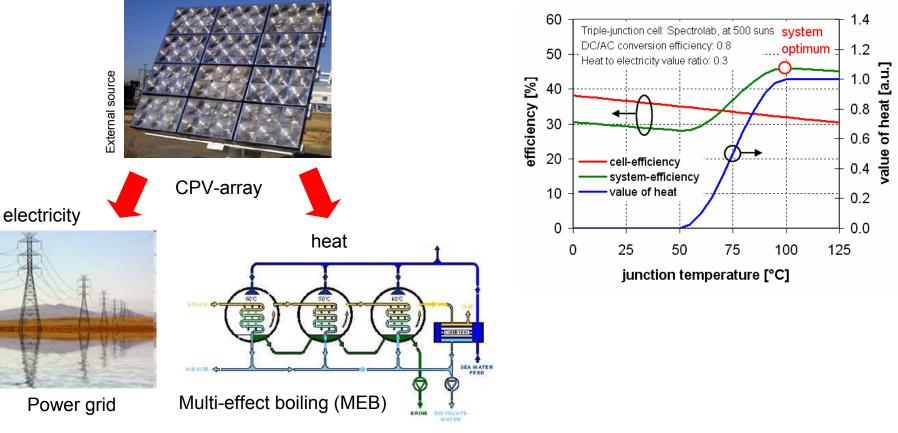
Next Steps

- Optimization of coolant temperature as function of demand and supply
- Scale up to full size HPC and business data centers: We are ready are you ready as well?
- Thermal energy re-use in solar collectors


TOP 50 LOW-CARBON PIONEERS

Thermal Packaging Leverage in Concentrated Photovoltaic

Concentrated photovoltaic


- Expensive triple junction cells with 41% peak cell-efficiency
- Chip cost leverage by sun concentration (today 50 to 200x)
- Concentration limited by junction temperature (efficiency, reliability)

Re-Use: Concentrated Photovoltaic serves Desalination

Worldwide socio-ecological challenge of the 21th century

- Energy demand
- Fresh water supply

System-efficiency: CPV with MEB

 \rightarrow Locations with high sun irradiation and scarce fresh water resources coincide

Acknowledgment

- Advanced Thermal Packaging Group Members Thomas Brunschwiler, Werner Escher, Wulf Glatz, Javier Goicochea, Ingmar Meijer, Stephan Paredes, Brian Smith, Reto Waelchli, Ryan Linderman
- Microfabrication team
 Rene Beyeler, Daniele Caimi, Ute Drechsler, Urs Kloter, Richard Stutz, Kurt Wasser, and Martin Witzig
- IBM Boeblingen Research and Development GmbH (Germany)
 Gottfried Goldrian, Michael Malms, Juergen Marschall, Harald Pross, and Wolfgang Zierhut
- IBM Research Yorktown (USA)
 Paul Andry, Evan Colgan, Claudius Feger, Winfried Haensch, Hendrik Hamann, Theodore vanKessel, Ken Marston, Yves Martin, John Maegerlein, and Thomas Theis
- IBM Server and Technology Group in East Fishkill and Poughkeepsie (USA)
 Pepe Bezama, Kamal Sikka, Michael Ellsworth, Roger Schmidt, and Madhu Iyengar
- IBM Austin and other locations (USA)
 Dave Frank, Vinod Kamath, Hannes Engelstaedter
- Financial Support: IBM Zurich Research Laboratory, IBM Research FOAK program, Swiss Government KTI Projects, EU FP7 project NanoPack

Thank your for your attention

Literature and Links

Youtube Video on Zero-Emission Datacenter: http://youtube.com/watch?v=1J7KpgozpRs&feature=user

- T. Brunschwiler, B. Smith, E. Ruetsche, and B. Michel, "Toward zero-emission datacenters through direct reuse of thermal energy", IBM JRD 53(3), paper 11; see: <u>http://www.research.ibm.com/journal/</u>
- H. Engelstaedter, "Finding the Right Green IT Strategy Is a Great Challenge—The 'Going Green Impact Tool' Supports You," Smart Energy Strategies: Meeting the Climate Change Challenge, vdf Hochschulverlag an der ETH Zurich, 2008, pp. 48–49; see <u>http://www.vdf.ethz.ch/service/Smart/Smart_Energy_Strategies.pdf</u>
- T. Brunschwiler, H. Rothuizen, M. Fabbri, U. Kloter, B. Michel, R. J. Bezama, and G. Natarajan, "Direct Liquid Jet-Impingement Cooling with Micro-Sized Nozzle Array and Distributed Return Architecture," Proceedings of the IEEE ITHERM Conference, San Diego, CA, 2006, pp. 196–203.
- "Climate Change 2007—The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the IPCC," Cambridge University Press, Cambridge, ISBN 978 0521 70596-7.
- S. Hamm, "It's Too Darn Hot," Business Week, March 31, 2008, pp. 60–63.

"Liquid Logic", The Economist Technology Quarterly, September 2008.