

Transparent Mobile Storage Protection in Trusted Virtual Domains

Luigi Catuogno¹, Hans Löhr¹, Mark Manulis², Ahmad-Reza Sadeghi¹, Marcel Winandy¹

¹Ruhr Universität Bochum (Germany)

²Technische Univ.Darmstadt – Center for advanced Security Research Darmstadt (CASED)

Mobile Storage Devices (MSD)

- Memory devices used as "portable hard disks".
 - Pluggable into a wide variety of equipments (e.g., cameras)
 - Robust, reliable and flexible
- However
 - Raise several security issues

Security Issues with MSD

- Can be intercepted by outsiders
 - Unauthorized read & manipulation of sensitive data
- However
 - Usage policy and restrictions not sufficient
 - Impacts on flexibility
 - Policies are often error prone

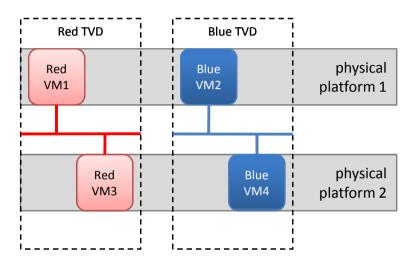
Goals

- Flexible and transparent deployment of MSDs within the same organizational network
 - Guaranteeing data confidentiality and integrity
 - Prevention of unauthorized access by outsiders
 - Prevention of unintentional keys/data disclosure by insiders
 - Enforcing access policy also when the platform is off-line.

Trusted Virtual Domains (TVD)

- The forthcoming framework to implement multi-domain/singleinfrastructure computer networks
 - Externalized data centers
 - Organizational intranets which require the separation of different data flows.

Trusted Virtual Domains

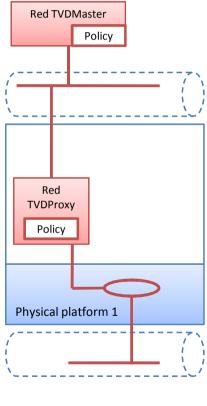


Trusted Virtual Domains (TVD)

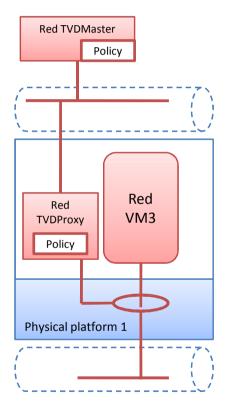
- Coalition of Virtual Machines that:
 - Trust each other
 - Enforce a common security policy (TVD Policy)
 - Span over a physical infrastructure, shared with other TVDs

Trusted Virtual Domain

- Virtual machines of different TVDs are separated even if running on the same platform
- Virtual machines of the same TVD are connected through a dedicated and isolated VLAN


TVD Architecture

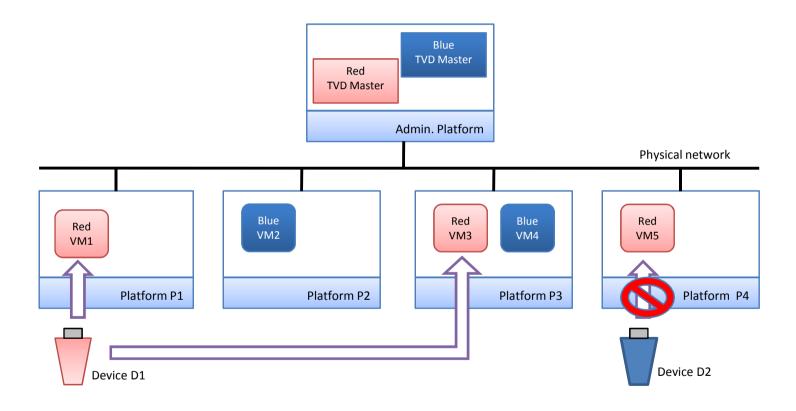
- TVD Master
 - A special node that controls the access to the TVD is done by following the admission control rules specified in the TVD Policy
- TVD Proxy
 - A compartment deployed on each platform to locally enforce the TVD Policy



Trusted Virtual Domain

Deployment & Joining

TVD Deploy

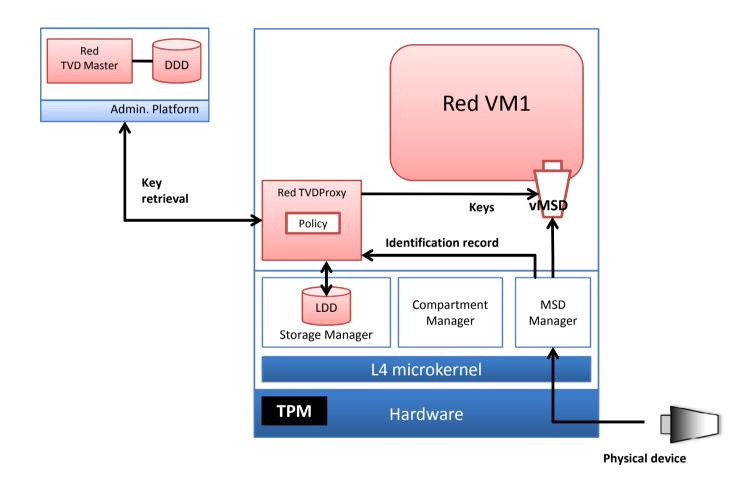

TVD Join

Our Proposal: System operation

Handling Mobile Storage Devices

Requirements

- Different MSDs may unpredictably appear and disappear within the TVD
 - **Device identification.** Whenever an MSD is plugged in, the platform should be able to distinguish the device and the domain this device belongs to.
 - **Dynamic device management.** The architecture should be able to enforce the policy and deliver the correct encryption keys wherever the device is plugged-in
 - Transparent and mandatory data encryption and signature.



