
conference

proceedings

LISA ’09: 23rd
Large Installation
System
Administration
Conference

Baltimore, MD, USA
November 1–6, 2009

Proceedings of LISA ’09: 23rd Large Installation System
 A

dm
inistration Conference

Baltim
ore, M

D, USA
N

ovem
ber 1–6, 2009

Sponsored by

USENIX and SAGE
in cooperation with

LOPSA & SNIA

© 2009 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. USENIX acknowledges all trademarks herein.

ISBN 978-1-931971-71-3

USENIX Association

Proceedings of LISA ’09:

23rd Large Installation System

Administration Conference

November 1–6, 2009
Baltimore, MD, USA

Conference Organizers
Program Chair
Adam Moskowitz

Program Committee
Paul Anderson, University of Edinburgh
Paul Armstrong
Travis Campbell, AMD
Narayan Desai, Argonne National Laboratory
Ian Dotson, University of Washington
Andrew Hume, AT&T Labs—Research
Brent Hoon Kang, The University of North Carolina at

Charlotte
William LeFebvre, Digital Valence, LLC
Chris McEniry, Sony Computer Entertainment America
Mario Obejas, Raytheon
David Plonka, University of Wisconsin
Mark D. Roth, Google, Inc.
John Sellens, SYONEX
Gautam Singaraju, The University of North Carolina at

Charlotte
Nicole Velasquez, University of Arizona

Invited Talks Coordinators
Doug Hughes, D.E. Shaw Research, LLC
Amy Rich, Tufts University

Workshops Coordinator
Lee Damon, University of Washington

Guru Is In Coordinator
John “Rowan” Littell, California College of the Arts

Posters Coordinator
Gautam Singaraju, The University of North Carolina at

Charlotte

Steeering Committee
Paul Anderson, University of Edinburgh
David N. Blank-Edelman, Northeastern University
Mark Burgess, Oslo University College
Alva Couch, Tufts University
Æleen Frisch, Exponential Consulting
Xev Gittler, Morgan Stanley
William LeFebvre, Digital Valence, LLC
Mario Obejas, Raytheon
Ellie Young, USENIX Association
Elizabeth Zwicky, Consultant

USENIX Board Liaison
Alva L. Couch, Tufts University

The USENIX Association Staff

External Reviewers
Bob Apthorpe
Kenytt Avery
Lori Barfield
Matthew Barr
Lois Bennett
Bill Cheswick
Marc Chiarini
Alva Couch
Jason Faulkner
Esther Filderman
Jon Finke
Scott Francis
David Harnick-Shapiro

Peter Jansson
Gabriel Krabbe
Tom Limoncelli
Cat Okita
Dustin Puryear
Matthew Sacks
Josh Simon
Chris St. Pierre
Marc Staveley
John Stoffel
Leon Towns-von Stauber
Rudi van Drunen
Elizabeth Zwicky

LISA ’09: 23rd Large Installation System Administration Conference
November 1–6, 2009
Baltimore, MD, USA

Message from the Program Chair . v

Wednesday, November 4

The Human Side of Sysadmin

Pushing Boulders Uphill: The Difficulty of Network Intrusion Recovery .1
Michael E. Locasto, George Mason University; Matthew Burnside, Columbia University; Darrell Bethea,
University of North Carolina at Chapel Hill

Two-Person Control Administation: Preventing Administation Faults through Duplication 15
Shaya Potter, Steven M. Bellovin, and Jason Nieh, Columbia University

The Water Fountain vs . the Fire Hose: An Examination and Comparison of Two Large Enterprise Mail Service
Migrations .29
Craig Stacey, Max Trefonides, Tim Kendall, and Brian Finley, Argonne National Laboratory

Thursday, November 5

Networks, Networks, Networks

Crossbow Virtual Wire: Network in a Box .47
Sunay Tripathi, Nicolas Droux, Kais Belgaied, and Shrikrishna Khare, Sun Microsystems, Inc.

EVA: A Framework for Network Analysis and Risk Assessment .65
Melissa Danforth, California State University, Bakersfield

An Analysis of Network Configuration Artifacts .79
David Plonka and Andres Jaan Tack, University of Wisconsin—Madison

Security, Security, Security

Secure Passwords Through Enhanced Hashing .93
Benjamin Strahs, Chuan Yue, and Haining Wang, The College of William and Mary

SEEdit: SELinux Security Policy Configuration System with Higher Level Language .107
Yuichi Nakamura and Yoshiki Sameshima, Hitachi Software Engineering Co., Ltd.; Toshihiro Tabata, Okayama
University

An SSH-based Toolkit for User-based Network Services . 119
Joyita Sikder, University of Illinois at Chicago; Manigandan Radhakrishnan, VMware; Jon A. Solworth,
University of Illinois at Chicago

Friday, November 6

On the Fringe

Federated Access Control and Workflow Enforcement in Systems Configuration .129
Bart Vanbrabant, Thomas Delaet, and Wouter Joosen, K.U. Leuven, Belgium

CIMDIFF: Advanced Difference Tracking Tool for CIM Compliant Devices . 145
Ramani Routray, IBM Almaden Research Center; Shripad Nadgowda, IBM India Systems and Technology Lab.

Transparent Mobile Storage Protection in Trusted Virtual Domains . 159
Luigi Catuogno and Hans Löhr, Ruhr-University Bochum, Germany; Mark Manulis, Technische Universität
Darmstadt, Germany; Ahmad-Reza Sadeghi and Marcel Winandy, Ruhr-University Bochum, Germany

Message from the Program Chair

Dear LISA Attendee:

Back in 1989, LISA was just a small, two-day workshop, while the conference we now call the USENIX Annual
Technical Conference was held twice a year and was known as “Summer USENIX” or “Winter USENIX.” Most of
the attendees were programmers, often researchers, but some of us were either dual-role programmer-sysadmins or
dedicated sysadmins. The papers were mostly about operating system research, but a few were clearly of interest to
system administrators: for example, Brent Callaghan had just introduced the automounter, two guys from BBN pre-
sented an implementation of dial-up IP for UNIX, people from NYSERnet had an implementation of SNMP, and
Denise Ondishko from the University of Rochester delivered her paper “Administration of Department Machines
by a Central Group.” In 1990, LISA changed from a “workshop” to a “conference,” but many LISA attendees
remained regulars at the general conference. LISA added a third conference day in 1991. By the time I went to my
first LISA, in 1994, a handful of tutorials had been added, on the Monday and Tuesday before the conference.

We’ve all come a long way since 1989. LISA is now one of USENIX’s flagship conferences, with six days of
tutorials, three days of workshops, and three days of multitrack technical sessions. LISA papers have moved from
talking about line printer systems and early implementations of what would eventually become sudo, to automated
virtual networks, high-level languages to make dealing with SELinux easier, and protection schemes for USB keys
using trusted virtual domains. Most importantly, most of the LISA attendees are dedicated, professional system
administrators rather than programmers who drew the short straw and got “taking care of the systems” added to
their regular duties.

Some things about LISA don’t change. In particular, it takes a small army of people to make the conference
happen—far too many to name or count here. Let’s just say that a quick count puts the number well over 200, and
that doesn’t include the on-site staff. This conference wouldn’t be possible without all these people. Compared to
all of them, my role as program chair is more of a figurehead and high-level organizer than anything else. As you
move about the conference, please take a moment and say “thanks” to anyone you see wearing an official badge
holder or ribbon.

Of the 38 papers submitted (or 34, depending on how you want to count them), we accepted 12. Those papers, the
full text of which appears in these proceedings, are a relatively small but significant part of the conference, and,
like those of every LISA past, represent the best research and “deep thought” about system administration today.
I encourage you to read every one of them. I also encourage you to make an effort to meet new people, to listen to
a talk or paper that covers material outside your usual interests, and to attend a LISA activity that’s new to you.
Finally, remember to have fun. After all, how many times do you get to hang out with hundreds of people who all
understand what you do for a living, who know the same acronyms you do, and who don’t think you’re weird? Take
advantage of this opportunity while you can!

Adam Moskowitz
Program Chair

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 1

Pushing Boulders Uphill: The Difficulty of Network Intrusion Recovery

Michael E. Locasto
George Mason University

mlocasto@gmu.edu

Matthew Burnside
Columbia University
mb@cs.columbia.edu

Darrell Bethea
UNC Chapel Hill
djb@cs.unc.edu

Abstract

One of the most significant unsolved problems for
network managers and system administrators is how
to repair a network infrastructure after discovering
evidence of an extensive compromise. The technical
issues are compounded by a breathtaking variety of
human factors. We present a study of three significant
compromises of a medium-scale network infrastructure.
We do so as a way to expose the difficulties — both
technical and human — inherent in intrusion recovery.
Most network users take a “secure” network infrastruc-
ture for granted. Real events show that this level of faith
is unwarranted, as is the belief that intrusions are or
can be completely repaired, especially in the absence of
research on network recovery mechanisms that explicitly
take the needs of support staff into account. We conclude
with lessons learned and some detailed suggestions for
tools that can help bridge this gap.

“Damage control is much easier when the actual
damage is known. If a system administrator doesn’t have
a log, he or she should reload his compromised system
from the release tapes or CD-ROM.”
– Firewalls and Internet Security:
Repelling the Wily Hacker [6].

1 Introduction

This paper presents a case study of the impact of so-
cial pressure, technical experience, bias, and other con-
straints on both individual and group risk assessment and
decision-making during the recovery efforts from three
significant network intrusions at a single site in March of
2007, December of 2007, and March of 2008.

Although many people enjoy the benefits of access
to information and communication through networked
systems, most take the security and reliability of these

infrastructures (residential ISPs, workplace IT depart-
ments, the IT infrastructure of educational institutions,
etc.) for granted. Users do not often see the impact of
computer break-ins and intrusions beyond the occasional
sensational story that reaches the front page of some ma-
jor news outlet. Skilled attackers work hard not to be no-
ticed. System administrators worth their salt work even
harder to make sure intrusions are prevented. Institutions
have deep concerns about negative publicity.

As a result, users have a misguided understanding of
the frequency of such attacks and the difficulty of main-
taining and repairing a network. Users may incorrectly
assume that IT staff can fully repair the damage or harm
(think of copied intellectual property, computer cycles
used, reputations lost) caused by an attacker. Even re-
searchers in the systems security space may summarily
dismiss the task as a simple, if somewhat lengthy, system
administration job, and thus unworthy of investigation. It
is our opinion that the problem of coordinating the repair
and restoration of network infrastructures is a major un-
addressed problem that embeds a number of unanswered
research questions involving the intersection of human
factors and technical challenges.

1.1 Dual Nature of the Problem

Compromises of medium or large networked systems
(such as the infrastructure supporting a research depart-
ment, college, or university) are difficult to analyze and
respond to for a number of reasons. As a result of the di-
versity of the problem and the lack of research into meth-
ods that deal with both technical and human factors, net-
work intrusion recovery is more of an art than a science.
The state of the art often involves manually reinstalling
machines from read-only media, as the traditional text on
firewalls [6] reminds us in the quote above. Even when
this process is automated, it still resets systems to some
initial state, thus deleting valuable data that may not have
been backed up, or information that would be of some

2 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

use in a forensic investigation. At this point, we must re-
sist the temptation to treat the problem as solved by turn-
ing to some technical solution (e.g., automated network-
based OS installations, “ghosting” software, or recent re-
search on an automated process for working backward
from the attack to undo the damage caused [13, 7]). Both
technical and human factors introduce obstacles that sim-
ply executing a software application cannot overcome.

Even with the assumption that we can reliably detect
an intrusion, there are many technical issues related to
repairing a wide variety of hosts, nodes, objects, and ar-
tifacts. These issues, and the decisions necessary to ad-
dress them, are compounded by a number of human fac-
tors. The workflow we depict in Figure 1 and the issues
listed below are representative rather than exhaustive.

First, even with deep auditing information, it can be
difficult to describe the extent of an intrusion within the
context of a single system. Second, determining the ex-
tent of the damage throughout the network requires repli-
cating or extracting those conditions to widen the scope
of the detection process. Once the process of detecting
an attack and determining its scope have been accom-
plished, then the process of recovery presents an over-
whelming series of choices and possibilities. As we can
see from the incidents described later in the paper, this
process is not strictly linear. Thinking of detection as
“accomplished” rather than “ongoing” is misleading.

Planning and implementing a recovery can involve a
variety of changes to systems, hardware, applications,
and network topology. Individual systems require foren-
sics and may need to be isolated, removed, updated, or
reconfigured. Software applications may need to be re-
configured or have patches applied, which raises the twin
issues of which applications to fix in what order and what
patches to generate or obtain (and what order to apply
them). The network topology may need to change: new
routers, switches, or other equipment may need to be in-
troduced or existing equipment reconfigured. Firewall
rules may need to be introduced or modified. Existing
IDS sensors could require retuning. During this entire
process, the team must test and verify each step.

We begin to see recovery as a complicated, fluid pro-
cess. Response teams often labor under a compressed
time frame to fix as large a part of the intrusion in as short
a time as possible. The forensics process experiences
pressure to finish quickly to reduce service downtime.
The recovery team’s training and skill level, along with
the vagaries of interpersonal relationships, can constrain
what types of actions are realistic. Promotion, demotion,
hiring, or termination decisions can affect someone’s
willingness to engage in extensive recovery actions. In
addition, attacks rarely occur at convenient times; if the
incident occurs near social events or holidays, time pres-
sure can greatly increase.

Although some technical fixes may be “obvious”, both
internal (to the team) and external (i.e., the team’s cus-
tomers and employers) vested interests in maintaining
the network status quo can prevent the implementation
of these fixes. The team must be familiar with the prefer-
ences, attitudes, and biases of the user or customer pop-
ulation in order to “sell” the repair to them. Finally, the
reputations of the team, individuals, customers and users,
and institution requires careful consideration.

1.2 Contributions
This paper offers evidence that illustrates what might
otherwise be an overlooked point by information security
researchers: intrusion recovery is not a simple systems
administration task. Intrusion recovery, while a large
technical challenge, is further complicated by human–
level issues, and we highlight specific issues involved in
the incidents we describe. In addition to our analysis, we
provide the research community with three real (rather
than artificial, contrived, or based on conjecture) threat
and recovery scenarios. Intrusion recovery systems are
relatively neglected in the research literature; we believe
the community should focus on creating mechanisms
that deal with recovery as a system composed of both
humans and computer systems.

1.3 Background and Related Work
Complete technical solutions to the problem of recover-
ing from realistic intrusions in the research literature are
sparse, although both classic [25, 24, 5] and more re-
cent [23, 11] examples of post-mortem intrusion analy-
sis do exist. Spafford’s analysis [24] of the Morris Worm
and Cheswick’s annotated log of the Berferd case [5] can
be seen as catalysts for changing the way computer sci-
entists and network researchers thought about trust and
security on the fledgling Internet. The analysis of these
incidents helped spur the adoption of stronger authen-
tication mechanisms, the use of firewalls to implement
host communication policies, and research on basic au-
diting tools and intrusion sensors. Singer [23] recounts
how even a well-designed infrastructure managed by an
experienced, professional network security team can be
compromised. This latter analysis helps illustrate just
how difficult and time-consuming it can be to completely
remove an attacker from a system. In particular, the at-
tacker described in Singer’s article would repeatedly find
another avenue into the infrastructure just when the ad-
mins thought they had adjusted their security posture ap-
propriately.

The HotAdmin1 project at UBC has looked at the na-
ture of the job of security administrators [10]. They com-
pare the dynamics of a centralized and distributed secu-

2

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 3

Figure 1: Response flow. Our attempt to define a workflow for a technical response at a high level of abstraction.
Decision trees at individual parts of this workflow can be partially hidden or incomplete with very large branching
factors. This figure belies the fluidity with which a response scenario can take place; detection, diagnosis, and reaction
do not form a strictly rigid, step-by-step process. In searching for a way to more easily visualize the relationships
between these activities, we compromised at a high level of abstraction.

rity group at an academic organization, and how the tran-
sition between the two models worked.

Much research takes a prophylactic stance: networks
and systems should be hardened before an attack occurs.
Needless to say, proactive hardening, even if it provides
strong protection mechanisms like tainted dataflow anal-
ysis [16, 26] only partly addresses the problem: the cost
of use may be high, the adoption rate low, and the “cov-
erage” of the technique (in terms of classes of attacks
defended against) narrow. To date, only memory address
space randomization [2] seems to have seen significant
deployment, but even this protection mechanism only ad-
dresses a certain class of attacks. Other efforts to deal
with intrusion recovery discuss ways to provide secure
backup, alert logging [7, 19], and audit systems [21].
Meanwhile, Kursawe and Katzenbeisser [14] argue that
the prophylactic stance is limited. They introduce a new
paradigm where computer users accomplish useful work
even though their machines are compromised.

The problem itself appears too large for a single, com-
prehensive technical solution [9]. System administra-
tors, therefore, are relegated to selecting a hodgepodge
of sensors and countermeasures to help defend their net-
works and restore order when intrusions are finally no-
ticed. The selection process is driven by a variety of
possible considerations — not just purely technical is-
sues. These considerations may range from cost and re-
source constraints on equipment and personnel to “polit-
ical” factors, personal experience, or recommendations
from friends or colleagues. These factors can exert a
powerful influence. Although neither of the following
cases apply in the incidents we describe, it is not diffi-
cult to imagine such situations. For example, a faculty
member may have had a role in developing a particular
networking technology or intrusion sensor, or an IT com-
pany feels obligated to use only their OS or toolset.

Defending a network involves assessing risk and al-
locating resources to match the perceived threats and

costs [4]. In terms of network intrusion recovery, know-
ing that the network is at a high risk of a compromise
does not directly inform the procedures that should be in
place for repair. Instead, it may inform strategies for re-
ducing or managing risk, and little research exists on sys-
tems for managing the disaster workflow recovery once
a network is compromised.

The psychology community has spent a significant
amount of time studying and trying to understand the
process of human decision making under duress. Payne
et al. [20] provide a good overview of the research in
this area, including beliefs about uncertain events, deci-
sions made under risk and uncertainty, and frameworks
for decision behavior. Consideration of how security-
related decisions are made under stress seem to fall most
naturally into discussions about the threat model a sys-
tem operates under, as bad decisions by the system user
could increase the power of the hypothetical attacker.

Finally, as we saw in our attempts to collect informa-
tion for this case study, the human memory and recol-
lection is notoriously unreliable. The reliability of eye-
witness [27] and earwitness [3] testimony has been ex-
tensively studied by psychologists; in fact, Wells and Ol-
son [27] point out that the only scientific body of liter-
ature on eyewitness reliability exists in the psychology
space. In the computer security field, and in the context
of rebuilding complex network infrastructures and car-
rying out a number of both repetitive and complex tasks
over a long period of time, human memory is relied upon
far too much. Our case study shows that it is possible for
initial planning goals, suggestions, or objections to be
misunderstood, warped, or forgotten — leaving poten-
tially large gaps in the actual level of security achieved
after repairs complete.

3

4 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

2 Methodology

In researching this paper, we interviewed all parties
involved in recoveries from three recent attacks on a
medium-scale network, including administrative staff
and management. We performed an email archive search,
and confirmed many of the details of the attack through
analysis of disk images from a number of the compro-
mised machines. We performed an initial debrief of the
entire IT staff and followed up more extensively with
four of the IT staff members. We have continued moni-
toring the organization’s response.

We emphasize that we do not aim to lay blame with
individuals, and we refrain from naming the people and
organization involved. Each interview subject gave us
permission to interview them and report on the process.
Our goal is to present the facts of the situation, disposi-
tion of the network, and decisions made by the staff in
as clear a light as possible as a way to motivate research
and development of tools that ease the burden on IT staff
during the process of network intrusion recovery.

One of the most significant challenges when respond-
ing to an intrusion is performing forensic analysis to de-
termine the exact impact of the attack. In the case of the
compromises we discuss here, the nature of the attacks
was such that no individual performed a single coherent
analysis. Rather, the analysis was performed piecemeal
by the various members of the IT staff, and, as such, each
had a different view of the impact of the attack. As we
discuss later, this fractured view presents the IT staff with
problems when attempting to form a coherent response.
Furthermore, it presents a problem to us as researchers.
In some cases, parties we interviewed had radically dif-
ferent timelines and analysis, even though the interviews
took place less than a month after the attacks of Decem-
ber 2007 and within the scope of the March 2008 attacks.
Where possible, conflicting statements were reconciled
through mechanical methods (email or file modification
dates) but some ambiguity remains.

3 Intrusion Incidents

The network on which we focus our attention in this
paper is the network for a mid-sized research depart-
ment at a large university. The network consists of ap-
proximately 1000 Windows, Linux, and Solaris work-
stations, as well as a number of infrastructure servers
providing DNS, DHCP, and HTTP, and several general
purpose compute clusters accessible via SSH. Approxi-
mately 150 of the workstations run Red Hat Enterprise
Linux (RHEL) AS v4. These machines are periodically
updated from two source machines using rdist. For
the purposes of load balancing, the two rdist masters
are each responsible for half of the machine population.

User authentication in this environment is centralized.
Windows machines authenticate users via Active Direc-
tory; the Linux and Solaris machines authenticate users
through NIS. At the time of these incidents, the network
employed neither a rule–based IDS like Snort nor an
anomaly sensor. As a partial result of these incidents,
the network will shortly employ a content–based network
anomaly sensor. Machines are generally not firewalled
(although most end hosts have a local firewall supplied
by their OS vendor). The network supports a research
environment with a strong tradition of open access. This
tradition supplies a political force that has precluded the
use of any form of firewall at the network edge. One
of our colleagues (not associated with these incidents)
pointed out that a firewall is merely a device for imple-
menting policy. If the policy is unclear, then the mere
presence of such a device is unlikely to help.

Over the time period covered in this case study, the
network was administered by an IT staff of three to five
people, with a single manager. This staff works indepen-
dently within the context of the larger IT organization
of the university. The IT manager is highly experienced
in managing staff and infrastructure and had previously
completed a vast overhaul and update of the infrastruc-
ture to bring some amount of order to what was an oth-
erwise disorganized physical and virtual space.

There is a high turnover, and staff members come from
widely disparate backgrounds; some are students with
little to no experience, while some are highly knowledge-
able and very experienced. The network is complex for
its size and has a number of systems, including the ac-
counting system, which remain unchanged from the late
1990s. New staff, even if highly experienced, often take
months to gain a complete understanding of the intrica-
cies of the network.

3.1 March 2007 Attack

In March of 2007, an attacker attempted to use a kernel
exploit to gain root privileges on several of the RHEL
workstations. The attack was discovered when several of
these attempts failed, raising alerts. For each machine on
which the attack failed at least once, the IT team were
able to use system logs to determine the origin of the at-
tacker and the compromised user accounts he was using
to access the machine.

The failed attacks were not all the same, however; the
attacker was revising his methods, and there was no way
to determine if he had succeeded. The staff checked the
logs of other susceptible machines (those harboring the
same vulnerability, but showing no indication of failed
attacks). While staff could uncover no indication that the
attacker had connected to the machines, it is possible that
he altered the logs after gaining root access.

4

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 5

3.2 March 2007 Response

It is possible that the attacker never succeeded. Regard-
less, the safest response in this situation, recognized by
all members of the IT staff, would have been to reinstall
all vulnerable machines with a patched version of the
operating system. There were, however, external con-
straints that prevented this approach. The attacks oc-
curred in the middle of the semester and involved many
machines heavily used by classes. Thus, the staff needed
to carry out a solution as quickly as possible to avoid dis-
ruption to the Department’s academic mission.

Most of the systems are nearly identical, with the ex-
ception of the servers and the rdist masters. Rein-
stalling the rdist masters would have been time con-
suming and error-prone, as the rdist distribution archi-
tecture in use was archaic and proprietary, and those most
familiar with it were no longer employed.

Furthermore, reinstalling the workstations using the
rdist new-install process would have taken far too
much time, as each install generally took about a half
day, and due to network bottlenecks (much of the install
was network-based), no more than four or five machines
could reasonably be installed at any given moment.

The IT staff’s primary insight was that there were two
classes of vulnerable machines: servers and worksta-
tions. The attack required a user-level shell account on
the target machine in order to work, and the attacker had
compromised at least one or two student accounts (as in-
dicated from the logs of the failed attacks). Student ac-
counts, however, do not have access to the servers, so
the likelihood of an infection on those machines was less
than on any given workstation, as long as the staff as-
sumed that the attacker had not compromised any admin-
istrator accounts. The workstations, on the other hand,
were mostly identical, only differing in a few configu-
ration files. By isolating those files, the staff believed
they could clone workstations from other workstations
and avoid the bottleneck to the master rdist servers.

The staff shutdown each server and ran several rootkit
checkers. They also performed some manual log inspec-
tion for any indication of an attack. Seeing none, they
patched the servers and brought them back online.

The staff then performed a standard (half-day) new in-
stall on a single workstation via the master server. While
this new, clean workstation was installing, the staff used
the time to analyze workstations of many different con-
figurations to determine the minimal set of configuration
files that would differ per machine. They also burned ap-
proximately twenty Linux LiveCDs. Once the first work-
station was finished installing, the team went to each re-
maining workstation, booted to a LiveCD, and inspected
the configuration files which were to be left untouched to
verify that they contained nothing malicious.

The staff members then downloaded and ran a script
from the local intranet. This script erased most world-
writable locations on the machine (/tmp, parts of /var,
etc.). It then synchronized the remainder of the local
filesystem (with the exception of the wiped partitions and
the workstation-unique configuration files) directly from
a known-clean workstation. Staff then re-configured
and re-installed the bootloader and restarted the work-
stations.

