

PUSHING BOULDERS UPHILL: THE DIFFICULTY OF NETWORK INTRUSION RECOVERY

USENIX LISA 2009 M. Locasto, M. Burnside, & D. Bethea

Take-home Message

"The problem of network intrusion recovery is a particularly thorny exercise in researching, designing, and creating usable security mechanisms."

Challenge: Intrusion Recovery

What should I do when my infrastructure is infiltrated on a massive scale?

Sage Advice

"Damage control is much easier when the actual damage is known. If a system administrator doesn't have a log, he or she should reload his compromised system from the release tapes or CD-ROM."

- Firewalls and Internet Security: Repelling the Wily Hacker (1994)

Intrusion Recovery: Art, Not Science

- Scenario and attack diversity
 - Institutional and technology differences
- Stigma or legal consequences to admitting breaches
 Lack of public, documented scenarios
- Lack of techniques that smoothly handle both technical and human factors involved in recovery
- Thinking of detection and repair as "accomplished" rather than perpetually "ongoing" is misleading

Adding to the Lore

- 6
- Cliff Stoll's "Stalking the Wily Hacker" (05/88)
- Spafford's analysis of Morris Worm (06/89)
- \Box Cheswick's log of the Berferd case (01/92)
- □ Abe Singer's experiences (02/05)
- □ Frields: "Chronicle of a Server Break-in" (03/09)

Intrusion Incidents

- March 2007
- December 2007
- March 2008
- Many other anecdotes
 - Virginia Prescription Monitoring Database (\$10M ransom)
 - Breaches of U.S. electric grid
- Verizon 2008 Data Breach Incident Report

Organization Details, Pre-Incident

- Mid-sized academic department at large university
- Roughly 1000 heterogeneous workstations
- $\simeq \sim 50$ infrastructure machines
- Network infrastructure generally not firewalled
- Three to five staff members, single manager
 - Range of experience

2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	
30	31						

Center for Secure Information Systems, George Mason University

11.4.2009

2	3	4	5	6 detection	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	31					

Center for Secure Information Systems, George Mason University

2	3	4	5	6 detection	7	8
9	10 detection	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	31					

Center for Secure Information Systems, George Mason University

11.4.2009

2	3	4	5	6 detection	7	8
9	10 detection	11	12	13 diagnosis	14 diagnosis	15
16	17 diagnosis	18	19	20	21	22
23	24	25	26	27	28	29
30	31					

Center for Secure Information Systems, George Mason University

11.4.2009

2	3	4	5	6 detection	7	8
9	10 detection	11	12	13 diagnosis	14 diagnosis	15
16	17 diagnosis	18	19	20	21	22
23	24	25	26	27	28	29
30	31					

Center for Secure Information Systems, George Mason University

2	3	4	5	6 detection	7	8
9	10 detection	11	12	13 diagnosis	14 diagnosis	15
16	17 diagnosis	18	19	20	21	22
23	24	25	26	27	28	29
30	31					

Center for Secure Information Systems, George Mason University

11.4.2009

2	3	4	5	6 detection	7	8
9	10 detection	11	12	13 diagnosis	14 diagnosis	15
16	17 diagnosis	18	19	20	21	22
23	24	25	26 Las	27 t day for	half the l	T staff.
30	31					

Center for Secure Information Systems, George Mason University

11.4.2009

2	3	4	5	6 detection	7	8
9	10 detection	11	12	13 diagnosis	14 diagnosis	15
16	17 diagnosis	18	19	20	21	22
23	24	25	26 Las	27 t day for	half the l	T staff.
30		ows Vistar				

2	3	4	5	6 detection	7	8
9	10 detection	11	12	13 diagnosis	14 diagnosis	15
16	17 diagnosis	18	19	20	21	22
23	24	25	26 Last	77 da, ^د مر	half the l	T staff.
30	Windo	ows Vista C		Re	set all pa	sswords

2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	
30	31						

Lessons Learned

- Intrusions discovered through manual examination of puzzling symptoms and side effects of attacks, not Snort or a commercial anti-virus tool
- Complete forensics difficult to achieve
 - Try balancing risk of analyzing a running server providing both essential services as well as service to the attacker
 - Operational demands can preclude the opportunity to learn from incidents

Tension: Forensics

	Disable Host	Keep Host Up
Staff	Reputation	Can observe host; provides service
ISP	Reputation	Field less service calls
Users	Risk to confidentiality, integrity, privacy, & availability	Keep service

Lessons Learned (cont.)

We rely on human memory too much:

- "…goals, suggestions, or objections [can be] misunderstood, warped, or forgotten, leaving potentially large gaps in the actual level of security achieved after repairs complete."
- Having no single complete & coherent forensics analysis gives rise to multiple viewpoints
- Planning for future attacks requires a pervasive, unobtrusive recording system

Lessons Learned (cont.)

Intrusions present opportunities for the good guys!

- Creative ways of distributing new credentials out of band
- Replace an outdated, slow, or weak authentication system

Lessons Learned (cont.)

- Recovery decisions can be driven by informal preferences rather than objective, quantitative comparison of security properties
 - **E.g.**, switching OS platforms
- Improvisation seems to rule the day
 - Challenge: design tools that meet the engineering challenges of repairing a network and the management and usability challenges of dealing with humans

Research Directions

Education!

- Educated users are great IDS systems
- Educating students on how to put a network back together again can be even more instructive than CTF exercises
- Need an "Incident Archive" based on a standardized encoding of intrusion scenarios and testbed / "internet range" scenarios
- Pervasive recording infrastructure: "recovery trees"
- Objective technical comparisons of alternatives
 - NLP on release notes
 - Query bug databases & mailing lists

Concluding Caveat

"We do not aim to lay blame with individuals...our goal is to present the facts, disposition of the network, and decisions...as a way to motivate tools that ease the burden on IT staff."

Conclusion

"We believe the community should focus on creating mechanisms that deal with recovery as a system composed of both humans and computers." Contact: mlocasto@gmu.edu

Many thanks to our shepherd, Nicole, for her help, patience, and assistance

Links: Verizon Report & Fedora Saga

- http://securityblog.verizonbusiness.com/ 2008/06/10/2008-data-breach-investigationsreport/
- http://www.linux-magazine.com/Online/News/
 Update-Fedora-Chronicle-of-a-Server-Break-in

28

Tension: Forensics

- □ ISP: wants machine taken down
- Staff: keep machine operational to observe it
- Staff & Users: Machine must be operational b/c it provides a vital service
- Users: want machine taken down (e.g., it represents an invasion of privacy)
- Staff: want machine disabled (e.g., no mess in my backyard!)