Our Solution

- <u>Device identification.</u> A unique identification record (IR) is assigned to the device when it is *initialized*
- <u>Key retrieval.</u> Encryption (and signing) keys are indexed with the IR and stored in a two level database (Local/Domain Device Directory)
- Access Policy Enforcement
 Is accomplished by the
 TVD infrastructure. Device access policy is incorporated
 into the TVD Policy.
- <u>Device Access.</u> Data encryption/integrity verification is transparently done by a specific component on the platform and is not in charge to the "user" VM.

The Platform Architecture

Our Proposal: Data Encryption and Storage

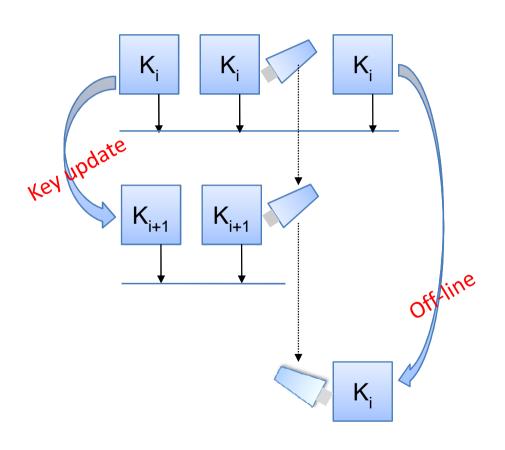
Accessing data

- Each device is associated to a unique encryption key
- Each platform has an individual signing key for each device and a shared public key
- Written data are encrypted and signed
- Reads succeed only if data has a valid signature

Encryption Scheme

- Lazy revocation:
 - Triggers re-encryption of only newly modified data
 - Not all distributed data has to be reencrypted
 - -Whenever a user is revoked
 - A new key is delivered to remaining users
 - Encryption is done always with the most recent key

Off-line access to MSDs



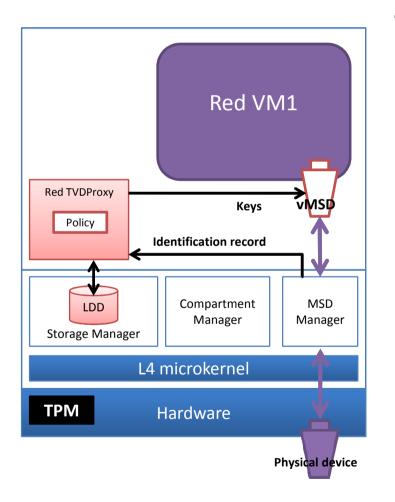
Off-line scenario: requirements

- **Delegation.** Off-line platforms should be able to enforce the access control policy
- <u>Delayed re-encryption.</u> Off-line platforms should be enabled to access data written up to the time they were online
- <u>Traceability and recovery.</u> Domain member should be able to track ad revert unauthorized data changes

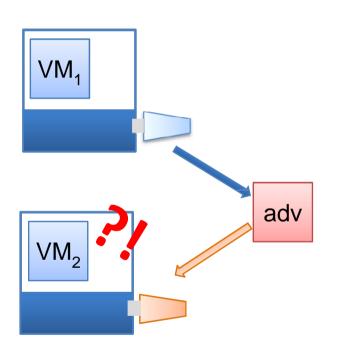
Off-line scenario: our solutions

- <u>Delegation</u>: off-line platforms store keys into their LDD
- Delayed re-encryption: Lazy revocation of encryption keys allows off-line platform to access (at less) old-data.

Off-line scenario: our solutions

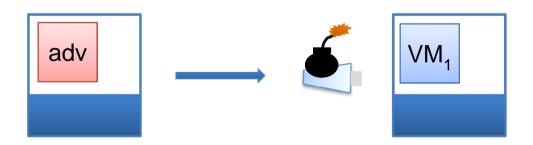

- Traceability and recovery: Employing a versioning file system to keep track of all modifications.
 - Off-line platforms are enabled to access the most recent version they can decrypt
 - Whenever a revocation occurs it is possible to revert all changes done by revoked platforms

Security considerations


Attacks to the "user machine"

- The adversary could exploit any VM:
 - Enjoys its data access privileges
 - cannot access or handle the keys
 - Cannot override the TVD Policy
 - Keys in the LDD cannot be accessed by corrupted compartments
 - Cannot tamper the device's IR

Attacks to MSDs



- Denial of Service
 - file deletion/corruption
 - device re-initialization
- Roll-back
 - Bringing back the device at a certain time in the past by overwriting the current file system with an older (though legitimate) image

Attacks to off-line platforms

- Revoked platform can exchange data with unaware off-line platforms.
 - Provide corrupted data

Conclusion

Results

- Free and transparent deployment of MSDs within the same TVD
 - Coherently incorporated into the TVD infrastructure
 - Data confidentiality and integrity through transparent and mandatory encryption and signature
 - Decentralized Access Policy enforcement
 - Even while data is accessed by an off-line platform

Future Direction

- File system improvement
- Preventing the diffusion of malware through MSDs

Further Info

- System Security Lab at Ruhr Universität Bochum (DE)
 - http://www.trust.rub.de
- Turaya Security Kernel
 - http://www.emscb.org
- OpenTC: EU Project featuring an implementation of Trusted Virtual Domain
 - http://www.opentc.net

Thank you!