Once the single clean workstation had been cloned,
it was possible to use the newly cloned machines them-
selves as rdist masters for other machines. For exam-
ple, by choosing masters within the same room, on the
same local switch, it allowed for a dramatic decrease in
the amount of time for the entire recovery. Note the level
of detail and manual effort involved in starting and evolv-
ing the repair and recovery process, including a heuristic
learned only through direct experience with reinstalling
machines in a localized fashion.

At this time, staff considered the problem resolved and
returned to normal day-to-day operations. However, we
saw in our interviews that some members of the staff rec-
ognized, even at the time, that they were unsure whether
the attack had been truly cleaned up. Furthermore, there
was no record keeping and no analysis or formal discus-
sions regarding installation of additional security mea-
sures such as an intrusion detection system.

3.3 December 2007 Attack

Early in 2007, four new machines arrived at the de-
partment, intended for use in high-performance graph-
ics research. Each machine was equipped with a high-
end NVIDIA graphics card. No official Linux drivers
for these graphics cards existed, so staff used unoffi-
cial drivers. In early December 2007, all four machines
stopped working. The IT staff installed updated (and now
official) graphics drivers, which solved the problem until
all four machines crashed the next day.

The staff pushed out updates to all RHEL machines
through its two rdist servers, starsky and hutch.
starksy is the primary master rdist server and hutch
is a secondary. The infrastructure accomplishes upgrades
with a two stage process. In the first stage, the ac-
tive RHEL installation on starsky is upgraded. This
live operating system is manually imaged and the image
copied to hutch. A cron job on each of these machines
pushes the upgraded image out to half of the 150 ma-
chines. The unfortunate consequence of this architecture
is that a compromise on starsky would be pushed out
automatically to the entire network. The staff installed
the updated NVIDIA driver on starsky to prevent it
from being overwritten on the graphics machines after
the next rdist.

5

6 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

In addition to handling the NVIDIA issue, the staff
also upgraded the kernel on starsky from version
2.6.9-55.0.9.EL to 2.6.9-55.0.12.EL. At 4 AM,
the cron job delivered the upgrade to all 150 machines.
On 10 December 2007, the staff discovered that both
starsky and hutch had crashed. The staff attributed
the failure to the recent upgrade, and investigating it was
added to the end of a long task list for one of the staff
members. Both machines crashed again on several sub-
sequent nights.

The issue was finally explored on 13 December 2007,
and the recent patches were rolled back on starsky.
That night, both machines crashed again. This was a
strong indication that the patches were not the problem,
so an attempt was made to re-upgrade starsky. The up-
grade failed when, during kernel compilation, the mkdir
command returned an error. On the morning of 17 De-
cember 2007, exploration of this error determined that
mkdir failed when attempting to create directories con-
sisting only of numeric characters. IT staff began to sus-
pect a rootkit. Booting to a LiveCD confirmed that suspi-
cion: several files, including mount, had been replaced.

The hypothesis of the IT staff is that the rootkit in-
stalled by the attacker conflicted with the kernel module
of the NVIDIA driver. If the attack took place in the first
week of December, the rootkit would have been pushed
to the graphics machines, a conflict ensued, and the ma-
chines crashed. Installing the driver on starsky caused
that machine to crash too. The near-simulaneous kernel
update obscured the real issue.

3.4 December 2007 Response

Discussion and planning for the response took place in
a hallway at around 1pm on 17 December 2007. The
planning group was assembled informally and consisted
of the IT manager, three IT staff, and two authors of this
paper, who happened to be nearby.

Initial discussion surrounded disagreements on the
scale of the attack and the nature of the exposure. There
was a brief argument over whether the rdist servers
could be re-imaged and a clean install pushed out to all
machines. This idea was discarded because it was recog-
nized that all 150 machines would have to be reformatted
from scratch. Planning began on how that process would
take place, and a number of questions were raised im-
mediately. What, if any, changes should be made to the
system architecture? If changes are made, in what order,
and to which machines, should those changes be rolled
out? Who will be involved? Staffing shortages imply
that any changes beyond the simplest would take weeks
or months to put in place. How will changes affect end
users? Finals week is in progress, so taking large num-
bers of machines offline is undesirable.

Discussion immediately centered around whether the
staff should either stick with Red Hat Enterprise Linux
or move the machines to another operating system. We
note that were was no a priori reason to blame RHEL
for the intrusion, and we question whether this was an
appropriate first topic for the response team to exam-
ine. OpenBSD was proposed and discarded, primarily
due to the IT staff’s unfamiliarity with the operating sys-
tem. One member of the staff was familiar with Ubuntu,
had a working Ubuntu installation (an experiment to sup-
port a new authentication infrastructure) and argued for
this option. The IT staff has high turnover, so there
was no RHEL expert currently employed and there were
no individuals present who were capable of competently
comparing RHEL and Ubuntu. Lacking any quantitative
comparisons, no strong opposing voices emerged, and
the Ubuntu motion carried.

Discussion moved on to the user directory and authen-
tication system. The existing mechanism was based on
NIS. As we mention above, one member of the IT staff
had a pre-built LDAP server in place, so movement to
LDAP was quickly agreed upon, especially because this
provided a reason for the Ubuntu switch.

The agreement of those in the meeting was that a new
network, independent of the existing network, had to be
created, and each account had to be re-created with fresh
authentication credentials (passwords, SSH keys) in the
new network. Since it was finals week, most machines
were under heavy use. An underused 8-machine cluster
was proposed as a testbed for the deployment, and the
group agreed that that cluster should become the testbed
for the Ubuntu rollout.

Now that an overall plan was in place, the next ques-
tion was one of prioritization. Since it was possible that
the attack had been an insider attack (perhaps aimed at
gleaning final exam information), the highest priority
was to build clean Ubuntu images for the faculty. Thus,
the faculty and finals remained the first critical concerns.

The December 17 meeting then broke up, and the IT
staff began work. The first public disclosure of the attack
happened one hour later when the IT manager emailed
all faculty and PhD students informing them of the intru-
sion. All faculty passwords were to be changed.

On December 18, all PhD students teaching classes
were informed that they would have to undergo the same
procedure outlined for faculty the previous day. The de-
partment was also notified about the impending staffing
shortage; half the IT workforce were leaving for jobs
in the finance industry at the end of the year (in three
days). Faculty cell-phone numbers were requested so
staff could text message them new passwords. Installa-
tion of Ubuntu and LDAP on the test cluster began.

Students and staff then departed for the holiday break.
The IT staff returned on December 27, and a Ubuntu

6

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 7

rollout on another computer cluster began (this time, a
general-purpose lab). The next day, Solaris machines
were upgraded to Solaris 10. On January 8, all guests
and visitors were moved to the new system.

3.5 March 2008 attack
The March 2008 attack was detected by a member of the
IT staff who noticed a new account named mysqld with
root privileges on an important web server. Examining
the contents of the home directory of this account showed
several interesting files.

1. .bash history containing what is probably a par-
tial record of the attacker’s behavior.

2. ali.txt containing the results of an NMAP scan
for port 5555 (freeciv) across a /16 network.

3. bot.pl An IRC-based bot engine.

4. dos.pl A simple denial-of-service engine.

5. xpl.c Source code for the vmsplice Linux local
privilege escalation exploit.

The mysqld account appeared in the lastlog his-
tory, along with the attacker’s source IP address. Search-
ing for that address in the Apache web server logs indi-
cated that the attacker had repeatedly requested several
files in a directory containing a common PHP web ap-
plication, which was several revisions out of date, with
remote exploits in the wild. The attacker added a copy of
the nsTView remote web administration tool to the web
app directory, leaving it set up with the default password.

The Apache logs also indicated that the attacker had
downloaded a file he had created called secret.txt,
containing the username and password for the web ap-
plication’s MySQL database, and the IP address for the
remote host on which the database was running. Unfortu-
nately, logging was disabled on the MySQL database, so
investigations are limited in that direction. It is unknown
whether the attacker ever connected to that database, or
used one of several MySQL privilege escalation attacks
to examine any of the other databases on that server.

We do note that, given the age of the web-application
exploit, we believe that it is unlikely this is the first at-
tacker to come in through this vulnerability. Further-
more, the nsTView remote web administration tool was
using a default password, so multiple attackers may have
come in through that route.

3.6 March 2008 response
The response to the attack began by removing mysqld

from /etc/passwd in order to disable it. The MySQL

server daemon was shut down shortly thereafter. The
owner of the vulnerable web application was then con-
tacted and it too was shut down. These responses were
performed quickly – within two hours of the attack first
being detected – and then the response turned to a policy
discussion. What architecture and policy changes need to
take place to prevent such attacks in the future? Several
alternatives have been discussed, including undertaking
a manual review of all web applications, prohibiting web
applications entirely, making patching the mandatory re-
sponsbility of users running web applications, and mov-
ing the web infrastructure to a “read-only” style web site
that is periodically refreshed from virtual machine snap-
shots. Users remain responsible for checking that their
software is patched.

4 Incident Analysis

We next highlight some of the key decisions, discuss why
they were not based purely on technical considerations,
and suggest research directions aimed at helping auto-
mate and ease the process of decision making and rea-
soning under uncertain beliefs and knowledge. Note that
our purpose is not to pass judgment on a particular deci-
sion by labeling it good or bad: the central goals of our
analysis are to observe how non-technical factors influ-
ence decisions and to highlight what kinds of technical
systems might help manage that influence.

4.1 Observations
Lesson 1: Cross-layer, anomaly-based intrusion de-
tection seems valuable for detecting stealthy attacks.
This type of detection is far more comprehensive than
system call sequence monitoring and involves the fu-
sion of alert streams from multiple levels of system
abstraction.

All three attacks were discovered manually through
symptoms and side–effects of each attacker’s activities
rather than traditional intrusion sensors like Snort or a
commercial anti-virus product. At the time, the network
did not employ a traditional network IDS, and little in the
way of automated detection beyond some syslog moni-
toring scripts, but neither was the active attack sequence
something detectable by a network intrusion detetion or
a desktop anti-virus software system. In the March 2007
attack, abnormal kernel activity prompted an investiga-
tion by an IT staff member. In the December 2007 at-
tack, crashes noticed by the Graphics research group led
to the eventual discovery of the rootkit. The March 2008
attack was noticed by an IT staff member discovering a
new privileged user account by accident — prompted by
a trouble ticket filed by a senior professor asking why
some standard mount points were failing.

7

8 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

This situation suggests that alert and educated IT staff
and users are critical to uncovering stealthy attacks. We
acknowledge that the sample size of incidents is small
and purposefully focused on extensive intrusions (rather
than well-known worm infection attempts). This lesson
should be taken as a call to focus on creating anomaly
sensors that span multiple levels of a system. For ex-
ample, a system that correlates a user’s inability to
mount their regular partitions with anomalous network
or host traffic can help build evidence for a comprehen-
sive anomaly. The research challenge here is to move
beyond AD techniques that rely solely on various flavors
of system call sequence modeling.

Lesson 2: Staff do not have the luxury of complete
forensics.

From an end-user viewpoint, this lesson was rather
surprising at first, perhaps because we believe computer
systems to be more flexible than they are in reality. Al-
though we knew that undertaking an effective forensics
process is challenging, we were surprised at the nasty
dilemna of trying to analyze a host that one also wants to
keep running. A tension exists between short-term oper-
ational demands to keep services running and long-term
demands from the ISP to keep a network clean. Disks
and machines have to be kept in use; we suspect that
many organizations lack the luxury of taking them of-
fline for extensive cleanroom analysis. Hot swappable
and mirrored disks do offer a way to keep a machine on-
line while also looking at a snapshot of the current con-
tent, but not all organizations can afford this type of re-
dundancy for all their machines.

For example, if a critical server has been infected, the
IT staff might decide that it is more important to quickly
reinstall the server and restore normal operation than to
analyze the malware in any depth. But while operational
demands are important, the forensic analysis they pre-
clude might reveal information which ultimately proves
more critical still – perhaps it establishes that the in-
fected server also infected other servers, or it might show
that a compromised administrator account was the ini-
tial source of the intrusion, meaning that a reinstallation
alone will not solve the overall problem.

An ISP often imposes constraints on real-time analy-
sis of infected machines. IT staff may wish to analyze
an infected machine’s traffic to see if any other machines
are communicating with it (and thus might be infected).
But ISPs are often more concerned with limiting dam-
age caused by an infected host. They will sometimes
insist upon removing it from the network immediately,
especially in academic environments, where the univer-
sity is directly responsible for most hosts on the network.
Large public ISPs may be less demanding to match their
reduced liability.

Lesson 3: Visualizing a decision surface can help
inform overall strategy and planning.

After detecting an incident or intrusion, it is difficult
to immediately identify and execute the appropriate next
steps; a staff is effectively in the middle of diagnosis.
Staff may be torn between a number of actions, includ-
ing continuing diagnosis and forensic efforts, fixing the
immediate problem or small–scale symptoms of an at-
tack (turn off a particular service, unplug a particular
machine, remove a login entry from /etc/passwd),
and fixing the larger–scale symptoms or root causes of
an intrusion.

In the medium to long term, staff members needed a
system that could direct the implementation of the so-
lutions they had arrived at. To a certain extent, such a
system includes standard “trouble ticket” or issue track-
ing software. In contrast to such an “obvious” tool, the
technology that the staff actually used to plan out recov-
ery activities for the December 2007 attack included a
whiteboard and a marker. The whiteboard was inadver-
tently erased. The marker remains at large. Interestingly
enough, usability research on display–centered group ac-
tivities has found that displays are important in the plan-
ning stages of the activity, but grow progressively less
useful as the plan is enacted [12].

In the short term, staff members needed a system that
could direct planning activities by giving them a feel for
the magnitude and location of various pitfalls (whether
human or technical in nature). We suggest the concept
of a decision surface composed of process clocks (a vi-
sual representation of task complexity using an estimate
of task difficulty to shade in a graph node) as one way
to achieve this high level view of the difficulty of the ter-
rain ahead. We have found that standard decision trees
and swim-lane diagrams are not quite appropriate for this
goal, but we are left without any ready alternatives.

Decisions, and the reasons for making them, can be
difficult to articulate and defend. Describing a decision
making process can leave one lost for words — some-
times elements of the decision were based on intuition,
flashes of inspiration or emotion, a complex sequence of
data analysis, or deep contemplation and personal reflec-
tion. However hard it is to describe the process of making
a decision, we have found that visualizing the elements
of a decision is even harder. One of our main inspirations
for writing this paper was the lack of a way for our sys-
tem administrator to assess — at a quick glance — the
difficulty of the terrain ahead of her, including parts of
the decision surface where human and technical factors
would conspire to greatly increase (or even decrease!)
the complexity of the available alternatives. We have
asked a number of our colleagues for their best method
of visualizing a decision, and we have repeatedly drawn
blanks. We consulted Edward Tufte’s work2 in hopes of

8

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 9

gaining some insight into visualizing the elements of in-
formation involved in a decision, but most information
visualization principles did not seem directly applicable
to this problem of visualizing a process (rather, a collec-
tion of processes).

As a result, we are attempting to define a model for vi-
sualizing a decision surface that would take into account
the properties we observed to be important in guiding the
process of network intrusion recovery: amount of human
involvement, estimated effort for task completion, order-
ing dependencies of tasks, potential disruptions. We start
by seeking to construct what we call a decision surface:
a two dimensal plane akin to topographical maps project-
ing three dimensions onto a flat surface. The peaks, val-
leys, and plains of a decision surface convey at a glance
where difficult or complex decision points lie. Knowing
how to compose a decision surface, however, especially
in light of future attacks, is a difficult exercise.
Lesson 4: Rapidly setting and executing a diagno-

sis and recovery agenda requires an unobtrusive, per-
vasive incident recording and modeling system that
can help manage cognitive traps like availability bias
and the shortcomings of human memory. Since hu-
man memory and recall is far from perfect, multiple
points of view supply sometimes conflicting details of
attacks and do not assist efforts in forensics, auditing,
or planning for the next attack. Recovery graphs may
provide one way to encode intrusion scenarios and the
human response to them for later auditing.

The crucial first minutes after an intrusion discovery,
in which there is no complete information about the at-
tacker’s entry point(s), history of actions, short and long-
term intent, or current level of activity, hold the potential
for panic, an overwhelming amount of data to analyze,
and a paralyzed thought process. Involving too many
people in the decision–making process after a serious in-
trusion is discovered can distract the person in charge.
The hallway discussion on 17 December involved multi-
ple people, ideas, and proposals. The system administra-
tor involved with our case study achieved a certain level
of success at repairing the network only because she was
able to rapidly sift through the different proposals that
the team members articulated.

Decision making at this point should be aided by au-
tomated processes that help manage the signal-to-noise
ratio; in studies on decision–making, the manner in
which information is organized often appears more im-
portant than simply getting increased amounts of infor-
mation [20].

Furthermore, during our interviews, we observed that
details of the attacks and the responses often differed
wildly between individuals. Individuals often disagreed
on dates — one person confused an attack from March
2007 with one from May 2006 and provided a mixture of

details from both. In other cases, individuals presented
radically different reports on which actions were taken.
Two members of the IT staff disagreed on the date and
method of detection of the December 2007 attack, while
another viewed it as a continuation of the March 2007
attack. Without a coherent view of the state of the net-
work, it is difficult for staff to make informed decisions
to guide the attack response. One suggestion is that a
staff member be tasked to record all the actions of a re-
covery process, but such a role can prove problematic for
organizations that have staff shortages and tight budgets.

Even though researchers have proposed work on at-
tack scenarios and attack trees [18, 22], relatively little
attention has been paid to analyzing the process of a re-
sponse. Automatically increasing the rate and types of
events logged after an intrusion is discovered and the re-
covery process is started can assist efforts to revise a dis-
aster recovery plan. More logging can make sure that key
decisions are clearly recorded and not subject to human
recollection of events occurring during a stressful time
of rapid change and high rates of information. This type
of recording is substantially different than ensuring that
/var/log/messages collects more OS–level events.
We propose the concept of recovery graphs to help cap-
ture and encode the sequences of events following the
start of a recovery effort.

The lack of a human-centered post-intrusion journal-
ing system suggests that research to design and develop
new systems that record human–level events, judgments,
recollections, and intentions is needed. Such systems
must interact with humans seamlessly: they cannot place
an additional burden on already-busy personnel. Catego-
rizing, tagging, and cross-referencing events and infor-
mation generated during the post-intrusion recovery pro-
cess can help form a coherent view of what has happened
and is happening to the network.
Lesson 5: Designing and maintaining a disaster

recovery plan can aid recovery efforts, but the plan
must be continuously — not periodically — updated.

The IT staff did not have a priori knowledge of what
procedures should be enacted to combat or rectify the in-
trusion or to process and prioritize information about the
incident. While the lack of a disaster recovery plan is a
major operational shortcoming, disaster recovery plans
alone are not a panacea. Like any proactive defense
method, the plan may be incomplete, outdated, or un-
likely to work given the current personnel. For example,
the IT manager in our case study faced a critical person-
nel shortage due to events unrelated to the intrusion: half
the staff was leaving for new jobs in a matter of days.

A disaster recovery plan must constantly evolve. Each
new attack, vulnerability, or patch affects the recov-
ery details. Similarly, employee turnover, improved
employee skill set, and application deployment require

9

10 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

modifications to the plan. The question of how often to
update the disaster recovery plan is a risk analysis and as-
sessment task that must balance the needs of the staff to
accomplish everyday system administration tasks against
spending an inordinate amount of time planning for dis-
asters that might never occur.

The open research question here is how personnel
changes, catalogs of personnel skill, and lists of re-
sources, sensors, countermeasures, toolsets, and inven-
tory can drive an automated (and potentially real-time)
update of the disaster recovery plan. We recognize
that this research goal is rather ambitious (some read-
ers have called it unrealistic — although existing perva-
sive recording systems [8] indicate otherwise), but we
stress that this type of problem is precisely where the re-
search gap is: little or no work in this space looks at ways
to combine both humans and computers into a cohesive
system where the computational elements are responsive,
proactive, and transparent to the human as they go about
their main tasks. In our minds, such a research direction
is new and exciting, especially in a subfield where the
bulk of the research looks at tweaking IDS parameters,
considering an endless array of new features, or slicing
up botnets in a variety of ways.

Nevertheless, the need to improvise can lead to cre-
ative solutions. For example, one of the most interesting
countermeasures taken by the system administrator in the
December 2007 attacks was to find an alternative distri-
bution channel for new login credentials. The adminis-
trator sent text messages to the bulk of the user popula-
tion with their new account password. This side chan-
nel is inexpensive (we estimate ten cents per message for
roughly one thousand users), and it served quite nicely
to distribute authentication material to users who were
physically dispersed over the winter break.
Lesson 6: Decisions about appropriate technology

shifts are driven by informal personal inclinations
rather than quantitative (or even qualitative) com-
parisons of system properties.

Making changes to a complex and corrupted infras-
tructure requires (besides a quality analysis of the intru-
sion) a good understanding of the benefits offered by se-
lecting one technology over another. For example, when
the staff discussed whether to change computing plat-
forms from RHEL to Ubuntu, the decision was made
without any point–by–point comparison of the security
benefits of either system. Although a question was raised
about whether or not Ubuntu incorporated SELinux by
default, as RHEL does, it was neglected (a symptom of
the need for a recording system). The staff expressed
comfort with Ubuntu’s package management software
and indicated that one staff member had already proto-
typed an Ubuntu system that would support stronger au-
thentication. While good package management software

can greatly ease the job of system administration, we feel
that it is not the primary or only factor in a security–
related decision. In this instance, however, the intrusion
presented an opportunity for the IT staff to increase the
security of the system.

Note that this decision represents an astoundingly
rapid shift; even though the underlying platform is Linux,
the actual delta is significant (placement of system files
and scripts, customizations and patches to the kernel,
etc.). Even such a minor shift stretches the limits of pos-
sibility; for example, deciding to switch the infrastruc-
ture to Windows or *BSD would not have been possible
in the same amount of time the RHELv4/Ubuntu shift
was accomplished.

This lesson points to the need for research into models
or techniques to help estimate or otherwise provide some
quantitative measure of how the defense posture will be
affected after choosing to implement technology X over
technology Y. Techniques like attack graphs [18, 22] and
event-correlation [17] may help by focusing attention in
important places, but at that point we need to begin the
process of helping to make recovery decisions.

In this case study, the IT staff did not perform even
a cursory examination of the release notes of the latest
versions of the operating systems under consideration.
While the circumstances and the time pressure demanded
a quick decision, it would be best if the IT staff were not
placed in such a bind to begin with. Providing systems
that automated these types of comparisons and parame-
terizing them with the details of the intrusion or incident
can assist staff efforts to make rational, informed, and
technical decisions rather than strictly intuitive ones.

We can think of at least three research directions stem-
ming from this lesson. It may be possible to use Natural
Language Processing techniques to compare the release
notes of the latest versions of two (or more) pieces of
software for items that may impact the security posture
of the organization. Second, a more realistic goal may be
to create a system that data mines bug report databases
and vulnerability mailing lists for items that are relevant
to the security of the software systems under considera-
tion. Finally, if the source of the intrusion can be traced
to a weakness in a particular software package, it may
be possible to work forward to predict other vulnerable
components in that software [15].

4.2 Where Do we Go From Here?

Accounts discussing the trapping and tracking of attack-
ers in improvised honeypots form part of the classic net-
work security literature [25, 5]. Just as these accounts re-
late the first examples of a honeypot and computer foren-
sics, the improvisation required in these early responses
forecast exactly the plight of network administrators to-

10

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 11

day: when faced with a real attacker, decisions must be
made quickly and accurately, and the decisions may con-
flict with the desires of other stakeholders. At the times
of these early incidents, almost no tools existed to help
trace hacker activity. Tools were improvised from the
ground up, and their descendants and offshoots have be-
come part of a standard set of tools. Now, network in-
trusion recovery faces an even larger challenge: create
a suite of tools that take into account not only the engi-
neering challenges of repairing a network, but also the
human issues surrounding this process.

We have five specific suggestions for the construction
of tools that could reasonably see use in the near term:

1. A way of visualizing complex decisions at a high
level. A decision surface could help convey terrain
information rather than just a branching factor of
standard decision trees.

2. An unobtrusive, pervasive, and real-time activity
monitor capable of efficiently and reliably record-
ing both computer events and human actions during
the recovery process.

3. A standard for encoding intrusion scenarios derived
from the data captured by the above system, includ-
ing the behavior of both human actors and computer
systems in terms of the information structures they
maintain and the sequences of actions they take.
The keys to this standard are both fidelity and porta-
bility, so that these scenarios can be run on simula-
tion infrastructures that employ, for example, differ-
ent virtual machine hosts.

4. An environment for executing, analyzing, and re-
viewing these scenarios. For this environment, we
can turn to recent work in the arena of computer
game design [1] that focuses on the simulation of
realistic crowds (rather than randomly milling zom-
bies or predictably scripted bots) for a variety of
purposes, including realistic storylines, evacuations
from buildings or transportation vehicles in a cri-
sis, and automated assessment of the usability and
ergonomics of functional living or working space.
This type of tool is useful for both post-mortem
analysis to learn from the incident and to ensure that
a recovery plan was fully enacted.

5. A toolset for automatically analyzing relevant secu-
rity properties of alternative solutions. We do not
see a panecea here; rather, it is likely that a collec-
tion of tools, each specialized to assessing the qual-
ity of a particular type of solution, is appropriate.

In each case, these tools help a team of administrators
remove guesswork and uncertainty from the process of

recovery. We also see a need for a way to input organi-
zational changes to drive changes in a disaster recovery
plan, but as we relate above, this task may prove to be too
challenging, even if we manage to cobble together some
combination of MindMap3 and a trouble-ticket system.

5 Discussion

This paper has benefited greatly from both formal and
informal feedback and reviews. Here, we would like to
address some of the meta-issues and high-level concerns
that various readers have raised. Fundamentally, we see
this paper as the start of a two-pronged effort: first, to for-
mally document intrusion recovery scenarios and second,
to create systems that help support intrusion recovery ef-
forts or that streamline the process of intrusion recovery.

The most obvious shortcoming of this paper is that
we examine a single organization. It is hard to assess if
the same specific troubles affect other organizations, but
from our experience and anecdotal evidence, this similar-
ity seems to be the case, at least for academic networks
as well as some corporate networks we are familiar with.
Some readers have suggested that the nature of the net-
work itself suggests an administrative staff unconcerned
with security, and thus it provides an unreasonable orga-
nization to base a case study on. Given our direct expe-
rience with the personnel involved in these incidents, we
believe this is an unfair criticism of their efforts. Strate-
gic security adjustments are important to the staff, but
so are the day to day struggles — on a tight budget —
to keep an infrastructure with many diverse interests and
stakeholders operational. Furthermore, at least one other
system administrator purposefully and publically runs a
network without firewalls [23], like our subject network.
Therefore, we suggest that this network is in fact typical
of academic-style, open-access networks, and we do not
claim that this network is the ideal model for drawing
conclusions about, for example, a highly sensitive mili-
tary network. Nevertheless, recovering from an intrusion
remains a common problem, and the travails of the least
prepared of us can help even those who are most prepared
understand the risks they face.

We anticipate documenting new incidents as well as
incidents from other organizations. We are in contact
with the technical staff of our institutions to help broaden
the scope of this research. We intend to start an archive of
structured encodings of these scenarios. Such an archive
can support comparisons between organizations as they
respond to similar incidents and chose different tradeoffs.

We recognize that incidents similar to the ones we
cover in this paper occur every day in many organiza-
tions worldwide. Far from making the details we expose
here mundane, this reality underscores the fact that this
topic is of critical concern. Furthermore, to the best of

11

12 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

our knowledge, no one is documenting these incidents in
detail or examining how these details change over time.
Descriptions of these incidents in the research literature
are rare; we cited those that we could find.

Our belief is that the details of these incidents (and
how organizations recover from them) are even more re-
vealing and of as much interest as their high–level struc-
ture. Furthermore, since organizations have little incen-
tive (in fact, they have potentially large legal and finan-
cial disincentives) to share the details of these incidents,
academic research into methods of intrusion recovery re-
mains uninformed and undirected. No concretely speci-
fied collection of intrusion recovery scenarios exist, and
this lack leaves most discussions about the best way to
recover from an attack at the level of hand–waving.

Other readers have suggested a variety of areas for
further work and improvements, from performing a user
impact survey to estimating the economic impact of the
intrusions on the organization. We refrain from includ-
ing this type of analysis precisely because there are no
widely-accepted frameworks (although some nascent re-
search proposals do exist [4]) for providing realistic,
standardized estimates of costs for losses due to security
incidents. Informal industry studies often hyperinflate
their estimated costs to serve some agenda, be it market-
ing a particular security tool, the worth of their own sur-
vey, or to provide “evidence” that the problem is worth
significant public or private investment. Our goal in this
paper is simply to tease out how the technical and hu-
man complexities in specific, real-life scenarios interact
— not to provide some exotic finanical estimation instru-
ment, especially as none of the authors has any meaning-
ful training in economics.

Finally, one aspect of intrusion recovery that we did
not discuss is that of gathering forensic evidence to sup-
port criminal prosecution. The prevailing wisdom in this
area is twofold. First, many attackers tend (or appear
based on the attack source IP address) to be from juris-
dictions outside of the US; as the organization we deal
with is located in the US, it is unlikely that any such ev-
idence would have been utilized in a criminal trial. Fur-
thermore, many organizations hesitate to bring charges,
because doing so requires that the incident become pub-
lic knowledge. Neverthless, retaining log files and disk
images of compromised machines can assist efforts to
uncover a larger pattern of malicious activity. In any
event, the IT staff was far more concerned with rebuild-
ing the infrastructure and denying access to the intruder
than preserving any chain of evidence (Section 4 dis-
cusses how IT staff find themselves in a bind when it
comes to forensics).

6 Conclusion

Currently, repairing a network infrastructure after a seri-
ous intrusion is costly because cleanup is largely a man-
ual process, and the complexity of information systems
makes it difficult to automatically trace the extent of the
attack. Furthermore, the psychological and sociological
aspects of the problem are grossly understudied. Systems
involve people, and their security decisions and risk as-
sessments are often based on reasons that are not purely
technical. The purpose of this case study is not to ques-
tion whether the IT staff could have done a better job,
or if the organization should have had a more robust net-
work to begin with.

Instead, the lessons we should learn are that real se-
curity problems — those whose scope is sometimes too
large to comprehend and deal with in any single research
publication, are brushed aside as either too large to be in-
teresting, or too close to human and organizational prob-
lems to be strictly “systems” security issues. With this
case study, we hope to show that interesting possibilities
for systems security research exist. Fundamentally, we
think that human decisions should be assisted with auto-
mated methods that help filter and classify the available
information. The problem of network intrusion recovery
is a particularly thorny exercise in researching, design-
ing, and creating usable security mechanisms.

Acknowledgements

We would like to thank our shepherd, Nicole Velasquez,
for helping us resolve the issues and insightful comments
raised by the reviewers. We deeply appreciate the coop-
eration and help of the IT staff that provides the subject
of this paper. Theresa Menzel provided extensive feed-
back and anecdotal evidence from her experiences with
intrusion incident handling. Locasto is supported in part
by grant 2006-CS-001-000001from the U.S. Department
of Homeland Security under the auspices of the I3P re-
search program. The I3P is managed by Dartmouth Col-
lege. The opinions expressed in this paper should not be
taken as the view of the authors’ institutions, the DHS,
or the I3P.

References
[1] BADLER, N., ALLBECK, J., ZHAO, L., AND BYUN, M. Repre-

senting and Parameterizing Agent Behaviors. In Proceedings of
Computer Animation (June 2002), pp. 133–143.

[2] BHATKAR, S., DUVARNEY, D. C., AND SEKAR, R. Address
Obfuscation: an Efficient Approach to Combat a Broad Range
of Memory Error Exploits. In Proceedings of the 12

th USENIX
Security Symposium (August 2003), pp. 105–120.

[3] CAMPOS, L., AND ALONSO-QUECUTY, M. L. Remembering a
Criminal Conversation: Beyond Eyewitness Testimony. Memory
14, 1 (2006), 27–36.

12

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 13

[4] CARIN, L., CYBENKO, G., AND HUGHES, J. Quantitative Eval-
uation of Risk for Investment Efficient Strategies in Cybersecu-
rity: The QuERIES Methodology. IEEE Computer (2008).

[5] CHESWICK, B. An Evening with Berferd, in which a cracker
is lured, endured, and studied. In Proceedings of the Winter
USENIX Conference (January 1992).

[6] CHESWICK, W. R., AND BELLOVIN, S. M. Firewalls and Inter-
net Security: Repelling the Wily Hacker. Addison-Wesley, 1994.

[7] DUNLAP, G. W., KING, S., CINAR, S., BASRAI, M. A., AND
CHEN, P. M. ReVirt: Enabling Intrusion Analysis Through
Virtual-Machine Logging and Replay. In Proceedings of the 2002
Symposium on Operating Systems Design and Implementation
(OSDI) (February 2002).

[8] GEMMELL, J., LUEDER, R., AND BELL, G. The mylifebits life-
time store. In ETP ’03: Proceedings of the 2003 ACM SIGMM
workshop on Experiential telepresence (New York, NY, USA,
2003), ACM, pp. 80–83.

[9] GRIZZARD, J. B., KRASSER, S., OWEN, H. L., DODSON,
E. R., AND CONTI, G. J. Towards an approach for automati-
cally repairing compromised network systems. In Proceedings of
3rd IEEE International Symposium on Network Computing and
Applications (August 2004), IEEE, pp. 389–392.

[10] HAWKEY, K., MULDNER, K., AND BEZNOSOV, K. Search-
ing for the Right Fit: Balancing IT Security Management Model
Trade-Offs. IEEE Internet Computing (May/June 2008), 22–30.

[11] HILZINGER, M. Fedora: Chronicle of a Server
Break-in. http://www.linux-magazine.com/
linux magazine com/online/news/update
fedora chronicle of a server break in, March
2009. Linux Magazine.

[12] HUANG, E. M., MYNATT, E., AND TRIMBLE, J. P. Displays in
the Wild: Understanding the Dynamics and Evolution of a Dis-
play Ecology. In Proceedings of the 4th International Conference
on Pervasive Computing (May 2006).

[13] KING, S. T., AND CHEN, P. M. Backtracking Intrusions. In
19

th ACM Symposium on Operating Systems Principles (SOSP)
(October 2003).

[14] KURSAWE, K., AND KATZENBEISSER, S. Computing Under
Occupation. In New Security Paradigms Workshop (September
2007).

[15] NEUHAUS, S., ZIMMERMANN, T., AND ZELLER, A. Predict-
ing Vulnerable Software Components. In Proceedings of the
14th ACM Conference on Computer and Communications Se-
curity (CCS) (2007).

[16] NEWSOME, J., AND SONG, D. Dynamic Taint Analysis for Au-
tomatic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Proceedings of the 12th

Symposium on Network and Distributed System Security (NDSS)
(February 2005).

[17] NING, P., CUI, Y., AND REEVES, D. S. Analyzing Intensive
Intrusion Alerts Via Correlation. In Proceedings of the 5th Inter-
national Symposium on Recent Advances in Intrusion Detection
(RAID 2002) (October 2002).

[18] OU, X., BOYER, W. F., AND MCQUEEN, M. A. A Scalable
Approach to Attack Graph Generation. In Proceedings of the
13

th ACM Conference on Computer and Communications Secu-
rity (CCS) (October 2006).

[19] OZGIT, A., DAYIOGLU, B., ANUK, E., KANBUR, I.,
ALPTEKIN, O., AND ERMIS, U. Design of a log server for dis-
tributed and large-scale server environments.

[20] PAYNE, J. W., BETTMAN, J. R., AND JOHNSON, E. J. Behav-
ioral Decision Research: A Constructive Processing Perspective.
Annual Review of Psychology 43 (1992), 88–131.

[21] PROVOS, N. Improving Host Security with System Call Policies.
In Proceedings of the 12

th USENIX Security Symposium (August
2003), pp. 207–225.

[22] SHEYNER, O., HAINES, J., JHA, S., LIPPMANN, R., AND
WING, J. Automated Generation and Analysis of Attack Graphs.
In Proceedings of the IEEE Symposium on Security and Privacy
(May 2002).

[23] SINGER, A. Tempting Fate. USENIX login; 30, 1 (February
2005), 27–30.

[24] SPAFFORD, E. H. The Internet Worm: Crisis and Aftermath.
Communications of the ACM 32, 6 (June 1989), 678–687.

[25] STOLL, C. Stalking the Wily Hacker. Communications of the
ACM 31, 5 (May 1988), 484.

[26] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Se-
cure Program Execution Via Dynamic Information Flow Track-
ing. SIGOPS Oper. Syst. Rev. 38, 5 (2004), 85–96.

[27] WELLS, G. L., AND OLSON, E. A. Eyewitness Testimony. An-
nual Review of Psychology 54 (2003), 277–295.

Notes
1www.hotadmin.org
2http://www.edwardtufte.com/tufte/
3http://freemind.sourceforge.net/wiki/index.

php/Main Page

13

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 15

Two-Person Control Administration:
Preventing Administration Faults through Duplication

Shaya Potter, Steven M. Bellovin and Jason Nieh
Department of Computer Science

Columbia University
{spotter, smb, nieh}@cs.columbia.edu

Abstract
Modern computing systems are complex and difficult to
administer, making them more prone to system admin-
istration faults. Faults can occur simply due to mistakes
in the process of administering a complex system. These
mistakes can make the system insecure or unavailable.
Faults can also occur due to a malicious act of the system
administrator. Systems provide little protection against
system administrators who install a backdoor or other-
wise hide their actions. To prevent these types of sys-
tem administration faults, we created ISE-T (I See Ev-
erything Twice), a system that applies the two-person
control model to system administration. ISE-T requires
two separate system administrators to perform each ad-
ministration task. ISE-T then compares the results of
the two administrators’ actions for equivalence. ISE-T
only applies the results of the actions to the real sys-
tem if they are equivalent. This provides a higher level
of assurance that administration tasks are completed in
a manner that will not introduce faults into the system.
While the two-person control model is expensive, it is
a natural fit for many financial, government, and mili-
tary systems that require higher levels of assurance. We
implemented a prototype ISE-T system for Linux using
virtual machines and a unioning file system. Using this
system, we conducted a real user study to test its ability
to capture changes performed by seperate system admin-
istrators and compare them for equivalence. Our results
show that ISE-T is effective at determining equivalence
for many common administration tasks, even when ad-
ministrators perform those tasks in different ways.

1 Introduction

As computing systems become more complex, they have
also become harder to administer. From a security per-
spective, these complex systems create an environment
that is easier for rogue users, be they inside or outside

attackers, to make changes to the system that hide their
malicious attacks. For instance, Robert Hanssen, an FBI
agent who was a Soviet spy, was able to evade detection
because he was the system administrator for some of the
FBI’s counterintelligence computer systems [26]. This
allowed him to determine if the FBI had identified his
drop sites and if he was the subject of investigation [5].

Insider attacks have long been known to be very dif-
ficult to address. Most approaches involve intrusion de-
tection or role separation. However, both are ineffective
against rogue system administrators who can replace the
system module that enforces the separation or performs
the intrusion detection. This attack vector was described
over thirty years ago by Karger and Schell [13] and still
remains a serious problem.

Even if administrators can be trusted not to be mali-
cious, they must deal with software that is very compli-
cated. Mistakes can be easy to make and hard to identify
before they cause problems. These mistakes can affect
both the stability of the system and its security. A mis-
take that takes down an important service can prevent the
machine from being usable or further administered, and
can even let malicious attackers access the machine with
impunity.

There are several approaches for preventing and re-
covering from faults that creep into a system, including
partitioning, restore points, and peer review. One of the
most effective approaches is two-person control [1]. This
can be provided by having two pilots in an airplane, re-
quiring two keys for a safe deposit box, or running two
or more computations in parallel and comparing the re-
sults for a fault-tolerant computer system. We believe
this concept can be extended to address problems in sys-
tem administration by leveraging virtualization to create
duplicate environments.

Toward this end, we created the “I See Everything
Twice” [10] (ISE-T, pronounced “ice tea”) architecture.
ISE-T provides a general mechanism to clone execution
environments, independently execute computations that

16 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

modify the clones, and compare how the resulting mod-
ified clones have diverged. The system can be used in
a number of ways, such as performing the same task
in two initially identical clones, or executing the same
computation in the same way in clones with some dif-
ferences. By providing clones, ISE-T creates a system
where computation actions can be “seen twice”, apply-
ing the concept used for fault-tolerant computing to other
forms of two-person control systems. There is a crucial
difference though between our approach for using repli-
cas and replicas as used in fault-tolerant computing. Our
goal is to compare for equivalence between two replicas
that may not be completely identical, rather than simply
run two identical replicas in lock step and ensure they
remain identical.

We apply ISE-T’s principle to change the way we ad-
minister machines to provide two-person control admin-
istration. As ISE-T allows a system to be easily cloned
into multiple distinct execution domains, we can create
separate clone environments for multiple administrators.
ISE-T can then compare the separate set of changes pro-
duced by each administrator for equivalence to determine
if the same changes were made. By comparing the sets of
changes for equivalence, ISE-T improves management
by allowing it to be done in both a fail-safe and auditable
manner.

In ISE-T, we force administrative acts to be performed
multiple times before it is considered correct. Current
systems give full access to the machine to individual ad-
ministrators. This means that one person can accidently
or maliciously break the system. ISE-T’s ability to clone
an execution environment creates a new way to admin-
ister machines to avoid this problems. ISE-T does not
allow any administrator to modify the underlying system
directly, but instead creates individual clones for two ad-
ministrators to work on independently. ISE-T is then able
to compare the changes each administrator performs. If
the changes are equivalent, ISE-T has a high assurance
that the changes are correct and will commit them to the
base system. Otherwise, if it detects discrepancies be-
tween the two sets of changes, it will notify the admin-
istrators about the differences so that they can resolve
the problem. This enables fail safe administration by
enabling a single administrator’s accidental errors to be
caught, while also preventing a single administrator from
maliciously damaging the system.

ISE-T leverages both virtualization and unioning file
systems to provide the administration clones for each ad-
ministrator. ISE-T is able to leverage both operating sys-
tem virtualization techniques, such as Solaris Zones [18]
and Linux VServer [20], as well as hardware virtualiza-
tion such as VMware [24], to provide each administra-
tor with an isolated environment in which to perform the
changes. ISE-T builds upon DejaView [14], leveraging

union file systems to provide a layered file system that is
able to provide the same initial file system namespace in
one layer, while capturing all the system administrator’s
file system changes into a separate layer. This enables
easy isolation of changes, simplifying equivalence test-
ing.

ISE-T’s approach of requiring everything to be in-
stalled twice blocks many real attacks. A single mali-
cious system administrator can no longer install modules
that create an intentional back-door to allow future ac-
cess into the system. Similarly, they cannot unilaterally
weaken firewall rules, nor create unauthorized accounts
to allow others into the system.

ISE-T is admittedly an expensive solution, too expen-
sive for many commercial sites. For high-risk situations,
such as in the financial, government, and military sectors,
the added cost can be acceptable if the risk is reduced. In
fact, the two-person controls are already routine in those
environments, ranging from checks that require two sig-
natures to the well known requirement of requiring two
people for any work involving nuclear weapons. How-
ever, we also demonstrate how ISE-T can be used in a
less expensive manner by introducing a form of auditable
system administration. Instead of requiring two system
administrators at all times, auditable ISE-T captures all
the changes performed by the system administrator in the
same manner it uses for equivalence testing, but instead
immediately saves it to an audit log while committing
it to the underlying system. An audit can then be per-
formed on the log to provided a higher level of assurance
that the administrator was only performing the changes
they claimed they were performing.

In a similar manner, ISE-T can be extended to train
less experienced system administrators. First, ISE-T al-
lows a junior system administrator to perform tasks in
parallel with a more senior system administrator. While
only the senior system administrator’s solution will be
committed to the underlying system, the junior system
administrator can learn from how his solution differs
from the senior system administrator. Second, ISE-T
can help train junior system administrators by being ex-
tended to provide an approver mode. In this mode, a
junior system administrator will be provided administra-
tion tasks to complete. However, instead of the changes
being committed directly, they will be presented to the
senior system administrator who can approve or disap-
prove of the changes, without being required to do the
same actions in parallel.

We have implemented an ISE-T Linux prototype with-
out requiring any source code changes to the underlying
kernel or system applications. To evaluate its ability to
do equivalence testing, we conducted a user study to de-
termine ISE-T’s ability to efficiently capture administra-
tion changes through its layered file system, as well as to

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 17

System

ISE-T Service

Administrative Clone #1 Administrative Clone #2

Figure 1: ISE-T Usage Model

compare the environments of the multiple administrators
for equivalence. Our results demonstrate that ISE-T is
effective at determining equivalence for many common
administration tasks even when administrators perform
those tasks in different ways. Furthermore, we demon-
strate that ISE-T is able to easily show the differences
that occur when the actions are not performed equiva-
lently, in what situations the actions cannot be performed
equivalently, as well as ISE-T’s ability to detect mali-
cious administration changes.

2 Usage Model

Systems managed by ISE-T are used by two classes of
users, regular unprivileged users and the privileged sys-
tem administrators who manage the machines. ISE-T
does not change how regular users interact with the ma-
chine. They are able to install any program into their per-
sonal space, as well as run any program on the system,
including regular programs and programs with special
privileges, such as setuid UNIX programs that raise
the privileges of the process on execution. This allows
regular users to execute programs such as passwd to
change their passwords.

However, ISE-T fundamentally changes the way sys-
tem administrators interact with the machine. In a reg-
ular system, when administrators want to perform main-
tenance on the machine, they will leverage their ability
to execute arbitrary programs with administrative priv-
ileges. This can be accomplished by executing a shell
with the privilege so that they can execute arbitrary com-
mands with ease, or by leveraging a program such as
sudo that will just execute the arbitrary programs itself
that way. In these systems, administrators are able to
modify the system in a direct manner, change files, and
execute programs and have those changes occur directly.

As ISE-T prevents system administrators from exe-

cuting arbitrary programs with administrative privileges,
this model cannot be directly used in a system man-
aged by ISE-T. Instead, ISE-T provides a new model as
shown in Figure 1. Instead of administering a system
directly, ISE-T creates administration clones. Each ad-
ministration clone is fully isolated from each other and
the base system. ISE-T instantiates an administration
clone for each administrator to perform the administra-
tive acts within. Once both administrators are finished,
ISE-T compares the clones for equivalence and commits
the changes if the clones pass the equivalence test. As
opposed to a regular system, where the administrator can
interleave file system changes with program execution,
in ISE-T only the file system changes get committed to
the underlying system. Therefore ISE-T requires admin-
istrators to use other methods if they require file system
changes and program execution to be interleaved on the
actual system, such as for rotating log files or to do ex-
ploratory changes in order to diagnose a subtle system
malfunction.

To allow this, ISE-T provides a new ise-t command
that is used in a manner similar to su. Instead of spawn-
ing a shell on the existing system, ise-t spawns a new
isolated container for that administrator. This container
contains a clone of the underlying file system. Within
this clone, the administrators can perform generic admin-
istrative actions, as on a regular system, but the changes
will be isolated to this new container. When the ad-
ministrators are finished with the desired administration
changes, they exit their new container’s shell, much as
they would exit a root shell; the container itself is termi-
nated, while its file system remains around.

ISE-T then compares the changes each administrator
performed for equivalence. ISE-T performs this task au-
tomatically after the second administrator exits his ad-
ministration session and notifies both of the administra-
tors of the results. If the changes are equivalent, ISE-
T automatically commits the changes to the underly-
ing base system. Otherwise, ISE-T notifies the admin-
istrators of the file system discrepancies that exist be-
tween the two administration environments, allowing the
administrators to recreate their administration environ-
ments and correct the discrepancies.

Command Description
ise-t new Create an administration environment
ise-t enter Enter administration environment
ise-t done Ready for equivalence testing
ise-t diff Results of a failed equivalence test

Table 1: ISE-T Commands

As ISE-T only looks at file system changes, this can
prevent it from performing administrative actions that
just affect the runtime of the system. In order to han-

18 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

dle this, ISE-T provides a raw control mechanism via
the file system, as well as enabling itself to be integrated
with configuration management systems. First, ISE-T’s
raw control mechanism is implemented via a special-
ized file system namespace where an administrator can
write commands. For instance, if the administrators want
to kill a process, stop a service or reboot the machine,
those actions performed directly within their adminis-
tration container will have no affect on the base sys-
tem. Some actions can be directly inferred from the file
system. For instance, if the system’s set of startup pro-
grams is changed, by having a file added, removed or re-
placed, ISE-T can infer that the service should be started,
stopped or restarted when the changes are committed to
the underlying system. However, this only helps when
one is changing the file system. There are times when
administrators will want the services stopped or restarted
without modifying the file system of the system. There-
fore, ISE-T provides a defined method for killing pro-
cesses, stopping and starting services and rebooting the
machine using files the administrator can store on the lo-
cal file system. ISE-T provides each administrator with
a special /admin directory for performing these prede-
fined administrative actions.

For example, if the administrator wants to reboot the
machine, they create an empty reboot file within the
/admin directory. If both administrators create the file,
after the the rest of their changes are committed to the
system, it will reboot itself. Similarly, the administra-
tors can create a halt file to halt the machine. In addi-
tion, the /admin directory has kill and services
subdirectories. To kill a process, administrators create
individual files with the names of the process identifiers
of processes running on the base system that they de-
sire to kill. Similarly, if a user desires to stop, start, or
restart a init.d service, they can create a file named by
that service prefixed with stop, start or restart,
such as stop.apache or restart.apache within
the services directory to have ISE-T perform the ap-
propriate actions when the changes are committed to the
base system. The files created within the /admin direc-
tory are not committed to the base system; they are only
used for performing runtime changes to the system.

However, many systems already exist to manage sys-
tems and perform these types of tasks, namely config-
uration management systems, such as lcfg [2]. At a
high level, configuration management systems work by
storing configuration information on a centralized policy
server that controls a set of managed clients. In general,
the policy server will contain a set of template configu-
ration files that it uses to create the actual configuration
file for the managed clients based on information con-
tained within its own configuration. Configuration man-
agement systems also generally support the ability to run

predefined programs, scripts and execute predefined ac-
tions on the clients they are managing.

When ISE-T is integrated with any configuration man-
agement system, it no longer manages the individual
machines. Instead of the managed clients being con-
trolled by ISE-T, the configuration policy server is man-
aged by ISE-T directly and the clients are managed di-
rectly by the configuration management system. This
provides a number of benefits. First, it simplifies the
complexity of comparing two different systems, as ISE-
T can focus on the single configuration language of the
configuration management system. Second, configura-
tion system already have tools to manage the runtime
state of their client machines, such as stopping and start-
ing services and restarting them when the configuration
changes. Third, many organization are already used
to using configuration management systems; by imple-
menting ISE-T on the server side, they can enforce the
two-person control model in a more centralized manner.

3 ISE-T Architecture

To enable the two-person administrative control seman-
tic, ISE-T provides three architectural components. First,
as the two administrators cannot administer the system
directly, they must be provided with isolated environ-
ments in which they can perform their administrative
acts. To ensure the isolation, ISE-T provides container
mechanisms that allow ISE-T to create parallel environ-
ments that are based on the underlying system that is be-
ing administered. This allows ISE-T to fully isolate each
administrator’s clone environment from each other and
from the base system.

Second, we note that any persistent administrative ac-
tion has to involve a change to the file system. If the
file system is not affected, the action will not survive a
reboot. Whereas some administrative acts only affect
the ephemeral runtime state of the machine, the major-
ity of administrative acts are of a more persistent nature.
Therefore, to allow ISE-T to create two-person admin-
istrative control, the file system is a central component.
ISE-T provides a file system that can create branches of
itself as well as isolate the changes made to it. This en-
ables the easy creation of the clone containers, as well as
enabling the easy comparison of the changes performed
to both environments.

Finally, ISE-T provides the ISE-T System Service.
This service instantiates and manages the life-times of
the administration environments. It is able to compare
the two separate administration environments for equiv-
alence to determine if the changes performed to them
should be committed to the base system. ISE-T’s Sys-
tem Service performs this via an equivalence test that
compares the two administration environment’s file sys-

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 19

tem modifications for equivalence. If the two environ-
ments are equivalent, the changes will be committed to
the underlying base system. Otherwise, the ISE-T Sys-
tem Service will notify the two administrators of the dis-
crepancies and allow them to fix their environments in
the appropriate fashion.

3.1 Isolation Containers
ISE-T can leverage multiple different types of container
environments, depending on the requirements of the ad-
ministrators managing the system. In general, the choice
will be between hardware virtual machine containers and
operating system containers. Hardware virtual machines,
such as VMware [24], provide a virtualized hardware
platform that a separate operating system kernel runs on
and provides a complete operating system instance. Op-
erating system containers, such as Solaris Zones [18], on
the other hand, are just isolated kernel namespaces run-
ning on a single machine.

For ISE-T, there are two primary difference between
these containers. First, hardware virtual machines allow
the administrators to install and test new operating sys-
tem kernels as each container will be running its own
kernel. Operating system containers, on the other hand,
prevent the administrators from testing the underlying
kernel, as there is only one kernel running, that of the
underlying host machine. Second, as hardware virtual
machines require their own kernel and a complete oper-
ating system instance to be started up, they take a signif-
icant amount of time to create the administration clones.
On the other hand, operating system containers can be
created almost instantly, allowing the administrators to
quickly perform their actions. As both types of contain-
ers have significant benefits for different types of admin-
istrative acts, ISE-T supports the ability to use both. For
most actions, administrators will prefer to use operating
system containers, while still enabling them to get a com-
plete hardware virtual machine when they desire to test
kernel changes.

When ISE-T is integrated with a configuration man-
agement system, ISE-T does not have to use any iso-
lation container mechanism at all, as the configuration
management system already isolates the administrators
from the client system. Instead, ISE-T simply provides
each administrator with their own configuration manage-
ment tree and let each individual administrator perform
the changes.

3.2 ISE-T’s File System
To support its file system needs, ISE-T leverages the abil-
ity of some file systems to be branched. Unlike a regular
file system, a branchable file system can be snapshotted

at some point in time and branched for future use. This
allows ISE-T to quickly clone the file system of the ma-
chine being managed for both clone administration envi-
ronments. As each file system branch is independent, this
allows ISE-T to capture any file system changes in the
newly created branch, by comparing the branch’s state
against the initial file system state. Similarly, ISE-T can
then compare the set of file system changes from both
administration clones against each other for equivalence.

However, while a classical branchable file system al-
lows one to capture the changes, it does not allow one
to efficiently discover what has changed, as the branch
is a complete file system namespace. Iterating through
the complete file system can take a significant amount of
time, as well as place a large strain on the file system and
decrease system performance. To allow ISE-T to use a
file system efficiently, it must provide two features. First,
it must be able to duplicate the file system to provide each
administrator with their own unique and independent file
system to perform their changes on. Second, it must pro-
vide a way to easily isolate the changes each administra-
tor makes to the file system to easily test the changes for
equivalence. To meet these requirements, ISE-T creates
layered file systems for each administration environment,
where multiple file systems can be layered together into a
single file system namespace for each environment. This
enables each administration environment to have a lay-
ered file system composed of two layers, a single shared
layer that is the file system of the machine they are ad-
ministrating, as well as a layer that will contain all the
changes the administrator performs on the file system.

To support the creation of the layered file system, ISE-
T has to solve a number of file system related problems.
First, it must support the ability to combine numerous
distinct file system layers into a single static view. This is
equivalent to installing software into a shared read-only
file system. Second, as users expect to be able to inter-
act with the layered file system as a normal file system,
such as by creating and modifying files, ISE-T has to en-
able the layered file system to be fully modifiable. In a
related vein, the third problem ISE-T has to solve is that
end users should also be able to delete files that exist on
the read-only layer. However, end users should also be
able to recover the deleted files by reinstalling or upgrad-
ing the layer that contains the deleted. This is equivalent
to deleting a file from a traditional file system, but rein-
stalling the package that contains the file to recover it.

To solve these problems, ISE-T leverages union file
systems. Unioning file systems enable ISE-T to solve
the first problem as they allow the system to join multiple
distinct directories into a single directory view, as shown
in Figure 2. These directories are unioned by layering di-
rectories on top of one another. For example, when two
directories are unioned together, one directory contain-

20 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 2: Unioning Namespaces

ing the file foo and the other containing the file bar,
the unioned directory view would contain both files foo
and bar. To provide a consistent semantic, most union
file systems only allow one layer, namely the topmost to
have files added to it. At the same time, if a file that al-
ready existed is modified, the union file system changes
the underlying file directly, in whatever layer of the union
it existed previously.

Figure 3: COW functionality

To solve the second problem, union file system can
be extended [27] to enable them to assign properties to
the layers, defining some layers to be read only while
others can be read-write. This results in a model that
borrows from copy-on-write (COW) file systems, where
a modifying a file on a lower read-only layer will cause
it to be copied to the topmost writable layer, as shown in
Figure 3. For instance, in the above example, a blank cow
writable layer can be layered on top of a read only layer
containing foo and bar. If, in the course of usage, file
bar get modified to bar‘ it will be copied up to the top
most layer before the modification occurs. When a file is
created or modified, it is written to the private read-write
layer enabling the layered file system to be differentiated
through file system changes.

This layering model also provides a semantic that di-
rectory entries located at higher layers in the stack ob-
scure the equivalent directory entries at lower levels.
Continuing the example, both layers now contain the file
bar, but only the top most layer’s version of the file
is visible. To provide a consistent semantic, if a file is
deleted, a white-out mark is also created on the top most
layer to ensure that files existing on a lower layer are

Figure 4: White-Out Support for Deletion

not revealed, as shown in Figure 4. Now, if the file bar
were deleted, it would not allow the bar on the lower
layer to be revealed. The white-out mechanism enables
obscuring files on the read-only lower layers, simply by
creating white-out files on the topmost layer.

ISE-T’s layered file system provides the ability for
multiple independent views of a file system to be in an
active modifiable state at the same time, while confin-
ing each view’s modifications to itself by providing each
file system with an independent COw layer. To provide
a simple example, imagine one has a directory that one
wants to branch into two distinct views. This implies that
processes operating in one view would be able to modify
the files, without the changes causing any effect in the
other view, and vice versa. This model can simply be
implemented by ISE-T with the above union file system
semantic. ISE-T creates two distinct views of the direc-
tory by creating two distinct ISE-T branched file system
mounts. Since all modifications will cause files to be
copied to the top most directory, it enables one to simply
contain each views modifications into its own space. Fi-
nally, as each COW layer isolates the changes that were
performed to each file system, ISE-T can easily deter-
mine which files it has to compare for equivalence.

3.3 ISE-T System Service
ISE-T’s System Service has a number of responsibilities.
First, it manages the lifetimes of each administrator’s en-
vironment. When administration has to be performed, it
has to setup the environments quickly. Similarly, when
the administration session has been completed and the
changes committed to the underlying system, it removes
them from the system and frees up their space. Third, it
evaluates the two environments for equivalence by run-
ning a number of equivalence tests to determine if the
two administrators performed the same set of modifica-
tions. Finally, it has to either notify the administrators
of the discrepancies between their two environments or
commit the equivalent environment’s changes to the un-
derlying base system.

ISE-T layered file system allows ISE-T system’s ser-
vice to easily determine which changes each administra-

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 21

tor made, as each administrator changes will be confined
to their personal layer of the layered file system. To de-
termine if the changes are equivalent, ISE-T first isolates
the files that it does not care about, and that will not be
committed to the base system. This is currently limited to
the administrator’s personal files in their branch, such as
shell history. Instead of just removing them, ISE-T saves
them for archival and audit purposes. ISE-T then iterates
through the files in each environment, comparing the file
system contents and files directly against each other. If
each administrator’s branch has the equivalent set of file
system changes, ISE-T can then simply commit a set to
the base system. On the other hand, if the files contained
within each branch, are not equivalent, ISE-T flags the
differences and reports to each administrator what the
differences are. The administrators can then confer with
each other to ensure that they perform the same steps, so
that they will create the same set of files to commit to the
base system.

Determining equivalence can vary based on the type of
file and what is considered to be equivalent. For instance,
a configuration file modified by both administrators with
different editors can visually appear to be equivalent, but
can differ from each other if one uses spaces and another
used tab characters. These files can be equivalent, as
they would be parsed by applications in the same man-
ner, but would be different when examined on a character
by character level. However, there are some languages
(e.g., Python) where the amount of whitespace matters;
this can have a large effect on how the script executes.
On the other hand, two files that have exactly the same
file contents can have varying meta data associated with
the file, such as permission data, extended attributes or
even the multiple types of time data associated with each
file. Similarly, some sets of files should not matter for
equivalence, such as the shell history that recorded the
steps the administrators took in their respective environ-
ments, and in general the home directory contents of the
administrator in the administration environment. ISE-T
prunes these files from the comparison, and never com-
mits them to the underlying system.

Taking this into consideration, ISE-T’s prototype com-
parison algorithm determines these sets of differences.

1. Directory entries which do not exist in both sets of
changes are differences.

2. Every directory entry that does not have the same
UID, GID, and permission set are different.

3. Every directory entry that is not of the same file
type (Regular File, Symbolic Link, Directory, De-
vice Node, or Named Pipe) are different

For directory entries that are of the same type, ISE-T
performs the appropriate comparison.

• Device nodes must be of the same type

• Symbolic links must contain the same exact path

• Regular files must have the same size and the exact
same contents

There are two major problems with this approach.
First, this comparison takes place at a very low seman-
tic level. It does not take into account simple differences
between files that make no difference in practice. How-
ever, without writing a parser for each individual con-
figuration language, one will not easily be able to com-
pare equivalence. Second, there are certain files, such
as encryption keys, that will never be generated identi-
cally, even though equivalent actions were taken to cre-
ate them. This can be important, as some keys are known
to be weaker and a malicious administrator can construct
one by hand.

Both of these problems can be solved by integrat-
ing ISE-T with a configuration management system and
teaching ISE-T the configuration management system’s
language. First, these systems simplify the compari-
son by enabling it to focus on the configuration man-
agement system’s language. Even though most config-
uration management systems work by creating template
configuration files for the different applications, these
files are not updated regularly and can be put through
the stricter exact comparison test. On the other hand,
when ISE-T understands the single language of the con-
figuration management system, it can rely on a more re-
laxed equivalence test. Second, configuration manage-
ment systems already have to deal with creating dynamic
files, such as encryption keys. A common way configu-
ration management systems deal with these types of files
is by creating them directly on the managed client ma-
chines. As ISE-T understand the configuration manage-
ment system’s language, the higher level semantics that
instruct the system to create the file will be compared
for equivalence instead of the files themselves. However,
a potential weakness of ISE-T is in dealing with files
that cannot easily be created on the fly and will differ
between two system administration environments, such
as databases. For instance, two identical database oper-
ations can result in different databases due to the saving
of a time-stamp, or the simple reordering of updates on
the database server.

4 ISE-T for Auditing

Whereas the two-person control model that ISE-T pro-
vides to system administration is useful for providing
high assurance that faults are not going to creep into the
system, its expense can make it unusable in many situa-
tions. For example, since the two-person control model

22 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

requires the concurrence of two system administrators
on all actions, it can prevent timely actions from being
taken if only a single administrator is available. Simi-
larly, whereas the two-person control model provides a
high degree of assurance for a price, it would be useful if
organizations could get a higher degree of assurance than
normal with little extra cost. To achieve these goals, we
can combine ISE-T’s mechanisms with audit trail princi-
ples to create an auditable system administration seman-
tic.

In auditable system administration, every system ad-
ministration act that is logged to a secure location so that
it can be reviewed for correctness at some point in the
future. The ISE-T System Service creates clone adminis-
tration environments for the two administrators and can
capture the state they change in order to compare them
for equivalence. For auditable system administration,
ISE-T’s mechanism can also be used. The audit system
prevents the single system administrator from modifying
the system directly, but require the creation of a cloned
administration environment where the administrator can
perform the changes before they are committed to the un-
derlying system. Instead of comparing for equivalence
against a second system administrator, the changes are
logged so that they can be used by an auditor at some
point in the future as well as immediately committed
to the underlying system. Audit systems are known to
increase assurance that malicious changes are not per-
formed, as the malicious person knows there’s a good
chance his actions will be caught. Similarly, depend-
ing on the frequency and number of audits performed, it
can help prevent administration faults from persisting for
long periods of time in the system. However, it does not
provide as high assurance a model as can be provided by
the two-person control system, as the administrator can
use the fact that his changes are committed immediately
to create backdoors in the system that cannot be discov-
ered until later.

Auditable system administration needs to be tied di-
rectly to an issue-tracking service. This allows an auditor
to associate an administrative action with what the ad-
ministrator was supposed to accomplish. Every time an
administrator invokes ISE-T to administer the system, an
issue-tracking number is passed into the system to tie that
action with the issue in the tracker. This allows the audi-
tor to compare the results of what occurred with what the
auditor expects to have occurred. In addition, auditable
system administration can be used in combination with
the two-person control system when only a single ad-
ministrator is available and action has to be taken in a
more immediate fashion. With auditing, the action can be
performed by the single administrator, but can be imme-
diately audited when the second administrator becomes
available. This helps the system maintain its higher level

of assurance when immediate action has to be taken by a
single administrator.

5 Experimental Results

To test the efficacy of ISE-T’s layered file system ap-
proach, we recruited 9 experienced computer users
with varying levels of system administration experience,
though all were familiar with managing their own ma-
chines. We provided each user with a VMware virtual
machine running Debian GNU/Linux 3.0. Each VM was
configured to create an ISE-T administration environ-
ment that would allow the users to perform multiple ad-
ministration tasks isolated from the underlying base sys-
tem. Our ISE-T prototype uses UnionFS [27] to provide
the layered file system needed by ISE-T. We asked the
users to perform the eleven administration tasks listed in
Table 2. The user study was conducted in virtual ma-
chines running on an IBM HS20 eServer blade with dual
3.06 Ghz Intel Xeon CPUs and 2.5GB RAM running
VMware Server 1.0. These tasks were picked as they are
indicative of common administration tasks, as well as in-
cluding a common way a malicious administrator would
create a back-door in the system for himself.

Each task was performed in a separate ISE-T con-
tainer, so that each administration task was isolated from
the others, and none of the tasks depended on the re-
sults of a previous task. We used ISE-T to capture the
changes each user performed for each task in its own file
system. We were then able to compare each user against
each other for each of the eleven tasks, to see if they per-
formed equivalent modifications or where their modifi-
cations differed.

For every test, ISE-T prunes the changes that were
done to remove files that would not affect equivalence
since they would not be committed to the underlying
file system, as described in Section 3.3. Notably, in our
prototype, ISE-T prunes the /root directory which is
the home directory of the root user, and therefore would
contain differences in files such as .bash history
amongst others that are specific to how they went about
performing the task. Similarly, ISE-T prunes the /var
subtree to remove any files that were not equivalent. For
instance, depending on how an administrator would ad-
minister the system and what tools one would use, differ-
ent files would be created, for instance a cache of pack-
ages downloaded and installed via the apt-get tool
versus being downloaded and installed manually. The
reasoning behind this pruning is that the /var tree is
meant as a read-write file system for per-system usage.
Tools will modify it; if different tools are used, differ-
ent changes will be made. However, one cannot prune
the entire directory tree as there are files or directories
within it that are necessary for runtime use and those

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 23

Category Description Result

Software Installation
Upgrade entire system via package manager Equivalent
Install official Rdesktop package Equivalent
Compile and install Rdesktop from source Equivalent

System Services
Install SSH Daemon from package Not Equivalent (Not Desired)
Remove PPP package using package manager Equivalent

Configuration
Changes

Edit machine’s persistent hostname Equivalent
Edit the inetd.conf to enable a service Not Equivalent (Not Desired)
Add a daily run cron job Equivalent
Remove an hour run cron job Equivalent
Change the time of a cron job Equivalent

Exploit Create a backdoor setuid root shell anywhere Not Equivalent (Desired)

Table 2: Administration Tasks

changes have to be committed to the underlying file sys-
tem. Therefore, only those changes that are equivalent
were committed, while those that are different were ig-
nored. ISE-T also prunes the /tmp directory as the con-
tents of this directory would also not be committed to the
underlying disk. Finally, due to the UnionFS implemen-
tation, ISE-T also prunes the whiteout files created by
UnionFS if there is no equivalent file on the underlying
file system. In many cases, temporary files with random
names will be created; when they are deleted, UnionFS
will create a whiteout file, even if there is no underly-
ing file to whiteout. As this whiteout file does not have
an impact on the underlying file system, it is ignored.
On the other hand, whiteout files that do correspond to
underlying files and therefore indicate that the file was
deleted are not ignored.

5.1 Software Installation

For the software installation category, we had the users
perform three separate tests that demonstrated differ-
ent ways administrators install software into the system.
These tests were to demonstrate that when multiple users
install the same piece of software, as long as they install
it in the same general way, the two installations will be
equivalent.

To demonstrate this, the users were first instructed
to install the rdesktop program from its Debian pack-
age. Users could choose to download the package by
hand and install it via dpkg, they could use apt-get
to download it and any unfulfilled dependencies, or use
the aptitude front end amongst many ways to per-
form this task. Most users decided to install the package
via apt-get, but even those who did not made equiva-
lent changes. The only differences were those in pruned
directories, demonstrating that installing a piece of pre-
packaged software using regular tools will result in an
equivalent system.

Second, the users were instructed to build the rdesk-
top program from source code and install it into the sys-
tem. In this case, multiple differences could have oc-
curred. First, if the compiler would create a different
binary each time the source code is compiled, even with-
out any changes, one would have a more difficult time
evaluating equivalence. Second, programs generally can
be installed in different areas of the file system, such as
/usr versus /usr/local. In this case, all the testers
decided to install the program into the default location,
avoiding the latter problem, while also demonstrating
that as long as a the same source code is compiled by the
same toolchain, it will result in the same binary. How-
ever, some program source code, such as the Linux ker-
nel, will dynamically modify their source during build,
for example to define when the program was built. In
these cases, we would expect equivalence testing to be
more difficult as each build will result in a different bi-
nary. A simple solution would be to patch the source
code to avoid this behavior. A more complicated solution
would involve evaluating the produced binary’s code and
text sections with the ability to determine that certain text
section modifications are inconsequential. Again, in this
case the only differences were in pruned directories, no-
taby the /root home directory to which the users down-
loaded the source for rdesktop.

Finally, we had the users upgrade the Debian stable
system with all pending security updates. This was a
more complicated version of the first test, as multiple
packages were upgraded. Although differences existed
between the environments of the users, the differences
were confined to the /var file system tree and depended
on how they performed the upgrade. This is because De-
bian provides multiple ways to do an upgrade of a com-
plete system and those cause different log files to be writ-
ten. As they all installed the same set of packages, the
rest of the file system, as expected, contained no differ-
ences.

24 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

5.2 System Services

Our second set of tests involved adding and removing
services: the users were instructed to install the ssh ser-
vice and remove the PPP service. These tests were an
extension of the previous package installation tests and
were meant as a demonstration of how one would auto-
matically start and stop services, as well as a demonstra-
tion of files we knew would be different and therefore
fail equivalence testing.

For the first test, we instructed the users to install the
SSH daemon. This test sought to demonstrate that ISE-
T can detect when a new service is installed and there-
fore enable it when the changes are committed. This
is demonstrated by the fact that in Linux systems, a
System-V init script has to be added to the system to
enable it to be started each time the machine boots. If
the user’s administration environment contains a new init
script, ISE-T can automatically determine that the ser-
vice should be started when this set of administration
changes are committed to the base system. This test also
sought to demonstrate that certain files are always go-
ing to be different between users if created within their
private environment. This is demonstrated by the fact
that the SSH host key for each environment is different.
This is because it is created based on the kernel’s ran-
dom entropy pool that will be different for each user and
therefore will never be the same if created in separate en-
vironment. A way to solve this would be not to create it
within the private branch of each user, but instead have
it be created after the equivalent changes are committed,
for instance, the first time the service’s init script is exe-
cuted.

For the second test, we instructed the users to re-
move the PPP daemon. This test sought to demonstrate
that there are multiple ways to remove a package in a
Debian system and depending on the way the package
is removed, the underlying file system will be differ-
ent. Specifically, a package can either be removed or
purged. When a package is removed, files marked as
configuration files are left behind, allowing the packages
to be reinstalled and have the configuration remain the
same. On the other hand, when a package is purged, the
package manager will remove the package and all the
configuration files associated with it. In this case, the
user’s chose different ways to remove the package, and
ISE-T was able to determine the differences for those that
chose to remove or purge it.

5.3 Configuration Changes

Our third set of tests involved modifications to config-
uration files on the system and involved six separate
tests. These tests could be subdivided into three cate-

gories. The first category was composed of simple file
configuration changes. We first instructed the users to
modify the host name of the machine persistently from
debian to iset, which is accomplished by editing the
/etc/hostname file. As expected, as this configura-
tion change is very simple, all user modified the system’s
hostname in the exact same manner, allowing ISE-T to
determine that all the systems were equivalent.

Next, we instructed the users to modify the
/etc/inetd.conf file to enable the discard ser-
vice. In this case, as the file is more free-form, their
changes were not exact, and many were not equiva-
lent. For example, some users enabled it for both TCP
and UDP, while some users enabled it for TCP alone.
Also, some users added a comment, while others did not.
Whereas the first change is not equivalent, the second
change should be considered equivalent, but this can-
not be determined by a simple diff; one needs the abil-
ity to parse the files correctly to determine that they are
equivalent, an ability our ISE-T prototype does not have.
However, ISE-T was able to clearly report the differences
that existed between the environments of users who per-
formed this administration task differently.

The second set of tests involved setting up and remov-
ing cron jobs and was composed of three tests. First,
we provided the users with a script in /root that we
instructed them to install in the system in a manner so
that it will be executed daily. In Debian there are two
ways to have a cron job execute daily. The best way is
to simply place the script in the /etc/cron.daily
directory, as all the programs located within it are exe-
cuted once a day. On the other hand, a user could use
the /etc/crontab file and instruct it exactly what
time each day to execute the program. We were look-
ing for users to place the file in /etc/cron.daily
which the large majority did; but one user who per-
haps was not used to Debian modified /etc/crontab
directly. Again, ISE-T was able to detect the differ-
ence when it existed and report the discrepancy. Simi-
larly, we instructed users to remove a cron job that ran
hourly. The cron job’s script was already located in
/etc/cron.hourly and not in crontab. All users
deleted it from the /etc/cron.hourly directory,
even the user who modified /etc/crontab in the pre-
vious test. Finally, we had an entry in /etc/crontab
that executed a cron job at 4:35 AM every day, and in-
structed the users to change it to 5:35 AM. As expected,
all users performed the same set of changes by modifying
the /etc/crontab file.

5.4 Exploit

In our final test, we asked the users to create a backdoor
shell into the system. This test demonstrates that ISE-

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 25

T will detect when one of the two system administrator
makes a rogue administration change to the system, as
the other administrator will not have made that same ad-
ministration change. We did not specify how or where
the shell should be created, and left it up to the user. The
users created setuid shells in many different locations,
some as “dot files” to be hidden from a normal ls listing,
and some just setuid existing shells. In all cases, as none
of the users made this rogue modification in the same
manner, ISE-T was able to detect the rogue changes as a
difference that existed between all the environments.

6 Related Work

Two-person control mechanisms are known to provide
high levels of assurance [22]. Multiple examples exist
with regard to nuclear weapons. For instance, to launch
a nuclear weapon, two operators must separately confirm
that launch orders are valid and must turn their launch
keys together to launch the missiles. In fact, every sen-
sitive action concerning nuclear weapons must be per-
formed by two people with the same training and author-
ity [3, Chapter 2]. The same notion is applied in many
financial settings: banks will require two people to be
involved in certain tasks, such as opening a safe-deposit
box [25], and companies can require two people to sign
a check [8] over a certain threshold. This makes it much
more difficult for a single person to commit fraud.

However, as far as we know, this mechanism has never
been applied directly to system administration. In the
Compartmented Mode Workstation (CMW), the system
administration job is split into roles, so that many tra-
ditional administration actions require more than one
user’s involvement [23]. These demarcation of roles
were first pioneered in Multics at MIT [12]. Similarly,
the Clark-Wilson model was designed to prevent unau-
thorized and improper modifications to a system to en-
sure its integrity [4]. All these systems simply divided
the administrators’ actions amongst different users who
performed different actions. This differs fundamentally
from the traditional notion of two-person control where
both people do the same exact action.

More recently, many products have been created to
help prevent and detect when accidental mistakes occur
in a system. SudoSH [9] is able to provide a higher level
of assurance during system administration as it records
all keystrokes entered during a session and is able to re-
play the session. However, while sudosh can provide an
audit log of what the administrator did, it does not pro-
vide the assurances provided by the two-person control
model. Even if one were to audit the record or replay it,
one is not guaranteed to get the same result. Although
auditing this record can be useful for detecting acciden-
tal mistakes, it cannot detect malicious changes. For in-

stance, a file fetched from the Internet can be modified.
If the administrators can control which files are fetched,
they can manipulate them before and after the sudosh
session. ISE-T, on the other hand, does not care about
the steps administrators take to accomplish a task, only
the end result as it appears on the file system.

Part of the reason accidental mistakes occur is that
knowledge is not easily passed between the experienced
and inexperienced system administrators. Although sys-
tems like administration diaries and wikis can help, they
do not easily associate specific administration actions
with specific problems. Trackle [6] attempts to solve
this by combining an issue tracker with a logged con-
sole session. Issues can be annotated, edited and cross-
referenced while the logged console session logs all ac-
tions taken and file changes and stores them with the is-
sue, improving institutional memory. Although this can
help prevent mistakes from entering the system due to
enabling the less experienced system administrators from
seeing the exact same steps a previous administrator took
to fix a similar or equivalent issue, it does not prevent
mistakes from entering and remaining in the system, nor
does it prevent a malicious administrator from perform-
ing malicious changes.

ISE-T’s notion of file system views was first explored
in Plan 9 [17]. In Plan 9, it is a fundamental part of the
system’s operation. As Plan 9 does not view manipulat-
ing the file system view as a privileged operation, each
process can craft the namespace view it or its children
will see. A more restricted notion of file system views
is described by Ioannidis [11]. There, its purpose is to
overlay a different set of permissions on an existing file
system.

Finally, a common way to make a system tolerant of
administration faults is to leverage the semantic of file
system versioning, as it enable you to rollback to a con-
figuration file’s previous state when an error was made.
Operating systems such as Tops-20 [7] and VMS [15] in-
clude native operating system support for versioning as
a standard feature of their file systems. These operating
systems employ a copy-on-write semantic that involves
versioning a file each time a process changes it. Other
file systems, such as VersionFS [16], ElephantFS [19],
and CVFS [21] have been created to provide better con-
trol of the file system versioning semantic.

7 Conclusions

ISE-T applies the two-person control model to system
administration. In administration, the two-person control
model requires two administrators to perform the same
administration act with equivalent results in order for the
administration changes to be allowed to affect the sys-
tem that is being modified. ISE-T creates multiple paral-

26 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

lel environments for the administrators to perform their
administration changes and then compares the results of
the administration changes for equivalence. When the
results are equivalent, there is a high assurance that sys-
tem administration faults have not been introduced into
the system, be they malicious or accidental in nature.

We have implemented an ISE-T Linux prototype that
creates parallel administration environments where sep-
arate administrators can perform changes, while not hav-
ing administration rights on the machine itself. Our re-
sults from a user study demonstrate that many common
administration tasks will result in equivalence when per-
formed by isolated administrators without any commu-
nication between them. This demonstrates that the two-
person control model can be applied to system adminis-
tration by simply analyzing the results of the file system
changes that occur in the environments created for the
two administrators.

Acknowledgements

Paul Anderson, Andrew Hume, our paper shepherds, and
Matthew Barr provided many helpful comments on ear-
lier drafts of this paper, especially in the area of config-
uration management. This work was supported in part
by NSF grants CNS-0426623, CNS-0717544, and CNS-
0914845.

References

[1] US DOD Joint Publication 1-02, DOD Dictio-
nary of Military and Associated Terms (as amended
through 9 June 2004).

[2] P. Anderson. LCFG: A Practical Tool for System
Configuration. Usenix Association, 2008.

[3] A. B. Carter, J. D. Steinbruner, and C. A. Zraket,
editors. Managing Nuclear Operations. The
Brookings Institution, Washington, DC, 1987.

[4] D. D. Clark and D. R. Wilson. A Comparison of
Commercial and Military Computer Security Poli-
cies. IEEE Symposium on Security and Privacy,
0:184, 1987.

[5] Commission for Review of FBI Security Programs,
William Webster, chair. Webster Report: A Review
of FBI Security Programs, Mar. 2002.

[6] D. S. Crosta, M. J. Singleton, and B. A. Kuperman.
Fighting Institutional Memory Loss: The Trackle
Integrated Issue and Solution Tracking System. In
Proceedings of the 20th Large Installation Sys-
tem Administration (LISA 2006) Conference, pages
287–298, Washington, DC, Dec. 2006.

[7] Digital Equipment Corporation. Tops-20 user’s
guide, Jan. 1980.

[8] M. S. Elmaleh. Nonprofit fraud prevention.
http://www.understand-accounting.
net/Nonprofitfraudprevention.html,
2007.

[9] D. Hanks. Sudosh. http://sourceforge.
net/projects/sudosh/.

[10] J. Heller. Catch-22. Simon and Schuster, 1961.

[11] S. Ioannidis, S. M. Bellovin, and J. Smith. Sub-
operating Systems: A New Approach to Appli-
cation Security. In SIGOPS European Workshop,
Sept. 2002.

[12] P. Karger. Personal Communication, May 2009.

[13] P. A. Karger and R. R. Schell. MULTICS Security
Evaluation: Vulnerability Analysis. Technical Re-
port ESD-TR-74-193, Mitre Corp, Bedford, MA,
June 1977.

[14] O. Laadan, R. Baratto, D. Phung, S. Potter, and
J. Nieh. DejaView: A Personal Virtual Computer
Recorder. In Proceedings of the 21th ACM Sympo-
sium on Operating Systems Principles (SOSP), Oct.
2007.

[15] K. McCoy. VMS File System Internals. Digital
Press, 1990.

[16] K. Muniswamy-Reddy, C. P. Wright, A. Himmer,
and E. Zadok. A Versatile and User-Oriented Ver-
sioning File System. In Proceedings of the Third
USENIX Conference on File and Storage Technolo-
gies (FAST 2004), pages 115–128, San Francisco,
CA, Mar./Apr. 2004. USENIX Association.

[17] R. Pike, D. L. Presotto, K. Thompson, and
H. Trickey. Plan 9 from Bell Labs. In Proceedings
of the Summer 1990 UKUUG Conference, pages 1–
9, London, UK, July 1990. UKUUG.

[18] D. Price and A. Tucker. Solaris Zones: Operat-
ing System Support for Consolidating Commercial
Workloads. In Proceedings of the 18th Large In-
stallation System Administration Conference, Nov.
2004.

[19] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C.
Veitch, R. W. Carton, and J. Ofir. Deciding When to
Forget in the Elephant File System. In Proceedings
of the 17th ACM Symposium on Operating Systems
Principles (SOSP), Dec. 1999.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 27

[20] S. Soltesz, H. Pötzl, M. e. Fiuczynski, A. Bavier,
and L. Peterson. Container-Based Operating Sys-
tem Virtualization: A Scalable, High-Performance
Alternative to Hypervisors. SIGOPS Operating
System Review, 41(3):275–287, 2007.

[21] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and
G. R. Ganger. Metadata Efficiency in a Compre-
hensive Versioning File System. In Proceedings of
the 2nd USENIX Conference on File and Storage
Technologies, Mar. 2003.

[22] P. Stein and P. Feaver. Assuring Control of Nuclear
Weapons. University Press of America, 1987.

[23] J. S. Tolliver. Compartmented Mode Worksation
(CMW) Comparisons. In Proceedings of the 17th
DOE Computer Security Group Training Confer-
ence, Milwaukee, Wi, May 1995.

[24] VMware, Inc. http://www.vmware.com.

[25] Wilshire State Bank. Safe deposit boxes.
https://www.wilshirebank.com/
public/additional_safedeposit.asp,
2008.

[26] D. Wise. Spy: The Inside Story of how the
FBI’s Robert Hanssen Betrayed America. Random
House, 2002.

[27] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versa-
tility and Unix Semantics in Namespace Unifica-
tion. ACM Transactions on Storage, 2(1):1–32,
Feb. 2006.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 29

The Water Fountain vs. the Fire Hose: An Examination and

Comparison of Two Large Enterprise Mail Service Migrations
Craig Stacey, Max Trefonides, Tim Kendall, Brian Finley

Argonne National Laboratory

Abstract

Mail administrators will inevitably face a situation where they will need to migrate their users from one server to

another, not infrequently migrating to a different service altogether. In 2008, two divisions of Argonne National

Laboratory found themselves needing to migrate their users from disparate divisional mail servers to a central, insti-

tutional Zimbra Collaboration Server. Each group approached the situation from a different direction, driven by

different motivations, timelines, and external forces; each ultimately achieved its goal, one more smoothly than the

other. The first migration was driven by a high sense of urgency resulting in a “fire hose” approach, an en masse

move followed by a grand switchover; the second migration was a more measured “water fountain” approach, taking

in lessons learned during the first migration. Examining the processes, decisions, and tools used in each conversion

yields a roadmap of successes and pitfalls that should prove useful to any systems administrators facing a similar

task, regardless of the timeline within which they must work.

1. Overview

Argonne National Laboratory is served by a central IT

services division, the Computing and Information Sys-

tems (CIS) division. As well, many of the program-

matic divisions have their own IT staffs of varying

sizes. This paper focuses on the work of the IT support

groups from two of those divisions, the Mathematics

and Computer Science division (MCS) and the Materi-

als Science Division (MSD).

CIS offers services, including e-mail, to any of the divi-

sions at Argonne. Until 2008, this e-mail service was

provided solely as Microsoft Exchange. In mid-2008,

Argonne began offering a choice between Exchange

and Zimbra Collaboration Suite.

Prior to this migration project, both MCS and MSD ran

their own e-mail services rather than using the central

mail services for varying reasons that will be detailed

below. MCS and MSD each maintains its own IT sup-

port groups, providing a number of services besides e-

mail. Diagrams detailing the flow of mail to these divi-

sions both before and after this migration are included

in the appendices.

MCS consists of nearly 200 researchers, programmers,

students, and visitors, with another 250 external col-

laborators. The division is home to several hundred

workstations, three large clusters, and other high-

performance computing resources. Aside from manag-

ing this diverse group of resources, the group also pro-

vides standard IT services such as web, mail, data stor-

age, backup, and networking services. Management of

these resources and services is handled by a single IT

organization, the MCS Systems team, comprising 10

individuals with varying skill sets and specialties, as

well as anywhere from 1 to 4 undergraduate students

each summer, depending on workload and availability

of interesting projects.

MSD is the focal point for research in materials science

at Argonne National Laboratory and consists of over

200 researchers, students and staff. The MSD IT Op-

erations group supports this division, providing support

for over 200 workstation and several small clusters.

MSD IT Operations also provides standard IT services

similar to those provided by the MCS Systems team.

The IT Operations team comprises 3 full time employ-

ees and 2 part time co-op students.

2. Mathematics and Computer Science Di-
vision (The Fire Hose)

MCS ran its own mail services, with user mailboxes

provided by Cyrus IMAP on an AIX server with 6 TB

(available) of fibre channel attached storage, an installa-

tion that was set up in 1998. Approximately 500 user

mailboxes were active at the time of this migration,

with another 200 lying dormant as their owners for-

warded their mail elsewhere, totaling approximately

450 GB of mailbox data.

In this section, the process is described from the per-

spective of the MCS Systems team, with a summary of

the CIS perspective at the end.

30 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

2.1. MCS Decision Process

The existing mail system was showing its age. In 2006,

MCS began the process of evaluating an upgrade path

for mail services. Ultimately, we decided to go with the

same approach we'd been using for the past 8 years;

mailbox services provided by Cyrus, though instead

using a Linux server since our AIX expertise was lack-

ing.

While we try to avoid these situations, an extended pe-

riod of limited funding, staffing changes, and an over-

committed IT staff resulted in systems and services

getting replaced only when they broke or failed to meet

the existing need. As this server was generally rock

solid, it was often overlooked, and its replacement was

not considered an urgent matter.

While testing and implementation plans were being put

into place, we became aware of a growing desire within

our user community for shared calendaring and other

collaboration tools. We entered into a joint trial of the

Zimbra Collaboration Server (ZCS) with CIS, with

MCS's focus being the calendaring component.

Several months later, the mail upgrade project was

stalled as a result of other emergencies; however, the

Zimbra pilot was going well. Realizing that the ZCS

service inherently provides mailbox services, we re-

evaluated our mail server upgrade plan.

Our decision to continue to provide our own mail serv-

ices was driven by a number of factors, but one of the

main motivators was that we needed to be in control of

the data and service. When something goes wrong, our

users expect us to be able to fix it, and fix it quickly.

The prospect of outsourcing our mail services and leav-

ing our IT staff unable to directly support it did not ap-

peal to either the IT staff or management. To an out-

sider, this may seem simply territorial, and there is cer-

tainly some truth to be found in that thinking.

However, historically, the relationship between the or-

ganizations that would become MCS and CIS had its

rough patches. MCS management preferred a nimble

set of services focused solely on advancing its research,

and many saw CIS as slow, bureaucratic, and control-

ling. Overcoming this prejudice was not an easy task,

but this seemed an opportune time to try.

By virtue of the fact that the Zimbra experiment in CIS

was in its pilot stage, coupled with the fact that MCS

was its largest user base, MCS systems administrators

were given administrative access to the service. After

confirming that this access would be continued in the

production-level service, we decided to make Zimbra

the mailbox service for the division.

We note that the scope of this migration was limited

specifically to user mailboxes. MCS was not going to

cease providing mail services; we still ran Majordomo-

based mailing lists (which would be converted to mail-

man lists later in the year), as well as trouble ticket sys-

tems for ourselves and other groups, and virtual domain

services. Therefore our solution needed to be able to

support our remaining the primary Mail Exchanger for

the domains we controlled, sending user-bound mail to

the central service. This Zimbra solution fit the bill

nicely.

Work on the conversion began in earnest as our mail

server was continuing to show its age. For instance, the

release of Mac OS 10.5 brought with it a new version of

Mail, which many of our users use. This new version

handled offline IMAP actions in a slightly different

fashion from previous versions, and it was a way that

seemed to cause our version of Cyrus IMAP to choke.

This resulted in repeated error messages to the users

and an ever-growing list of queued actions, as each

failure caused a new copy of the offline action to be

queued. As one can imagine, this situation got less and

less bearable as time went on. Additionally, large mail-

ings could bring the service to a crawl, and we were

entering into a time of year when drafts of proposals

would regularly be sent to large distribution lists.

While it may not be the most efficient way of collabo-

rating on a document, e-mailing Word and PowerPoint

documents is certainly the most prevalent method

among our users. Most significantly, as errors would

occur and failures became increasingly frequent with

the advancing age of the server, we felt we were in-

creasingly in danger of losing mail.

2.2. MCS Migration Plan and Implementa-
tion

Problems with our existing server notwithstanding, we

had what was fundamentally a simple problem – find a

way to move messages from one IMAP server to an-

other. We did a fair amount of research to locate the

existing tools that could accomplish this move, since

something of our own construction would likely be too

much effort for what should fundamentally be a solved

problem. Based on this web research, consensus in the

community seemed to be that using imapsync [Lamiral]

would be the most reliable method of accomplishing

this migration. Likewise, Zimbra’s own recommenda-

tions in migrating to a new server recommended this

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 31

path of action [Zimbra]. In using this tool, however, we

had to consider the limitations of our setup:

• The old mail server (cliff) was being pushed to

its limits already; therefore our migration

could not be too aggressive on the server.

• Because imapsync uses the IMAP protocol, it

requires us to know the users’ passwords on

both systems. While we could set their pass-

words on the new Zimbra server, since they

were not yet using it, we could not know their

passwords on the existing IMAP server, as it

was NIS-bound and using their regular work-

station passwords.

We circumvented the first problem by limiting our-

selves to two concurrent syncs – testing indicated this

was an acceptable load. The password problem was

more complex, but our situation allowed us to employ a

creative workaround. Because our mail server was NIS-

bound, we attempted to use a local /etc/passwd entry on

the machine, allowing us to login with our system

password, and allowing the users to login with their

NIS passwords as a fallback. Alas, this did not work on

our version of AIX, but it did give us the idea that

solved the problem. We could create entries for a

“ghost” user on the mail server with the same UID and

path as the real user that used our system password. At

the same time, our script would modify the flat mail-

boxes file that Cyrus used to map mailboxes.

After testing confirmed our scripts were doing the right

things, we ran the migration process day and night over

a period of weeks. Various pitfalls were encountered

along the way because of a number of situations our

testing did not predict, such as disks filling up, net-

works going down, and previously undetected corrup-

tion in mailboxes.

Throughout the entire migration process, this corruption

in mailboxes posed a significant challenge, as there was

no predictable method to discover the corruption until

we tried traversing the mailbox structure and reading

individual messages; indeed, the messages appeared to

be normal in any index of a mailbox, and the problems

appeared only when the messages would be read. The

most common corruption seemed to be in the oldest

mailboxes; indeed, some employees had mail archives

dating back into the late 1990s. While this in and of

itself should not have caused a problem, the errors

seemed to be caused by the varied (and no doubt inter-

esting) lives these messages led. Some originated on

the precursor to the mail system we were replacing

(Sun OS 4.1.4’s Mail with Sendmail and qpopper).

These messages were stored in a monolithic mbox file,

POPped off the server by the user into their e-mail cli-

ent of choice, then later reimported into the Cyrus

server via IMAP. Our most plausible theory is that

changes in header format and attachment handling is

what caused Cyrus to fail on loading these messages, as

almost all of the corrupt messages were messages from

Exchange users with attachments. These messages

would have to be removed from the inbox by hand.

Happily, while the IMAP clients seemed to fail on

transferring or reading the messages, they were gener-

ally capable of deleting the messages; only a small

handful of messages required a file-level delete and

mailbox reindex.

Ultimately, it became clear that the IMAP-only method

of syncing was not going to solve this problem; it was

simply too slow. Connections were timing out on large

mailboxes, resulting in incomplete data syncs. Also, the

problems on cliff were steadily getting worse, and it

became clear we needed an aggressive schedule for the

migration. We came to the realization that our beloved-

yet-overworked “little engine that could” was on the

verge of switching from “I think I can” to “I think I’m

done.” As such, the slow-and-steady approach was

beginning to look like it was a bigger risk than charging

forward. It was the end of February, and an organiza-

tion-wide maintenance window was scheduled for the

weekend of April 26 and 27. We chose this weekend

for the migration as most services would be down al-

ready, and users would expect a loss of service over

that weekend.

Our second pass at moving the data involved getting the

raw mailbox data onto the new server via rsync, using

Zimbra’s command line tools on the server to import

the data into user mailboxes, and then using imapsync

to synchronize the flags on the mailboxes with their

counterparts on the old server.

To ensure we did not bring the main Zimbra server’s

network to a crawl during our data sync, we synced to a

development server with the intention of mounting the

disk on the production server for the import. As is be-

coming evident to the reader, things rarely worked out

the way we planned them, and this was no exception.

The initial sync of the data took an excruciatingly long

time, though we were hopeful the import into the pro-

duction server would be a much quicker operation,

since the slowness of cliff would be out of the equation.

Alas, the nature of the SAN defeated us; it turned out

both the rsync and the mailbox import were I/O bound,

32 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

and our development server’s SAN was not as robust as

the primary storage on the production server.

Our self-imposed April 26 deadline was fast approach-

ing, and our progress was indicating we would probably

finish the initial data sync the day before we were to

switch over. The IMAP syncs were alphabetical by user

name, and this estimate was based on progress through-

out the alphabetical list of usernames. Astute readers

should be able to predict the next pitfall we hit – our

largest mailbox was one of the last ones alphabetically.

On average, our user mailboxes were several hundred

megabytes, with users rarely crossing into the gigabyte

range. This particular user had a mailbox of over 20

GB. We realized we would have to handle this mailbox

out of band if we were to meet our deadline, and we

started syncing it and other large mailboxes concur-

rently, outside the automated process.

On the morning of April 26, it was evident that the sync

would not be finished. Because the outage window had

already been announced, we plowed ahead and at-

tempted to finish the migration, figuring a day for the

heavy work and all of Sunday to finish and tie up loose

ends.

We turned off all incoming mail and started the final

sync of user mailboxes with imapsync, which would

capture any messages that arrived since the initial sync,

along with setting the message flags for the users. This

script ran throughout the day as we set up the new rules

on our SMTP relays to direct mail to the correct serv-

ers. Because the old mail server would still be process-

ing Majordomo mailing lists, we had to detect whether

mail was for a user or mailing list and route it accord-

ingly. By Saturday night, things seemed to be progress-

ing well, and our spot checks on mailboxes looked

okay, except message flags did not seem to be getting

set correctly.

On Sunday, it became clear what was going wrong; the

“ghost” user on the old server had full access to the

user’s mailboxes but did not share the message flags,

and all messages were seen as “new”. (We later sur-

mised that even though there was a single copy of each

Cyrus indexing file per mailbox, that file was storing a

set of flags for each username that accessed the mail-

box, as opposed to each UID; thus, all messages were

“New” to the ghost user.) Because the mail system was

now down, we uncoupled cliff from NIS and used only

the local /etc/passwd file, allowing us to use the user’s

real mailbox with our system password. This strategy

solved the message flag issue, but we became aware of

another issue. The script calling imapsync was sup-

posed to be nondestructive; messages deleted on the old

server should not be deleted on the new server. Because

of a misreading of the configuration, however, this was

not the case, and messages were being purged from the

new mailboxes in some cases. In theory, such purging

should not have mattered. However, perceptive readers

will remember we flipped the switch on delivery of new

messages on Saturday morning. Hence, any new mail

delivered to the new mailbox was being deleted as soon

as that user’s sync was run.

Also, because of mailbox corruption on the old server, a

handful of users had their mailboxes emptied on the

new server. We needed to reconstruct these mailboxes

from backups, or in some “friendly user” cases (i.e.,

fellow sysadmins), the users restored their own mail-

boxes from their local backups.

The migration was not yet complete, but users were

getting anxious. By 7:00 Sunday evening, users whose

accounts we had deemed to be fully migrated were al-

lowed into their new mailboxes. Surprisingly, this did

not go poorly. In fact, the feedback we received during

this “early access” period helped us in later diagnoses.

From what we were hearing, we could determine that in

most cases, where the user’s mailboxes were small, the

migration was a success. However, for users with large

or complexly organized mailboxes, it became apparent

rather quickly that the migration was not complete. En-

tire years’ worth of mail were missing from the mail-

boxes of some users who kept large archives.

By Monday morning, it was clear we had much more

work to do to finish the migration. We announced to

the users that we had reason to suspect the migrated

mailboxes were not complete and that we would instead

implement an approach whereby new mail continued

arriving at the new mail server, and users would mi-

grate their own mail via their mail clients, with help

from the IT support staff where required.

This manual user-initiated sync took place over the next

two months in a gradual process, with most users being

completely migrated by mid-May. In part we were able

to accomplish this migration by announcing that the old

server would be shut down at the end of May. As

someone wise beyond his years once said, “Announce

the demise of the old [system] well in advance of really

discontinuing it” [Evard94].

In the cases of users with large or deeply nested folder

hierarchies, we engaged in a great deal of “hand-

holding” to guide them through the process. Unfortu-

nately, these users tended to be among the less technical

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 33

savvy in the division, and as such the workload in that

handholding was significant. Also, as outlined below,

some mailboxes could not be migrated at all without

some server-side tweaks.

We emphasize that the MCS users were marvelously

patient throughout this process. Indeed, a key in main-

taining this level of patience was proper communica-

tion. As noted in Tom Limoncelli’s AT&T Network

migration, a high level of communication and status

updates will make the users feel more a part of the

process (and less a victim of it) [Limoncelli97].

2.3. MCS Pitfalls and Lessons Learned

With each approach we devised, the plan seemed fool-

proof on paper, and at each step of the way, something

popped up proving us wrong. The list of things that

went wrong reads like a proof of “Murphy’s law.”

The combination of imapsync and our aging mail server

were incapable of moving the mailboxes. In fact,

IMAP itself had great difficulty in handing some of the

user mailboxes. Often, users would archive mail into

folders they would never again look at. As these fold-

ers grew in the number of messages contained therein,

some reached a size that would make it impossible to

access them over an IMAP client; as the old mail server

struggled to stat the files, the connection would time

out. To get around this situation, we would manually

break up the mailboxes into smaller folders, reindex the

folder, and begin anew.

The rsync of the mailbox data was restarted numerous

times because of failing disks, high CPU loads, and

network outages. In some cases these syncs had been

running uninterrupted for days before crashing. With

each restart, we lost precious time as file systems were

compared.

The misconfiguration of imapsync in our migration

script was a significant pitfall. By using imapsync in-

correctly and losing messages, we undid a significant

portion of the work that was accomplished. Human

error is going to happen in any venture driven by hu-

mans and can be easily compounded by late, stress-

filled nights that follow long, stress-filled days. In

short, a simple typo of a flag was a devastating blow to

both our progress and morale. A second set of eyes on

these scripts would have gone a long way toward solv-

ing this problem.

Numerous restarts in various parts of this project

plagued us. In the period between January 3 and April

25, we started from “square one” five times after a pre-

vious plan of action proved unworkable. Instead of hav-

ing 4 months to migrate, we effectively had 2 weeks.

This time constraint ramped up our stress levels, know-

ing that delaying the move could only exacerbate the

situation, living in fear of the old mail server falling

over.

All of the work we did to move the data from the old

server to the new server was ultimately abandoned.

This was, perhaps, the hardest blow to our collective

psyche. The “brass ring” throughout this process was

our knowing we’d done all the heavy lifting for our

users, and they’d not have to deal with the migration

themselves. Instead, not only did we go through a tre-

mendous effort, but it was for naught.

Because a significant source of angst in this process

was the lack of documentation, we continue to ensure

we do not run into this in the future. Much of the old

system was simply undocumented, existing only in the

head of the previous mail administrator – clearly not a

sustainable method of operating. We have ramped up

our efforts in documenting processes and configura-

tions, and we’ve ensured that more administrators are

involved in the operation and configuration of the serv-

ers, avoiding the single-point-of-knowledge problem

we typically faced.

The biggest contributing factor to our problems with

this migration was related to the age of the hardware,

operating system, and software of our production mail

server. Combined with poor documentation, this left us

with an aging mail system that for years had generally

performed well with little intervention, and nothing but

fading institutional memory on how to repair or tweak

it. And, as is the case with any stable rock in a dy-

namic ecosystem, it had acquired roots and tendrils

embedded in it that we are to this day still trying to dis-

engage.

As noted in Section 2.1, the root cause of the age of this

system was its generally working as expected during a

period of time where only “squeaky wheels” got the oil.

Economizing on hardware by holding off upgrades can

often seem prudent, and sometimes unavoidable, but it

almost certainly leads to an inflated TCO in the longer

run. Tallying the amount of work hours involved in

extricating a long used and encrusted system from a

reasonably complex environment would be an interest-

ing exercise. Following a long-term plan for regular

retirement and refreshing of hardware would have gone

a long way toward mitigating much of our problems.

34 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

A technical factor in this process was the Cyrus IMAP

mailbox database. This monolithic flat text, single-file

database used by the version of Cyrus IMAP that we

were running proved to both hamper and help our mi-

gration. We were hampered because the file was frag-

ile, had a rigid format dependent on tabs, spaces, and

sorting (requiring a different sorting than provided by

AIX’s sort command), and was prone to corrupt the

mail stream when things went wrong. It helped because

we had an easily scriptable way to insert the systems

users in order to be able to get access to the users' mail-

boxes, by ensuring the “ghost user” was either the first

or last alphabetically (i.e. “aaaaaaaa” and “zzzzzzzz”).

In Section 2, we mentioned that we had 500 active ac-

counts and an additional 200 that were later determined

to be dormant, resulting in our moving 40% more users

than we needed to. We gave thought to indentifying the

unused mailboxes prior to migration, so as to avoid the

work of moving users who no longer existed. A small

amount of effort was put to this task, but we soon called

it off as we discovered most of these users had very

small mailboxes, and weeding them out from the proc-

ess would be more work than simply migrating every-

one wholesale. With a slower approach, it’s more

likely we would have taken the time to cull these un-

used accounts prior to a move – it was largely a deci-

sion based on the time left and the level of effort avail-

able.

We point out that, over time, our account and resource

expiration policies have been disabling and deleting

these mailboxes, and almost all have been removed

with little work on our behalf.

The next time we have to perform a migration of mail-

boxes, we’ll be far more likely to employ the process

we ended up using after all other plans failed. We

would choose a cutover date when all new mail will be

delivered to the new server, and allow users to migrate

their own mail with help from IT support before an

announced deadline wherein the old mail server would

be shut off.

While we certainly engaged in testing, we failed to

properly identify the edge cases. In some cases we

chose what we expected to be difficult mailboxes on

which to audition new migration methods, yet we had a

knack for choosing examples that, while certainly large

and well aged, were problem free. A better sampling

for our testing would have gone a long way to identify-

ing many of the pitfalls in advance of our migration

deadline.

When coming up with our migration plan, CIS recom-

mended we employ a more staged rollout. We opted to

go “all-in” as we did not feel we had the luxury of the

time required to engage in such a migration. Of course,

the irony of this situation is the mail server we were

convinced was going to fall over at any moment stayed

up through the manual migration process. In fact, it

was finally retired in August of 2009.

It’s also important to consider that our group tries to

make things as seamless for our users as possible, and

all of our research indicated we would be able to ac-

complish this migration with little to no user impact.

Aside from updating their mail client configurations,

the only change our users were supposed to notice was

a faster and more reliable mail service. We have cer-

tainly learned that this was too lofty a goal in the given

circumstances.

2.4. CIS Challenges and Participation in the
MCS Migration

From the CIS perspective, Zimbra had been very suc-

cessful as a pilot service, but we had no true experience

running Zimbra as a production service, or with any

significant data or user load. Going from a dozen giga-

bytes of mail to trying to appropriately scale the system

to instantly take on roughly half a terabyte of mail data

and 500 users was a cause of some concern, and a bit of

a challenge.

Zimbra allows for separation of disk volumes for per-

formance and cost reasons. CIS provisioned the pro-

duction system with separate volumes for redo logs,

primary mail store, and secondary mail store, among

others. Mail flow into the system, including messages

added via IMAP, first land in the redo logs, then the

primary mail store. A weekly scheduled Zimbra HSM

process then migrates old mail from the primary mail

store to the larger secondary mail store on lower-

performance, less expensive disk.

One unanticipated effect of the “fire hose” approach

was the need to closely monitor volume consumption

on these separate volumes; in particular the redo log

and primary mail store volumes, neither of which was

intended to be able to completely contain the amount of

data being transferred during the MCS migration.

As the redo log volume filled up, it was necessary to

manually invoke an incremental backup using Zimbra's

self-backup facility. The Zimbra self-backup facility

allows for atomic point in time restores, and does so by

replaying appropriate bits from the redo-logs, which it

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 35

copies to a backup volume during incremental backups.

As the primary mail store filled up, it was necessary to

preemptively invoke the Zimbra HSM facility. Fortu-

nately, message age persisted in the migrated mail,

therefore allowing this process to work.

The HSM process, as the solution to the primary mail

store filling up, was fairly easy to identify. It just made

sense, we already understood how it worked, and had

intended it for this purpose, just not on this schedule.

On the other hand, we had no prior experience with the

redo logs growing out of hand. Previously, the already

scheduled daily incremental backups automatically

handled them, so we had no prior need to pay them any

notice – it just worked. This is a good example of the

challenges of accurately modeling behavior of a system

at scale in a small or simulated environment.

CIS wasn't too concerned about high load placed on the

Zimbra server during the MCS migration, as they were

the first production user base to migrate. In other

words, if the migration caused performance issues, they

would be affecting only themselves. This was a luxury

that future groups making the migration would not be

able to have.

3. Materials Science Division (The Water
Fountain)

MSD ran an iPlanet mail server on a Sun server with

approximately 120 mailboxes including service ac-

counts. A majority of the mailboxes were active at the

time of migration, as MSD had been doing some house

cleaning to keep adequate free space. At the start of

migration there were over 190 GB of mail.

In this section, the migration process is described from

the perspective of the MSD IT Operation group.

3.1. MSD Decision Process

The current MSD IT operations staff had inherited an

aging Sun e-mail server that was getting more costly to

maintain. Maintenance contracts and the cost of adding

additional storage were cost prohibitive because of the

age of the server. Additionally, as the existing server

had been installed and operated by administrators no

longer with the division, there was a lack of expertise

with this install.

MSD IT Operations was relatively new department to

MSD, as IT support had been handled by an Argonne

division that had been dissolved. Despite having a new

IT staff, the division had inherited an aging IT infra-

structure built and maintained by another group. Be-

cause of this older infrastructure MSD wanted to ex-

plore the possibility of using the CIS e-mail systems,

yet we were apprehensive about relinquishing control.

The division is accustomed to having its services run by

a support group whose only responsibility is their own

division. Bearing this in mind, we did give some con-

sideration to bringing a new e-mail server online. But

since we had so many other infrastructure problems to

deal with, we felt the benefit far outweighed the conse-

quences of migrating e-mail services to CIS. Addition-

ally, using CIS e-mail gave us the advantage of using

Argonne’s central Active Directory authentication, as

MSD users were tired of having several different

authentication methods.

Since MSD had a large Mac OS user base, moving to

CIS Exchange servers was not our first choice because

of the various issues Mac OS users can have with con-

necting to Exchange. (Historically, the laboratory’s

Exchange server did not interact well with Entourage.

This problem was solved after our migration was fin-

ished.) At this time we became aware of the CIS Zim-

bra pilot project and started a dialog with CIS and MCS

regarding migrating to Zimbra. After MSD completed

initial testing and conversations with both the Zimbra

lead and the MCS lead, MSD joined MCS on the Zim-

bra pilot test. This was in the early spring of 2008, but

unfortunately several other more urgent projects needed

attention, delaying the start of planning of the migration

until late July 2008. It was during this pilot test that

MCS performed its migration. After the process was

complete, the MSD administrators met with our MCS

colleagues to discuss their process.

Since other commitments by IT staff had delayed work

on the migration, we, too, started to feel a sense of ur-

gency. We had two factors influencing our deadline;

our maintenance contract on the Sun server was expir-

ing in late 2008, and our SSL certificate would expire

shortly after that. MSD did not want to incur the cost

of renewing either of them, knowing the service was

bound for decommissioning. Also, during a recent di-

visional review, there were many large e-mail attach-

ments going back and forth among the users, resulting

in one weekend where mail delivery came to a near

standstill because of lack of storage space. Even after

the review, it was a struggle to keep 10 GB free on the

mail store.

Because divisional administrative support staff and

senior management need to collaborate with others in

the laboratory, a decision was made to migrate these

36 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

users to the central Exchange server. Otherwise, all

MSD users were to be migrated to the Zimbra server.

3.2. The Plan and the Pitfalls

Once we decided to use Zimbra as our primary server,

new employees received accounts on the Zimbra serv-

ice. Initially this was limited to postdocs, since Ar-

gonne’s Zimbra service was still technically in the pilot

phase. With the installation of ZCS 5.0, it was officially

moved to production status, and we started adding all

new employees’ mailboxes to the Zimbra server. This

relieved some of the storage issues on the current MSD

mail server, allowing MSD IT operations to work out

the remainder of the migration planning without quite

so much urgency.

MSD looked at using imapsync; but after meeting with

MCS and discussing the problems they had with it, do-

ing an all-at-once approach was ruled out. Among the

several reasons not to use imapsync was the need to

know the user’s password; MSD would not have access

to user’s AD account password for the Zimbra e-mail

accounts. Furthermore, from a general customer satis-

faction perspective, doing one user at a time was far

more appealing, as we could start with a few users and

test the migration process, hammering out any issues.

Other reasons included the experience of some of our

IT staff with e-mail migrations from previous positions

at other organizations that employed expensive third

party tools to perform a behind the scenes migration.

Based on this experience, MSD IT knew we would

most likely end up touching every workstation anyway.

The process we settled on was a new feature available

in Zimbra, the import component of the web interface.

We used this tool because it off!loaded the migration

from the client to the server. Thus, the migration proc-

ess did not tie up the user’s workstation during the

move, which was especially beneficial when dealing

with older machines or a large mailbox migration.

Since the Zimbra Web Client (ZWC) allowed users to

add and check external POP and IMAP accounts, we

had the user log into the ZWC and add the user’s old

MSD account. This approach caused the Zimbra server

to import all the user’s mail completely as a server!side

action, regardless of whether the user is logged in on

the ZWC. During the mail import MSD changed the

primary e-mail alias to point to the Zimbra server. Once

the account had fully loaded in the web interface, we

then moved and arranged the folders or contents of

folders to the Zimbra account’s mailbox tree to mirror

the old MSD folder structure. Once completed, we de-

leted the old account from the ZWC and set up the

user’s e-mail client to access the new account.

During the migration MSD encountered some users that

were off-site a vast majority of the time. To assist these

users, MSD wrote up documentation on how to do their

own migration. Additionally, some users preferred to

do their own migration because it provided an opportu-

nity to cleanup their e-mail.

After MSD started doing several migrations a day, the

Zimbra server started to slow tremendously, affecting

other division as well. Migrations were halted while the

Zimbra team investigated. After finding the root cause

was Zimbra’s indexing of attachments, we decided to

turn off this feature for the time being. With attachment

indexing off, migrations were much faster, even with

heavy e-mail users (5 GB+ mail boxes), and there was

no impact on other users’ experience with the system.

This issue did not arise during the MCS migration, be-

cause no other users were interactively using the service

during their migration, so the high machine load was

not noticed.

Rather than simply moving alphabetically through the

mailboxes, scheduling was done with some considera-

tion to the user’s mailbox size: we started with the

smaller mailboxes to make sure the process was work-

ing. Once the process was established and server con-

cerns were addressed, we based the schedule primarily

on the user’s convenience. We scheduled it in batches

and tried to get as many done in one batch as possible.

With any migration like this, one must address setting

user expectations accurately on access to the old data.

MSD established a policy that a user’s old e-mail ac-

count would remain accessible for 7 days after the mi-

gration but only through the web interface. After 7 days

the password on the mail account was changed; after 30

days the account was deleted from the server. This pol-

icy was largely adhered to except in some instances

requiring us to set up access to an old MSD mailbox

because something was not migrated or we missed

changing an e-mail alias.

Another hurdle was some users were having e-mail

addressed to the fully qualified divisional e-mail ad-

dress (user@division.anl.gov) instead of the main Ar-

gonne alias (user@anl.gov). In the setup that existed at

the time, any mail sent to user@msd.anl.gov would be

directed to Argonne’s mail gateway, then handed off to

our own mail server; and as long as that server was still

in the migration process, that setup had to be main-

tained. Since migrated users simply had their @anl.gov

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 37

alias directed to their new Zimbra mailbox, they would

not experience this problem, but these users who had

distributed their internal MSD address needed their old

e-mail account kept active longer while they alerted

their senders and mailing lists. Other difficulties were

the occasionally corrupted e-mail message on the old

MSD mail server, as this would stop the Zimbra mail

import. Once the corrupted e-mail message was deleted,

the mail import would function as expected.

As a side-benefit of this migration, it allowed us to per-

form some account cleanup. MSD identified users who

had retired but were still using their MSD mail account,

as well as users who were forwarding their mail to out-

side services, a discouraged-but-within-policy practice.

We used the mail migration as an opportune time to

update many systems to the latest versions of their e-

mail client and web browser. For consistency purposes

we used the Firefox web browser to perform the migra-

tion, but in this process we found some users still were

using Firefox 1.0, a long-outdated version.

3.3. MSD Pitfalls and Lessons Leaned

MSD IT, with the insight gained by the MCS migration

experience, was able to create a more controlled migra-

tion process. Our biggest hurdle was sticking to the

plan: specifically, scheduling each user, keeping track

of migrations, and following through with all users.

Adhering to this last step proved problematic, because,

once we had all but a few the users migrated, we let

other issues take priority and the last of the migrations

took a back seat. Unlike MCS, we thought our e-mail

server running with a light load would last awhile. De-

spite our migration going generally smoother than

MCS’s, we were not immune to the assumption that

would be proven quite demonstrably wrong.

Of this handful of accounts on the old server, most were

service accounts, not used by any particular user.

However, we did have two user accounts left. One was

a former division director who proved difficult to

schedule. Since he was moving to Exchange, his migra-

tion required more coordination with CIS, as their Ex-

change administrators would need to assist in the mi-

gration. We also had a user we thought had been mi-

grated to another division’s e-mail server because he

had been transferred to that division, but who turned out

to still be using our old server. At the time we were

getting ready to start migrating these account, our aging

(and now unsupported) Sun server crashed in spring

2009. Since another division was involved, we com-

bined efforts to bring the server back up. But the server

had experienced nearly catastrophic failure; the data

drives were intact, but we had no access to them with-

out spending considerable time and money.

Fortunately, the former division director had a local

cached copy of most of his e-mail, and we were able to

use this for the migration. Unfortunately, the other user

accidently deleted his locally cached copy, and we were

unable to recover all of his older e-mail. We are still

exploring our options for recovery, but the server is still

offline. We quickly recreated most of the service ac-

counts, but we are still finding some as we continue to

review mail logs.

We’ve learned to follow through on our tasks and see

them to completion. Also, we will do a better job con-

firming that work we think is done actually is done.

Moreover, documentation can be improved, and prop-

erly documenting which service accounts we’ve created

and what they’re used for will help us a great deal down

the road.

3.4. CIS Challenges and Participation in the
MSD Migration

From the CIS perspective, the MSD migration was

much more straightforward than the MCS migration.

MSD engaged CIS early in their process. Based on ex-

perience gained from the MCS migration, and new fea-

tures available in Zimbra that MCS helped explore and

test, CIS was able to work with MSD to create a migra-

tion plan that worked well for them and minimized the

impact on the Zimbra service and on MSD by spreading

the migration out over time.

Both MCS and MSD handled their own migrations,

engaging CIS when necessary. After the initial planning

phases, the MSD migration was much more hands off

for CIS. The one exception was the attachment index-

ing issue mentioned above.

CIS imposes no limits on mailboxes in our Exchange

and Zimbra services and allows individual messages as

large as 100 MB. Some of the components of mail sys-

tems work well with smallish messages but exhibit

strain when processing large messages. At the time of

the MSD migration, the attachment indexing process

was a multithreaded Java process that had issues han-

dling large attachment sizes. The net result was a dra-

matic increase in load on the system, both for CPU and

disk, resulting in the Zimbra server being so slow it was

almost unusable. Upon identifying the offending proc-

ess, we disabled attachment indexing via a simple

check box in the Zimbra admin GUI, and migrations

38 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

were able to resume. We note, for Zimbra's sake, that

there is a new facility that can be selected for attach-

ment indexing that is proving to better handle large

attachments, and is resulting in a consistently lower

system load.

4. Conclusions

Hindsight is, of course, 20/20, and one can easily look

at both migrations and conclude that it’s obvious what

to do and what to avoid. Of course, every situation is

different, and a careful examination of what went

wrong and why can often lead to insights on how to

avoid similar pitfalls when one is pushed down a simi-

lar path. In this section, we look at what each of the

divisions took away from the process, having seen the

results from each other’s migration.

4.1. MCS

In many ways, performing an e-mail migration like this

is not unlike performing a number of other types of

migrations in the IT world, whether it’s physically

moving a datacenter, or implementing a new network

topology, or deploying a new authentication scheme. In

other ways, however, they can be vastly different, and

it’s in recognizing these differences that we can make

better choices. Outside influences, customer demands,

and occasionally the laws of physics can get in the way

of how we expect things to play out.

MCS would obviously opt for a more measured ap-

proach in future migrations. The plan employed by

MSD holds great appeal; however, two important fac-

tors exist. First, this option was not available on the

version of Zimbra the lab was running at the time of our

migration. Second, testing on our old mail server indi-

cated that this implementation would not have worked

for much the same reason imapsync failed; an aging

server combined with enormous mailboxes results in

timeouts and dropped connections.

Instead, time permitting, a well-documented and user-

driven migration would be our likely course of action

when undertaking a migration of this size. As in the

prior-cited Tenwen paper, we would build the new sys-

tem separate from the old one, move the users’ delivery

to the new system, and help them move their old data to

it on their own schedule, within the constraints of our

ability to maintain and run that old system. After a

well-publicized and finite period of time, we would

decommission the old system [Evard94].

As a service organization, it is always an admirable

goal to inconvenience one’s users as little as possible,

but there are situations, such as this, where it’s simply

not attainable. A side benefit of a user-driven migration

is an increased likelihood that users will be more selec-

tive as to which data must be maintained – our users

can be notoriously bad at pruning unneeded data, result-

ing in just the sort of bloat that led to some of the issues

we faced.

However, time is not always flexible, and when faced

with an immovable deadline, one sometimes has no

alternative but to jump in with both feet and try to solve

the problem to the best of one’s ability. If one abso-

lutely had to do a migration like this, our implementa-

tion plan could have worked with better parameters,

though it would by no means be the preferred solution.

Certainly, a longer outage window and fewer false

starts would have helped, but significant user input

would still be required because of the corruption in the

data being moved. Aggressive scanning of the mail-

boxes using IMAP tools could have identified these

problems well in advance and allowed us to repair or

remove the troublesome data well in advance. Like-

wise, we could have front-loaded the heavy work by

migrating the heaviest users first, rather than the easily

scriptable alphabetical method. Indeed, when it became

evident that certain users had disproportionately large

mailboxes, we hand-started syncs on their mailboxes

outside the automated process.

We note that in no way were the pitfalls and encum-

brances the fault of the targeted mail server software or

the server itself. We believe we would have faced these

challenges regardless of the chosen path, largely be-

cause of the age of the existing mail server, and its in-

ability to handle the volume of mail we were moving.

4.2. MSD

MSD’s biggest issue was with actually completing the

project. This left us with several loose ends we needed

to deal with in crisis mode when the Sun server

crashed, as opposed to a controlled shutdown of the old

server.

The server crash notwithstanding, MSD would defi-

nitely use the same basic method again if faced with

another similar migration, albeit with better follow-

through. This user-centric migration allowed a lot of

buy-in from the most important IT customer – the end

user. It reduced the potential lost productivity of the

scientist if a one-shot migration had been done. It was

labor intensive for MSD IT Operations, but the benefit

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 39

of reaching out to the user on an individual basis re-

duced call volume and follow-up issues. Also, we were

able to resolve most issues in a timely manner, instead

of trying to deal with several dozen users at once.

4.3. Avoiding Disaster

Many papers have been written describing IT moves,

including the already cited [Evard94, Limoncelli97], as

well as [Schimmel93, Cha98], dealing with moves and

migrations both physical and virtual. Every move is

different; each comes with its own pitfalls. Every time a

group undertakes a project of such magnitude, there

exists the opportunity to achieve both fantastic suc-

cesses and extraordinary failures. The right steps taken

beforehand can tip the scales more in favor of the for-

mer. Included in the appendices is the premigration

checklist that we can now construct from our experi-

ences, and would have dearly loved to have read prior

to beginning the project.

Author Biographies

Craig Stacey is a full time computer geek, part time

stand-up comic, aspiring photographer and writer, pas-

sionate beer enthusiast, and frequent wearer of pants.

He is also the IT manager for the Mathematics and

Computer Science Division at Argonne National Labo-

ratory and longs to spend more time doing system ad-

ministration and less time doing paperwork. His e-mail

address is stace@mcs.anl.gov, and he is fond of mon-

keys and robots.

Adam Max Trefonides has been a UNIX Systems Ad-

ministrator for many years. Prior to holding his current

position as a senior systems administrator in the

Mathematics and Computer Science Division at Ar-

gonne National Lab he was responsible for the team

that, among many other duties, took care of the central

e-mail systems at the University of Chicago, (in other

words e-mail was his fault). Prior to working for the

computers he was a cross-country trucker, carpenter,

welder, sculptor and unemployment recipient. He main-

tains his trucker license for when the Internet fad ends.

His e-mail address is maxadam@mcs.anl.gov.

Tim Kendall is a systems administrator and the primary

Mac specialist in the Materials Science Division at Ar-

gonne National Laboratory. He loves Science Fiction of

all types and was a professional photographer for 18

years before switching to IT. He helps run the Two

Way Street Coffee House that has been in operation

since 1970 presenting live folk music every Friday

night. His e-mail address is tkendall@anl.gov.

Brian Elliott Finley is the deputy manager of Unix,

storage, and operations for the Computing and Informa-

tion Systems division at Argonne National Laboratory

and is the lead on the Argonne Zimbra project. He

holds a number of technical certifications and has cre-

ated, maintained, or otherwise contributed to several

open source software projects, including SystemImager

and WiFi Radar. Mr. Finley lives in Naperville, IL, US

with his wife, four children, one large dog, and a toad.

He can be reached at finley@anl.gov.

Acknowledgments

This work was supported by the Office of Advanced

Scientific Computing Research, Office of Science, U.S.

Department of Energy, under Contract DE-AC02-

06CH11357.

References

[Cha98] Lloyd Cha et al., “What to Do When the Lease

Expires: A Moving Experience,” in Proceedings of the

Twelfth Systems Administration Conference (LISA

’98), pp. 168-174, Boston, MA, 1998

[Evard94] Rémy Evard, “Tenwen: The Re-engineering

of a Computing Environment,” in 1994 LISA Proceed-

ings, pp. 37-46, San Diego, CA, 1994

[Lamiral] imapsync, Gilles Lamiral (developer),

http://www.linux-france.org/prj/imapsync/

[Limoncelli97] Tom Limoncelli, “Creating a Network

for Lucent Bell Labs Research South,” in 11th Systems

Administration Conference (LISA '97) Proceedings, pp.

123-140, San Diego, CA, 1997

[Schimmel93] John Schimmel, “A Case Study on

Moves and Mergers”, in Seventh System Administra-

tion Conference (LISA ’93), pp. 93-98, Monteray, CA,

1993

[Zimbra] Zimbra Wiki, “Mail Migration instructions,”

http://wiki.zimbra.com/index.php?title=Mail_Migration

40 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Appendix: Suggested Premigration checklist

As noted in Section 4.3, this is the checklist MCS should have used, constructed from the experi-
ences gained from not using such a checklist.

Two months prior to migration

1. Inform users of the migration plan. Encourage data clean-up. Make clear and obvious the
date the new service will begin.

2. Ensure user mailboxes are free of corruption. Aggressively scan mailboxes for errors us-
ing IMAP protocols. Instruct users on methods to test for problem mailboxes, including
deleting problem messages.

3. Archive inactive mailboxes, and take them offline.
4. Compare list of active mailboxes with log files to identify users who are not logging in to

check mail. Flag potentially inactive accounts, attempt to notify owners.
5. Identify exceptionally large mailboxes and work with owners to identify actual user

needs and expectations – perhaps the mail client is configured to never empty the trash,
for example.

One month prior to migration

6. Repeat items 1 through 5.
7. Go over potentially inactive account list from step 4, identify those actually inactive (eg,

owner unreachable), and archive them.
8. Identify all accounts to be migrated, and create them on new server.
9. Ensure new account creation process is creating mailboxes on existing server and new

server.
10. Hold training session with users demonstrating migration procedure.

One week prior to migration

11. Repeat items 1 through 5.
12. Ensure all accounts to be migrated are ready for service.
13. Hold another training session demonstrating migration procedure.
14. Ensure adequate availability for IT staff on migration day and the days that follow.
15. Post mail client configuration instructions so users can be ready for the switch. Adjust

centrally managed mail client configurations.

One day prior to migration

16. Reiterate new service date very publicly. Post signs, and website announcements, send e-
mails.

17. Ensure configuration instructions for mail clients are trivially available, trivially locat-
able, and correct.

18. Re-ensure IT staff availability.

Migration day

19. Buy lunch for the IT staff.
20. Implement migration plan.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 41

Appendix: MCS Migration Scripts and Configuration Files

imapsyncbatch.sh - used to launch imap sync sessions between cliff and Zimbra, this file lived
on a third host named “owney” as cliff’s SSL implementation was too old to open encrypted
IMAP sessions to the Zimbra server. This is the version that contains the errant “-- delete2” that
resulted in deletions from the Zimbra folders. stage1.mcs.anl.gov was the temporary hostname
for the Zimbra mailboxes during migration.

#!/bin/bash

USER1="zzzzzzzz"

USER2=$1@stage1.mcs.anl.gov

HOST1=cliff.mcs.anl.gov

HOST2=zimbra.anl.gov

DATE=`date "+%Y-%m-%d_%H:%M:%S"`

EXCLUDE="Trash|Viral"

SPLIT1=20

PASS1=/root/migration_scripts/cpass

PASS2=/root/migration_scripts/zpass

logfile=/sandbox/zzzzzzzz/log/$1-imapsync.log

userlog=/sandbox/zzzzzzzz/log/imapsync.log

cd /sandbox/zzzzzzzz/tmp

echo `pwd` >> $logfile

Begin IMAPSync

echo "" >> $logfile

echo "------------------------------------" >> $logfile

echo "IMAPSync started for $1 $DATE" >> $logfile

echo "" >> $userlog

echo "------------------------------------" >> $userlog

echo "IMAPSync started for $1 $DATE" >> $userlog

echo "Settings: Excluding: $EXCLUDE, $SPLIT1 messages per" >> $logfile

echo "" >> $logfile

 echo "Starting $USER2 at $DATE" >> $logfile

echo "" >> $logfile

 imapsync \

 --nosyncacls --syncinternaldates \

 --nofoldersizes \

 --split1 $SPLIT1 \

 --exclude $EXCLUDE \

 --host1 $HOST1 \

 --user1 $USER1 \

 --passfile1 $PASS1 \

 --port1 993 \

 --host2 $HOST2 \

 --user2 $USER2 \

 --passfile2 $PASS2 \

 --port2 993 \

 --ssl1 \

 --ssl2 \

 --noauthmd5 \

 --delete2 \

42 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

 --buffersize 8192000 \

 --regextrans2 's/^Journal$/Journal-old/i' \

 --regextrans2 's/^Briefcase$/Briefcase-old/i' \

 --regextrans2 's/^Calendar$/Calendar-old/i' \

 --regextrans2 's/^Contacts$/Contacts-old/i' \

 --regextrans2 's/^Notes$/Notes-old/i' \

 >> $logfile

 echo "$DATE Finished $USER2" >> $logfile

 echo "" >> $logfile

need some sanity checks here?

echo "" >> $logfile

echo "IMAPSync Finished for $1 $DATE" >> $logfile

echo "------------------------------------" >> $logfile

echo "" >> $userlog

echo "------------------------------------" >> $userlog

echo "IMAPSync Finished for $1 $DATE" >> $userlog

linker-forward.sh - used to create /var/imap/mailboxes file on cliff with ghost users. This ver-
sion traverses the alphabet from a to z, linking the user being synced with the ghost user
“aaaaaaaa.” The script needed to maintain the sorting and whitespaces contained within the
existing file. As noted at the bottom, this script directly calls the above “imapsyncbatch.sh” on
owney via an SSH session. The end of that SSH session allows this script to increment to the next
user. A similar script, linker-reverse.sh, performed a similar job, albeit from z to a, linking the
user being synced to the “zzzzzzzz” ghost user.

#!/bin/ksh -x

/root/migration_scripts/linker-forward.sh

created by maxadam@mcs.anl.gov 3/2008

modified by stace@mcs.anl.gov 4/2008

with input from many quarters

This script prepares cliff for migrating a user to zimbra.

It is designed to work in tandem with linker-reverse.sh,

to add parallelprocessing.

What it does:

Generates the userlist

Moves a link to a commented version of /etc/inetd.conf in

place and refreshes imapd in order to halt any new imap

connections.

Cleans the aaaaaaaa user out of the /var/imap/mailboxes file

and copies the file to a working copy

Creates the symlink for the aaaaaaaa user that points to the

mail directory

Backs up the mailboxes file, appending the current username

Copies the modified mailboxes file into place

Re-enables imap

Runs imapsyncbatch on owney with $user as the single argument

over ssh

log=/var/log/linker-forward.log

lock=/root/migration_scripts/locked

if [! -f $log]; then

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 43

 touch $log

fi

 for i in `grep user /var/imap/mailboxes | awk '{print $1}' | awk -F . '{print $2}'| sort -u |

egrep -v ^aaaaaaaa | egrep -v ^zzzzzzzz` ; do

 while [-f $lock]; do

 sleep 20

 done

 touch $lock

 inetdpid=`ps -ef | grep '[i]netd' | awk '{ print $2 }'`

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Linking mailboxes for user ${i} to zzzzzzzz" >> $log

 if [! -f "/etc/inetd.conf.off"] 2>&1 >> $log; then

 echo "/etc/inetd.conf.off does not exist or is not an ordinary file! exiting." >> $log

 exit 1

 elif [! -f "/etc/inetd.conf.on"] 2>&1 >> $log; then

 echo "/etc/inetd.conf.on does not exist or is not an ordinary file! exiting." >> $log

 exit 1

 elif [! -L "/etc/inetd.conf"] 2>&1 >> $log; then

 echo "/etc/inetd.conf is not a symlink or does not exist! Exiting." >> $log

 exit 2

 else echo "`date "+%Y-%h-%d@%H:%M:%S"` Halting imapd" >> $log

 rm /etc/inetd.conf

 ln -sf /etc/inetd.conf.off /etc/inetd.conf

 kill -HUP $inetdpid

 echo "`date "+%Y-%h-%d@%H:%M:%S"` imapd halted" >> $log

 cp /var/imap/mailboxes /var/imap/mailboxes.backup-forward

 fi

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Making links for ${i}" >> $log

 egrep -v ^user.zzzzzzzz /var/imap/mailboxes > /var/imap/mailboxes-f.${i}

 egrep "default ${i} " /var/imap/mailboxes | \

 sed s/^user.${i}/user.zzzzzzzz/ | \

 sed s/"default ${i} "/"default zzzzzzzz "/ >> /var/imap/mailboxes-f.${i}

 if [! -s /var/imap/mailboxes-f.${i}] ; then

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Abort, empty mailboxes file" >> $log

 rm /etc/inetd.conf

 ln -sf /etc/inetd.conf.on /etc/inetd.conf

 kill -HUP $inetdpid

 exit 3

 fi

 rm -f /var/spool/imap/user/zzzzzzzz

 ln -sf /var/spool/imap/user/${i} \

 /var/spool/imap/user/zzzzzzzz

 if ! /bin/ls -l /var/spool/imap/user/zzzzzzzz | grep ${i} 2>&1 >> $log ; then

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Abort, link bad" >> $log

 rm /etc/inetd.conf

 ln -sf /etc/inetd.conf.on /etc/inetd.conf

 kill -HUP $inetdpid

 exit 4

 fi

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Links made" >> $log

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Copying mailboxes-f.${i} to mailboxes" >> $log

 if [-s /var/imap/mailboxes-f.${i}] ; then

 cp /var/imap/mailboxes-f.${i} /var/imap/mailboxes

 else

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Abort, empty mailboxes file" >> $log

44 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

 rm /etc/inetd.conf

 ln -sf /etc/inetd.conf.on /etc/inetd.conf

 kill -HUP $inetdpid

 exit 5

 fi

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Attempting to restart imapd" >> $log

 if [! -f "/etc/inetd.conf.off"] 2>&1 >> $log; then

 echo "/etc/inetd.conf.off does not exist or is not an ordinary file! exiting." >> $log

 exit 1

 elif [! -f "/etc/inetd.conf.on"] 2>&1 >> $log; then

 echo "/etc/inetd.conf.on does not exist or is not an ordinary file! exiting." >> $log

 exit 1

 elif [! -L "/etc/inetd.conf"] 2>&1 >> $log; then

 echo "/etc/inetd.conf is not a symlink or does not exist! Exiting." >> $log

 exit 2

 else echo "`date "+%Y-%h-%d@%H:%M:%S"` Restarting imapd" >> $log

 rm /etc/inetd.conf

 ln -sf /etc/inetd.conf.on /etc/inetd.conf

 kill -HUP $inetdpid

 echo "`date "+%Y-%h-%d@%H:%M:%S"` imapd restarted" >> $log

 fi

 sleep 1

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Starting imapsyncbatch for ${i} on owney" >> $log

 rm $lock

 ssh -t zzzzzzzz@owney.mcs.anl.gov /root/migration_scripts/imapsyncbatch.sh ${i}

done

/var/imap/mailboxes snippet - head and tail of the /var/imap/mailboxes generated by the scripts
above. Recall that, at the filesystem level, the ghost users’ spool directories would be symlinks to
the actual users’ directories.

user.aaaaaaaa default aaaaaaaa lrswipcda

user.aaaaaaaa.Quarantine default aaaaaaaa lrswipcda

user.aaaaaaaa.SPAM default aaaaaaaa lrswipcda

user.aaaaaaaa.Viral default aaaaaaaa lrswipcda

user.aaaaaaaa.sent-mail default aaaaaaaa lrswipcda

user.aammar default aammar lrswipcda

user.aammar.Drafts default aammar lrswipcda

[…]

user.zzhang default zzhang lrswipcda

user.zzhang.Drafts default zzhang lrswipcda

user.zzhang.Quarantine default zzhang lrswipcda

user.zzhang.SPAM default zzhang lrswipcda

user.zzhang.Trash default zzhang lrswipcda

user.zzhang.Viral default zzhang lrswipcda

user.zzhang.sent-mail default zzhang lrswipcda

user.zzzzzzzz default zzzzzzzz lrswipcda

user.zzzzzzzz.Quarantine default zzzzzzzz lrswipcda

user.zzzzzzzz.SPAM default zzzzzzzz lrswipcda

user.zzzzzzzz.Viral default zzzzzzzz lrswipcda

user.zzzzzzzz.sent-mail default zzzzzzzz lrswipcda

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 45

Appendix: Mail Routing Diagrams

Figure 1 - Mail flow before migration project

Figure 2 - Mail flow after migration project

46 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Disclaimer – Non printing

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory

("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No.

DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclu-

sive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the

public, and perform publicly and display publicly, by or on behalf of the Government.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 47

Crossbow Virtual Wire: Network in a Box

Sunay Tripathi, Nicolas Droux, Kais Belgaied, Shrikrishna Khare

Solaris Kernel Networking, Sun Microsystems, Inc.

Abstract

Project Crossbow in OpenSolaris is introducing new

abstractions that provide virtual network interface cards

(VNICs) and virtual switches that can have dedicated

hardware resources and bandwidth assigned to them.

Multiple VNICs can be assigned to OpenSolaris zones

to create virtual network machines (VNM) that provide

higher level networking functionality like virtual routing,

virtual load balancing, and so on. These components can

be combined to build an arbitrarily complex virtual net-

work called virtual wire (vWire) which can span one or

more physical machines. vWires on the same physical

network can be VLAN-separated and support dynamic

migration of virtual machines, which is an essential fea-

ture for hosting and cloud operators.

vWires can be reduced to a set of rules and objects

that can be easily modified or replicated. This ability is

useful for abstracting out the application from the hard-

ware and the network, and thus considerably facilitates

management and hardware upgrade.

The administrative model is simple yet powerful. It

allows administrators to validate their network architec-

ture, do performance and bottleneck analysis, and debug

existing problems in physical networks by replicating

them in virtual form within a box.

Keywords: Virtualization, Virtual Switches, VMs,

Xen, Zones, QoS, Networking, Crossbow, vWire,

VNICs, VNM.

1 Introduction

In recent years, virtualization[2][3][7] has becomemain-

stream. It allows the consolidation of multiple services

or hosts on smaller number of hardware nodes to gain

significant savings in terms of power consumption, man-

agement overhead, and data-center cabling. Virtualiza-

tion also provides the flexibility to quickly repartition

computing resources and redeploy applications based

on resource utilization and hardware availability. Re-

cently these concepts have enabled cloud computing[6]

to emerge as a new paradigm for the deployment of dis-

tributed applications in hosted data-centers.

The benefits of virtualization is not only in consoli-

dation and capacity management. With virtualization,

the operating environment can be abstracted[14][18] and

decoupled from the underlying hardware and physical

network topology. Such abstraction allows for easier

deployment, management, and hardware upgrades. As

such focus has shifted towards multiple forms of net-

work virtualization that do not impose a performance

penalty[23].

Project Crossbow in OpenSolaris offers high perfor-

mance VNICs to meet the networking needs of a vir-

tualized server that is sensitive to network latency and

throughput. Crossbow leverages advances in the network

interface cards (NICs) hardware by creating hardware

based VNICs which offer significantly less performance

penalties. The VNICs have configurable link speeds,

dedicated CPUs, and can be assigned VLAN tags, pri-

orities, and other data link properties. Crossbow also

provides virtual switches to help build a fully virtualized

layer-2 network.

The VNICs can be created over physical NICs, link

aggregations for high availability, or pseudo NICs to

allow the administrator to build virtual switches inde-

pendently from any hardware. Networking functionality

such as routing and packet filtering can be encapsulated

in a virtual machine or zone with dedicated VNICs to

form virtual network machines. These virtual network

machines can be deployed on virtual networks to pro-

vide layer-2 and layer-3 networking services, replacing

physical routers, firewalls, load balancers, and so on.

With all the virtualized components Crossbow pro-

vides, an administrator can build an arbitrarily complex

virtualized network based on the application needs and

decouple it from the underlying physical network. The

48 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

resulting virtual network is called virtual wire. The

vWire can be abstracted as a set of rules such as band-

width limits, and objects such as VNICs and virtual

switches, that can be combined, modified, or duplicated

with ease and instantiated on any hardware. Crossbow

allows migrating not just the virtual machine but entire

virtualized network.

The functionality provided by Crossbow is part of the

core OpenSolaris implementation, and does not require

add-on products or packages.

In this paper we describe the main components of the

Crossbow architecture from the perspective of a system

and network administrator. We will introduce the new

system and networking entities that are used for virtu-

alizing the networking resources and for controlling the

QoS at various granularities. We describe these entities

with an emphasis on the simplified administration model

by showing how they can be used as independent fea-

tures, or as building blocks for the creation of vWires.

In the examples section, we explore how Crossbow basic

components can be used to build fully functional virtual-

ized networks and new ways to do QoS. System admin-

istrators can also use the vWire to create a Network in

a box to do performance, functionality, and bottleneck

analysis.

2 Issues In Existing Models

The current methods of network virtualization are based

on VLANs that are typically configured on the switches.

This model is not very flexible if a VLAN tag is assigned

to a virtual machine and the virtual machine needs to be

migrated due to resource utilization needs. An adminis-

trator needs to manually add the virtual machine’sVLAN

tag to the switch port corresponding to the target ma-

chine. Protocols such as GVRP[13] and MVRP[17] are

available for doing this dynamically. However, these pro-

tocols are not supported on a large number of switches.

The sharing of the common bandwidth between vir-

tual machines also becomes an issue[9], as the current

generation of switches offers fairness only on a per port

basis. If the same port is shared by multiple virtual ma-

chines, any one of those virtual machines can monopo-

lize usage of the underlying physical NIC resources and

bandwidth. Host-based fairness or policy based sharing

solutions impose significant performance penalties and

are really complex to administer. They typically involve

the creation of classes, the selection of queuing models,

jitters, bursts, traffic selectors, and so on, all of which

require an advanced knowledge of queuing theory.

Virtual networks that are created by using the existing

VLANs and QoS mechanisms are prone to errors in the

event of configuration changes or workload changes. The

connectivity and performance testing is based on home

grown solutions and requires expensive hardware based

traffic analyzers. Often, there are heavy performance

penalties and non-repeatable performance that depends

on interactions with other virtual machines of different

virtual networks.

This document will show how Crossbow can move

VLAN separation and enforcement into the host and

allow virtual machines to migrate without requiring

changes to the physical network topology or switches. It

will also show how VNICs can be associated with a link

speed, CPUs, and NIC resources to efficiently and con-

veniently provide fair sharing of physical NICs. VNICs

and virtual switches can be combined to build virtual net-

works which can be observed and analyzed by using ad-

vanced operating system tools such as DTrace.

3 Crossbow Virtualization Components

This section discusses the various Crossbow components

that enable full virtualization, from virtualizing hardware

resources such as NICs to building scalable vWire and

network in a box.

3.1 Virtual NICs

When a host is virtualized, the virtual environment must

provide virtual machines (VMs) connectivity to the net-

work. One approach would be to dedicate one NIC to

each virtual machine. While assigning dedicated NICs

ensures the isolation of each VM’s traffic from one an-

other, this approach defeats one of the main purposes of

virtualization, which is to reduce cost from the sharing

of hardware. A more efficient and flexible option is to

virtualize the hardware NICs themselves so that they can

be shared among multiple VMs.

Crossbow provides the concept of the VNICs. A

VNIC is created on top of a physical NIC, and multiple

VNICs can share the same physical NIC. Each VNIC has

a MAC address and appears to the system as any other

NIC on the system. That is, VNICs can be configured

from the IP stack directly, or they can be assigned to vir-

tual machines or zones.

Crossbow can also assign dedicated hardware re-

sources to VNICs to form hardware lanes. Most mod-

ern NIC hardware implementations offer hardware clas-

sification capabilities[10][20][12] which allow traffic for

different MAC addresses, VLANs, or more generic traf-

fic flows to be directed to groups of hardware rings or

DMA channels. The Crossbow technology leverages

these hardware capabilities by redirecting traffic to mul-

tiple VNICs in the hardware itself. The redistribution of

traffic reduces network network virtualization overhead

and provides better isolation between multiple VNICs

that share the same underlying NIC.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 49

In Crossbow VNICs are implemented by the OpenSo-

laris network stack as a combination of the virtualized

MAC layer and a pseudo VNIC driver. The virtualized

MAC layer interfaces with network device drivers under

it, and provides a client interface for use by the network

stack, VNICs, and other layered software components.

The MAC layer also implements the virtual switching

capabilities that are described in Section 3.3. The VNIC

driver is a pseudo driver and works closely with theMAC

layer to expose pseudo devices that can be managed by

the rest of the OS as a regular NIC.

For best performance, the MAC layer provides a pass-

through data-path for VNICs. This pass-through allows

packets to be sent and received by VNICs clients with-

out going through a bump-in-the-stack, and thus min-

imize the performance cost of virtualization. To as-

sess the performance impact of VNICs, we measured

the bi-directional throughput on a testbed consisting of

5 clients firing packets at a single receiver (quad-core,

2.8GHz, Intel-based machine) through a 10 Gigabit Eth-

ernet switch. The measured performance of a VNIC with

dedicated hardware lanes was the same as the perfor-

mance of the physical NIC with no virtualization[24].

A side-effect of that architecture is that it is not pos-

sible to directly create VNICs over VNICs, although

VNICs can be created on top of other VNICs indirectly

from different OS instances.

Crossbow VNICs have their own dedicated MAC ad-

dresses and as such, they behave just like any other phys-

ical NIC in the system. If assigned to a virtualmachine or

zone, the VNIC enables that virtual machine to be reach-

able just like any other node in the network.

There are multiple ways to assign a MAC address to a

VNIC:

Factory MAC address: some modern NICs such as

Sun’s 10 Gigabit Ethernet adapter[20] come from

the factory with multiple MAC addresses values al-

located from the vendor’s MAC address organiza-

tionally unique identifier (OUI). VNICs can be as-

signed one of these MAC addresses if they are pro-

vided by the underlying NIC.

RandomMAC address: A random MAC address can

be assigned to a VNIC. The administrator can ei-

ther specify a fixed prefix or use the default prefix.

Crossbow will randomly generate the least signifi-

cant bits of the address. Note that after a random

MAC address is associated with a VNIC, Crossbow

makes that association persistent across reboots of

the host OS. To avoid conflicts between randomly

generated MAC addresses and those of physical

NICs, the default prefix uses an IEEE OUI with

the local bit set. There is currently no guarantee

that a randomly generated MAC address does not

conflict with other MAC addresses on the network.

This functionality will be delivered as part of future

work.

Administratively set MAC Address: If the adminis-

trator manages the set of MAC addresses of the vir-

tual machines or zones, he/she can supply the com-

plete MAC address value to be assigned to a VNIC.

VNICs are managed by dladm(1M), which is the

command used to manage data links on OpenSolaris.

Section 4.1.1 describes in details VNIC administration

with the dladm(1M) command. A VNIC appears to

the rest of the system as a regular physical NIC. It

can be managed by other existing built-in tools such as

ifconfig(1M), or by third-party management tools.

VNICs have their own statistics to allow real time and

historical analysis of network traffic that traverse them.

Section 4.3 describes VNIC statistics and their analysis.

Last but not least, the traffic going through VNICs can

be observed by existing tools such as snoop(1M). Cap-

turing packets going through VNICs is similar to observ-

ing the traffic on a physical switch port. That is, for a

particular VNIC, only the broadcast and multicast traffic

for the VLAN IDs associated with the VNIC, as well as

the unicast traffic for the VNICMAC address, are visible

for observation.

3.2 Configurable Link Speeds

Transport protocol implementations will attempt to use

the bandwidth that is made available by the underlying

NIC[4]. Similarly, multiple VNICs defined on top of the

same underlying NIC share the bandwidth of that NIC.

Each VNIC will attempt to use as much as it can from

the link’s bandwidth. Various undesirable behaviors can

ensue from this situation:

• A transport or a service can be an active offender –

Some transport protocols are more aggressive than

others. For example a UDP sender will not throttle

its transmission rate even if the receiver cannot keep

up with the received traffic. On the other hand, pro-

tocols like TCPwill slow the sender down if needed.

Such differences in behavior can lead to a VNIC

for UDP traffic consuming more of the underlying

bandwidth than other VNICs that are used for TCP.

• A client virtual machine can be a passive target of

an external attack – In a virtualized setup where

a hardware node is used to host virtual machines

of different customers, one or more of those cus-

tomers can become a victim of a denial of service

attack[15][16]. The virtual machine for one cus-

tomer can end up using most of the link’s capacity,

50 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

effectively diminishing the performance of all the

virtual machines that share the same NIC.

• Some VMs may have different bandwidth needs

than others – The bandwidth of a NIC should be par-

titioned between VNICs to satisfy the requirements

of the VMs. In some instances customers could be

charged a premium if a larger share of the band-

width is allocated to them. An uncontrolled or even

egalitarian sharing of the resources might not nec-

essarily be the desired behavior.

With the dladm(1M) command, Crossbow allows

the link speed of data links to be specified through link

properties. Configuring the link speed is the equivalent

of setting a maximum bandwidth limit on the data link.

This property can be configured explicitly by the admin-

istrator, or it can be set from the host OS of a virtualized

environment when the VNIC for a virtual machine is cre-

ated, as shown in Section 4.2 below.

3.3 Virtual Switching

When multiple VNICs are created on top of a physi-

cal NIC, the MAC layer automatically creates a virtual

switch on top of that NIC. All VNICs created on top of

the physical NIC are connected to that virtual switch.

The virtual switch provides the same semantics as a

physical switch. Figure 1 shows the mapping between

physical NICs and switches and their virtual equivalent

in Crossbow. Note that multiple VNICs can be created

on different physical NICs. In such cases, each physi-

cal NIC will be assigned its own virtual switch. Virtual

switches are independent, and there are no data paths be-

tween them by default.

3.3.1 Outbound Packet Processing

When a packet is sent by a client of a VNIC, the virtual

switch will classify the packet based on its destination

MAC address. The following actions are taken depend-

ing on the result of that classification:

• If the destination MAC address matches the MAC

address of another VNIC on top of the same physi-

cal NIC, the packet is passed directly to that VNIC

without leaving the host.

• If the MAC address is a broadcast MAC address, a

copy is sent to all VNICs created on top of the same

physical NIC, and a copy is sent on the wire through

the underlying NIC.

• If the MAC address is a multicast MAC address,

a copy of the packet is sent to all VNICs which

joined the correspondingMACmulticast group, and

Figure 1: Mapping between physical and virtual switches

a copy is sent through the underlying NIC. The

MAC virtual switch maintain a list of multicast

membership for this purpose.

• If MAC destination is unknown, i.e. there is no en-

try for the MAC address in the layer-2 classification

table of the virtual switch, the packet is passed down

to the underlying physical NIC for transmission on

the wire.

3.3.2 Inbound Packet Processing

Packets received off the wire are first classified by the

NIC hardware according to the destination MAC address

of the packet. If there is a match after hardware clas-

sification, the NIC hardware deposits the packet in one

of the hardware rings associated with the MAC address.

The MAC address and VNIC that are associated with

that hardware ring is known to the host. Thus, when the

host picks up the packet from that ring, it can deliver the

packet to the correct VNIC network stack or virtual ma-

chine.

If the hardware classifier cannot find a dedicated hard-

ware ring for the destination MAC address of the incom-

ing packet, it deposits the packet in one of the dedicated

hardware default receive rings. The MAC layer performs

software classification on the packets received from these

default rings to find the destination VNIC.

3.4 Etherstubs

We have seen in Section 3.3 that Crossbow creates a vir-

tual switch between the VNICs sharing the same under-

lying physical NIC. As an alternative, VNICs can also

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 51

be created on top of etherstubs to create virtual switches

which are independent of any hardware. Etherstubs are

pseudo ethernet NICs and are managed by the system

administrator. After an etherstub is created, it can be

used instead of a physical NIC to create VNICs. The

MAC layer will then perform virtual switching between

the VNICs which share the same underlying etherstub.

Etherstubs and the MAC layer virtual switching allow

users to create virtual switches which are independent

from physical NICs. Whether the virtual switch is im-

plicitly created over a link (physical NIC or an aggrega-

tion), or explicitly built by an etherstub, all VNICs shar-

ing the same virtual switch are connected and can com-

municate with one another. Conversely, VNICs that are

not members of the same virtual switch are isolated from

each other. Figure 2 shows how virtual switching can be

used between VNICs with both physical NICs and ether-

stubs.

Figure 2: Virtual switching with physical NICs and

etherstubs

Multiple etherstubs can be created to construct multi-

ple virtual switches which can be combined to form flex-

ible virtual networks. Section 5.2 shows an example of

such an architecture.

3.5 VLANs

IEEE 802.1 VLANs can be used to build isolated vir-

tual LANs sharing the same underlying physical layer-2

network infrastructure. Each VLAN is associated with a

VLAN tag and defines its own broadcast domain. Hard-

ware switches allow the traffic of different VLANs to

be separated, and to associate switch ports with specific

VLAN tags.

The Crossbow virtual switching is VLAN-aware and

thus allows VLAN separation to extend to virtual

switches and VNICs. VNICs can be associated with a

VLAN identifier, or VID, which is used along with the

MAC address to classify traffic to VNICs. As it is the

case of physical switches, the Crossbow virtual switch

also implements per-VLAN broadcast domains. In other

words, tagged broadcast frames will be delivered only

to the VNICs that match the VLAN tag. From the per-

spectives of efficiency and security, the CrossbowVLAN

implementation provides two important features: it pre-

vents the unnecessary duplication of frames and it en-

sures that no leakage of frames to the wrong VLAN is

occurring.

Control of the VLAN handling is deliberately kept to

the MAC layer of the host OS (or global zone when ap-

plicable). When a VNIC is used by a guest VM, the VM

can only send and receive untagged traffic. The host’s

MAC layer inserts or strips the VLAN tag transparently.

It also ensures that the VM does not attempt to send

tagged packets. Thus, the VM cannot send packets on

a VLAN to which it does not belong.

3.6 High Availability and VNICs

In order to provide highly available network connectivity,

OpenSolaris supports availability at layer-2 and layer-3

by means of link aggregations and IPMP, respectively.

3.6.1 Layer-2: IEEE 802.3ad Link Aggregation

Link aggregations are formed by groupingmultiple NICs

in a single pseudo NIC. Multiple connections are spread

through the NICs of the aggregation. Ports are taken out

of the aggregation if they are misconfigured or fail un-

expectedly. Failure detection is achieved by monitoring

the link state of aggregated NICs or by exchanging Link

Aggregation Control Protocol (LACP) control messages

at regular intervals.

In OpenSolaris, link aggregations are managed by us-

ing dladm(1M) and implemented by a pseudo driver

which registers with the system a pseudo NIC for each

configured link aggregation. Each instance of the pseudo

driver behaves like any other NIC on the system. As

such, the pseudo driver allows VNICs to be created on

top of link aggregations in the same manner that VNICs

can be created on top of physical NICs or etherstubs.

Figure 3 shows how two physical NICs can be aggre-

gated, virtualized, and shared transparently by two guest

domains.

The IEEE link aggregation standard assumes that an

aggregation is built between two entities on the network.

Typically these entities are switches and hosts. Unfor-

tunately, this standard does not allow an aggregation to

connect one host to multiple switches, which is a desir-

able configuration as a measure against possible switch

failure. Some switch vendors have provided extensions

called switch stacking that allow an aggregation to span

multiple switches. These extensions are transparent to

the peers that are connected to the switch stack.

52 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 3: Using link aggregation to provide high-

availability and increased throughput to VNICs

Figure 4: Using IP multipathing from virtual machines

for high-availability

3.6.2 Layer-3: IP Multipathing

IP Multipathing, or IPMP[19], is a layer-3 high availabil-

ity feature. It allows multiple IP interfaces to be grouped

together, and provides load spreading and failover across

members of the group. IPMP provides link-based detec-

tion failure, and probe-based detection failure.

Since IPMP is at layer-3 above NIC virtualization,

VNICs cannot be created on IPMP groups and IPMP

high availability cannot be provided transparently to vir-

tual machines. Instead, VNICs can be created on each

physical NIC, and VNICs can be grouped within virtual

machines. Figure 4 shows how two NICs can be virtual-

ized and grouped within virtual machines. IPMP groups

are managed by using the ifconfig(1M) IP configu-

ration tool.

Note that link aggregation and IPMP can be combined.

For example, link aggregations can be used to groupmul-

tiple NICs connected to the same switches, and IPMP can

be used to group multiple link aggregations.

3.7 Virtual Network Machines

Virtual NICs and virtual switching constructs are the

building blocks that allow more complex virtual net-

working topologies to be built within a host. The func-

tionality needed to implement typical networking de-

vices on a network, such as routers or firewalls, exists in

modern operating systems like OpenSolaris. Network-

ing devices can be therefore encapsulated within virtual

machines or OpenSolaris zones.

An OpenSolaris zone is a lightweight virtualization ar-

chitecture where the zone provides its own application

environment that is isolated from other zones[21]. Each

zone can be associated with a set of CPUs, data links

such as VNIC, memory cap, and so on. Zones share the

same kernel but each zone can have its own IP network

stack. This feature avoids overheads that are typically

associated with hypervisors. Because of their low over-

head, small memory footprint, and specific functionality

that does not require a full separate OS instance, zones

are particularly suited to implement virtual network de-

vices.

Virtual network machines refer to virtual machines

or zones which are dedicated to implementing specific

network functions. VNMs can be connected by assign-

ing them VNICs and connecting these VNICs to virtual

switches. Several types of network functions can be im-

plemented, such as routers, firewalls, load balancers, and

bridges. With Crossbow, essentially any layer-2 or layer-

3 network can be virtualized within a single host.

3.8 Traffic Flows

Crossbow flows allow bandwidth limits, CPUs, and pri-

orities to be associated with a subset of the network traf-

fic that traverses a NIC, link aggregation, or VNIC. Flow

attributes describe the traffic that is associated with the

flows. Attributes consist of information such as IP ad-

dresses, well known port numbers, protocol types, and

so on.

Crossbow flows span the whole network stack from

the NIC hardware to sockets, and are associated with

their own kernel threads and available hardware re-

sources. Their specific associations make flows distinct

from one another. Consequently, after hardware classifi-

cation of incoming traffic is performed, traffic processing

of flows can be scheduled independently from each other

as well. With a setup that uses Crossbow, flows are bet-

ter isolated, the task of classification is assumed by the

hardware, and the network stack can control the arrival

of traffic into the host on a per-flow basis.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 53

Flows also maintain their own statistics to allow an ad-

ministrator to track real-time statistics and usage history

not only of individual data links as a whole but also of

specific types of traffic the host receives or sends. Traffic

flows are described in more detail in[25].

4 Ease of Management

Crossbow provides management tools that are easy to

use to create VNICs, connect VNICs by using virtual

switches to build vWires, and configure networking re-

sources for these VNICs’ dedicated use. In addition,

statistics on traffic flows, both real time and historical,

provide the administrator the ability to monitor traffic at

a deeper granularity and thus better allocate networking

resources. This section describes the Crossbow tools to

perform these tasks.

4.1 Managing vWire

The vWire building blocks are managed through

the dladm(1M) command, the OpenSolaris data-link

management utility. This section shows how the

dladm(1M) tool can be used to perform the following:

• Manage VNICs.

• Combine VNICs with etherstubs to build virtual

networks.

• Combine VNICs with link aggregations to provide

high availability and increased throughput to virtual

machines and zones.

4.1.1 NIC Virtualization

As seen in Section 3.1, VNICs can be used to virtu-

alize a data link. A VNIC is easily created with the

dladm(1M) create-vnic subcommand. The fol-

lowing example shows the creation of a VNIC called

vnic100 on top of the physical NIC e1000g4.

dladm create-vnic -l e1000g4 vnic100

In this case the administrator lets the system determine

the MAC address to be associated with the VNIC. Users

can choose any administrativelymeaningful name for the

data links (NICs, VNICs, aggregations, etherstubs, and

so on) as long as the name ends with a numeral. The

dladm(1M) show-vnic subcommand can be used

to display the VNIC configuration. For example:

dladm show-vnic -o LINK,OVER

LINK OVER

vnic100 e1000g4

dladm show-vnic -o LINK,MACADDRESS

LINK MACADDRESS

vnic100 2:8:20:36:ed:5

dladm show-vnic -o LINK,OVER,MACADDRESS

LINK OVER MACADDRESS

vnic100 e1000g4 2:8:20:36:ed:5

The previous example shows how the -o option can

be used to specify the fields to be displayed for each

VNIC. If the -o option is omitted, then all attributes of

the VNICs will be displayed.

VNIC attributes such as the specified MAC ad-

dress to be associated with the VNIC can be specified

by the user as additional options of create-vnic.

The dladm(1M) delete-vnic subcommand can be

used to delete previously created VNICs from the sys-

tem. Of course, multiple VNICs can be created on top of

the same physical NIC.

After a VNIC is created, it appears to the rest of the

system as a regular data link and therefore can be man-

aged in the same way as other NICs. It can be plumbed

by the network stack directly as shown below, or as-

signed to a virtual machine as shown in Sections 4.2.1

and 4.2.2.

ifconfig vnic100 plumb

ifconfig vnic100 inet 10.20.20.1/24 up

ifconfig vnic100

vnic100: flags=1000843<UP,BROADCAST,...

inet 10.20.20.1 netmask ffffff00

broadcast 10.20.20.255

ether 2:8:20:36:ed:5

4.1.2 Etherstubs

Etherstubs are constructs that can be used to build virtual

switches which are completely independent from phys-

ical NICs (see Section 3.4.) An etherstub can be used

instead of a physical NIC to create VNICs. The VNICs

sharing the same etherstub then appear to be connected

through a virtual switch.

In the following example, an etherstub vswitch0 is

created, and then used to create three VNICs: vnic0,

vnic1, and vnic2.

dladm create-etherstub vswitch0

dladm create-vnic -l vswitch0 vnic0

dladm create-vnic -l vswitch0 vnic1

dladm create-vnic -l vswitch0 vnic2

4.1.3 VLANs

Section 3.5 described how VLANs can be seamlessly

integrated in the virtualization environment and used to

create multiple virtual networks on the same underlying

physical infrastructure. A VLAN can be easily associ-

ated with a VNIC during its creation.

54 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

dladm create-vnic -l e1000g0 \

-v 200 vlan200vnic0

dladm create-vnic -l e1000g0 \

-v 200 vlan200vnic1

dladm create-vnic -l e1000g0 \

-v 300 vlan300vnic0

dladm show-vnic -o LINK,MACADDRESS,VID

LINK MACADDRESS VID

vlan200vnic0 2:8:20:d5:38:7 200

vlan200vnic1 2:8:20:69:8f:ab 200

vlan300vnic0 2:8:20:3a:79:3a 300

As shown in the previous example, multiple VNICs

can be created on top of the same physical NIC or ether-

stub with the same VID. In this case, the MAC layer vir-

tual switching isolates these VLANs from each other, but

will allow VNICs with the same VID to communicate to-

gether as if they were connected through a switch.

4.1.4 Link Aggregation

Link aggregations are also managed through the

dladm(1M) utility. A link aggregation can be easily

created as shown in the example below where an aggre-

gation called aggr0 consisting of two physical NICs,

e1000g2 and e1000g3 is created.

dladm create-aggr -l e1000g2 \

-l e1000g3 aggr0

The resulting aggr0 is a regular data link on the sys-

tem. It can be configured using ifconfig(1M), or it

can be used to create VNICs which are then assigned to

zones or virtual machines. In the example below, two

VNICs are created on top of aggr0:

dladm create-vnic -l aggr0 vnic500

dladm create-vnic -l aggr0 vnic501

4.1.5 Management Library

The dladm(1M) command is a thin CLI above the

OpenSolaris data link management library libdladm. The

bulk of the work is done by the library, while the com-

mand line tool implements the parsing and formatting

needed. The libdladm management library is also used

by other management tools, agents, and utilities.

4.1.6 Network Flows

Crossbow provides a new command flowadm(1M) to

configure flows. As described in Section 3.8, flows can

be used from vWire to control and measure bandwidth

usage of finer grain traffic. The flowadm(1M) com-

mand takes as its arguments a data link name, traffic cri-

teria, priority, and desired bandwidth. Traffic criteria can

be specific protocols, protocol ports, or local or remote

IP addresses.

For example, a flow to match all UDP traffic passing

through NIC ixgbe0 can be created as follows:

flowadm add-flow -l ixgbe0\

-a transport=udp udp-flow

Each flow has associated properties specified by the

-p option. These properties can be used to define the

maximum bandwidth or priority for a flow. Properties

of existing flows can be changed without impacting the

flow’s defined criteria. By default, udp-flow uses the

bandwidth of the underlying NIC, which in the example

is 10 Gb/s. To change the bandwidth of udp-flow to 3

Gb/s, issue the following command:

flowadm set-flowprop -p maxbw=3G \

udp-flow

If no speed unit is specified, the maxbw property

unit is assumed to be in megabits per second (Mb/s).

Additionally, the flowadm(1M) show-flow and

show-flowprop subcommands can be used to display

flow configuration and properties respectively. Flows can

be deleted using the flowadm(1M) remove-flow

subcommand.

4.2 Resource partitioning and QoS

ConfiguringQoS policies often tends to be laborious. For

example, a typical policy might be to limit TCP traffic to

use a bandwidth of 1000 Mb/s. However, configuring

such a policy by using IPQoS in Solaris 10[19] or tc[5]

in Linux entails several complex steps such as defining

queuing disciplines, classes, filter rules, and the relation-

ships among all of them.

The subsections that follow use real life scenarios to

illustrate how Crossbow vastly simplifies QoS configu-

ration.

4.2.1 Zones

With Crossbow, limiting bandwidth for a zone is sim-

ple to perform. One just needs to create a virtual NIC

with the desired bandwidth and assign it to the zone. For

example, to limit the bandwidth of zone zone1 to 100

Mb/s, first create a VNIC with the desired bandwidth:

dladm create-vnic -p maxbw=100 \

-l e1000g0 vnic1

When the zone is created, it can be given vnic1 as its

network interface:

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 55

zonecfg -z zone1

...

zonecfg:zone1> add net

zonecfg:zone1:net> set physical=vnic1

zonecfg:zone1:net> end

...

Any traffic sent and received zone1 through vnic1

will be limited to 100 Mb/s. The configuration steps are

a one time exercise. The configuration will be persistent

across the zone or the operating system reboot. Changing

the bandwidth limit at a later time can be achieved by

setting maxbw property of that VNIC to the new value.

Thus, to change bandwidth of zone1 to 200 Mb/s, use

the following command syntax:

dladm set-linkprop -p maxbw=200 vnic1

One can query the VNIC property zone to determine

if the VNIC is assigned to any zone. Using the previ-

ous example, zone under the VALUE field indicates that

vnic1 is a link that is being used by zone1.

dladm show-linkprop -p zone vnic1

LINK PROPERTY PERM VALUE

vnic1 zone rw zone1

Plans are currently under consideration to configure

zones’ VNICs and their bandwidth limits directly by us-

ing zonecfg(1M). Thus, VNICs with specific property

values can be created automatically when the zones are

booted.

4.2.2 Xen

When OpenSolaris is used as dom0 (host OS), Cross-

bow provides a simple mechanism to assign bandwidth

limits to domUs (VM guests). The configuration pro-

cess is similar to configuring bandwidth limits for zones.

A VNIC is created with the desired bandwidth limit, and

then supplied as an argument during domU creation. The

domU could be running OpenSolaris, Solaris 10, Linux,

Windows, or any other Xen supported guest. This pro-

cess is independent of the choice of the domU. The pro-

cedure is explained in detail as follows:

When a Xen domU is created, Crossbow implicitly

creates a VNIC and assigns it to the domU. To enforce

a bandwidth limit for a domU, first, explicitly create a

VNIC and assign it to domU during creation. Then, set

the bandwidth limit for the Xen domU by setting the

maxbw property of the VNIC.

For example, to limit the bandwidth of domUguest1

to 300Mb/s, the VNIC with the given bandwidth is first

created:

dladm create-vnic -p maxbw=300 \

-l e1000g0 vnic1

Then, to assign the newly configured VNIC to the Xen

domU as its network interface, include the following in

the domU’s template.xml configuration file. Use the

dladm(1M) show-vnic subcommand to display the

MAC address of vnic1.

<interface type=’bridge’>

<source bridge=’vnic1’/>

<mac address=’vnic1’s mac address/>

<script path=’vif-dedicated’/>

</interface>

Finally, the domU is created as follows:

virsh create template.xml

Any traffic sent and received by the guest domain

through vnic1 will be limited to 300 Mb/s. As with

zones, the bandwidth can be changed at a later time by

setting the maxbw property to the new value.

Plans are under consideration to configure bandwidth

limit for Xen domUs by using Xen configuration tools

such as xm(1M) and virt-install(1M). For exam-

ple, the virsh-attach interface command will take

the maximum bandwidth as an optional argument. The

specific bandwidth limit is then automatically applied to

the implicitly created VNIC when the domain is booted.

When using Linux as dom0, bandwidth control on

guests can be configured as follows:1

1. Associate a queuing discipline with a network inter-

face (tc qdisc).

2. Define classes with the desired bandwidth within

this queuing discipline (tc class).

3. Using the IP address of the guest OS’s interface, de-

fine a rule to classify an outgoing packet into one of

the defined classes (tc filter).

For example, the following set of commands issued

from dom0, would set bandwidth limits of 200 Mb/s and

300 Mb/s for each one of the domU instances, and re-

serve the remaining 500 Mb/s for dom0’ use[8].

tc qdisc add dev peth0 \

root handle 1: htb default 99

tc class add dev peth0 \

parent 1: classid 1:1 htb rate 1000mbps \

burst 15k

tc class add dev peth0 parent 1:1 \

1At the time of writing this paper, the latest Fedora release that

could host Xen guests was Fedora 8 (Fedora 9 and Fedora 10 cannot

host Xen guests). It supports a vif parameter ‘rate’to control band-

width limit. However, due to a bug (RedHat bug id 432411), we could

not evaluate that feature.

56 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

classid 1:13 htb rate 200mbps burst 15k

tc class add dev peth0 parent 1:1 \

classid 1:14 htb rate 300mbps burst 15k

tc class add dev peth0 parent 1:1 \

classid 1:99 htb rate 500mbps burst 15k

iptables -t mangle -A POSTROUTING \

-p tcp -s 192.168.1.103 -j CLASSIFY \

--set-class 1:13

iptables -t mangle -A POSTROUTING \

-p tcp -s 192.168.1.104 -j CLASSIFY \

--set-class 1:14

iptables -t mangle -A POSTROUTING \

-p tcp -s 192.168.1.111 -j CLASSIFY \

--set-class 1:21

Note that the previous approach does not work well

when domUs obtain IP addresses by using DHCP. More-

over, domU users can circumvent the bandwidth limit en-

forcement by changing their IP address.

4.2.3 Traffic Flows

In the previous example, we restricted all traffic passing

through a Xen domU to 300 Mb/s. Suppose that we fur-

ther want to partition the available 300 Mb/s bandwidth

as follows: 100 Mb/s for all TCP traffic and the remain-

ing 200 Mb/s for all other traffic. Crossbow can achieve

this configuration by using flows:

flowadm add-flow -p maxbw=100 \

-a transport=tcp -l vnic1 tcp-flow1

The concept of flows is applicable to non-virtualized

context as well. For example, a physical NIC can be

specified instead of a VNIC. Thus, Crossbow provides

a simple yet powerful way to administer bandwidth.

In contrast, configuring policies with iproute(8)

and tc(8) on Linux typically involves several steps,

For example:

tc qdisc add dev eth4 handle ffff: \

ingress

tc filter add dev eth4 parent ffff: \

protocol ip prio 20 \

u32 match ip protocol 6 0xff \

police rate 1Gbit buffer 1M drop \

flowid :1

tc qdisc add dev eth4 root \

handle 1:0 cbq bandwidth 10Gbit \

avpkt 1000 cell 8

tc class add dev eth4 parent 1:0 \

classid 1:1 cbq bandwidth 10Gbit \

rate 10Gbit prio 8 \

allot 1514 cell 8 maxburst 20 \

avpkt 1000 bounded

tc class add dev eth4 parent 1:1 \

classid 1:3 cbq bandwidth 10Gbit \

rate 1Gbit weight 0.1Gbit prio 5 \

allot 1514 cell 8 maxburst 20 \

avpkt 1000

tc class add dev eth4 parent 1:1

classid 1:4 cbq bandwidth 10Gbit \

rate 9Gbit weight 0.9Gbit prio 5 \

allot 1514 cell 8 maxburst 20 \

avpkt 1000

tc qdisc add dev eth4 parent 1:3 \

handle 30: pfifo

tc qdisc add dev eth4 parent 1:4 \

handle 40: pfifo

tc filter add dev eth4 parent 1:0 \

protocol ip prio 1 u32 match ip \

protocol 6 0xff flowid 1:3

4.2.4 Flow Tradeoffs

The Crossbow design has traded off richness of flow at-

tributes for simplicity and performance. Crossbow has

departed from the traditional ways to specify QoS that

consists of the following steps:

• Definition of classes of services

• Addition of rules similar to those of packet filtering

• Description of the packets that are assigned to each

class

Instead, a flow is created by specifying its defining at-

tributes that constitute as the common criteria that pack-

ets should match in order to belong to that flow. Resource

controls policies, such as bandwidth constraints, prior-

ity and CPUs are viewed as mutable properties that can

be allotted to flows at creation time and can be modified

later.

Although flows can be created based on different at-

tributes such as IP addresses, subnets, transport, DSCP

marking, and port number, flows are defined based only

on one attribute at a time, not on a combination of multi-

ple attributes. Furthermore, only non overlapping flows

are allowed to co-exist over a data link. Any attempt to

create a flow that conflicts with an existing one fails. This

apparent limitation provides the advantage of keeping the

rule set that describes the flows inside the system unam-

biguous and order independent. A lookup for the flow

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 57

that matches a packet will always find the same flow, re-

gardless of the presence of other flows or the order in

which they were added.

4.3 Monitoring Network Statistics

Crossbow also provides a rich set of statistics for gaining

better insight into the behavior of the system. This sec-

tion describes the tools provided to observe these statis-

tics, and concludes with an example scenario to illustrate

how these tools can be combined with other commands

to diagnose and resolve a performance issue.

4.3.1 dlstat(1M) and flowstat(1M)

Crossbow statistics are provided on a per flow or data

link basis. They provide information such as the count of

packets received by polling and by interrupts, hardware

and software packet drops, distribution of load across

hardware lanes and so on. These statistics help to iden-

tify performance bottlenecks.

The current interface provides counts over a certain

interval. Future improvements will provide more sophis-

ticated aggregate level statistics such as percentage of

polled packets, minimum, maximum, and average queue

lengths over a specified time interval, and so on.

Crossbow introduces dlstat(1m) to print dynamic

traffic statistics for links. For example, the following

command prints the aggregate statistics for vnic1:

dlstat vnic1

LINK IPKTS IBYTES OPKTS OBYTES

vnic1 9.9M 2.3G 4.8M 0.3G

To observe traffic exchange at 5-second interval, use

the following:

dlstat -i 5 vnic1

LINK IPKTS IBYTES OPKTS OBYTES

vnic1 1.5M 0.3G 0.6M 46.9M

vnic1 2.2M 0.5G 1.1M 73.3M

.

Apart from dynamic statistics, dlstat(1M) also

supports off-line viewing and analysis of statistics.

acctadm(1m) is used to enable logging network statis-

tics to a specific log file. The dlstat(1M) -u sub-

option can then operate on the log file to extract historical

network statistics. For example, the following command

will extract network statistics for vnic1 from the spec-

ified time range from logfile.

dlstat -u -f logfile \

-s D1,shh:smm:sss -e D1,ehh:emm:ess vnic1

The output, if generated using -F gnuplot option,

could be directly fed to gnuplot to draw graphical us-

age information for vnic1.

To analyze detailed receiver side statistics such as poll

and interrupt packet counts as well as hardware and soft-

ware drops, do the following:

dlstat -r

LINK IBYTES INTRS POLLS HDRPS

e1000g0 2.1M 22.3K 78.0 0.0

ixgbe0 13.6G 0.8K 10.7M 0.0

vnic1 13.6G 0.8K 10.7M 0.0

To also analyze per hardware lane statistics, append

the -L option to the previous command. For example,

the following will show per hardware lane statistics for

each hardware lane that belongs to ixgbe0.

dlstat -r -L ixgbe0

LINK:LNE LTYP USEDBY IBYTES INTRS POLLS

ixgbe0:0 slne ixgbe0 13.6G 0.8K 0.0

ixgbe0:1 hlne ixgbe0 13.1G 0.8K 10.2M

.

.

ixgbe0:7 hlne ixgbe0 13.4G 0.8K 10.5M

While dlstat(1M) operates on data links,

flowsat(1M) is used for querying network statistics

for flows. For example, to display tcp-flow’s network

traffic statistics, do the following:

flowstat tcp-flow

FLOW LINK IBYTES OPKTS OBYTES

tcp-flow vnic1 2.3G 4.8M 0.3G

Like dlstat(1M), flowstat(1M) also supports

logging network statistics by using the -u sub-option.

Both inbound and outbound traffic statistics are shown

by dlstat(1M) and and flowstat(1M). The band-

width limits apply to the combined bidirectional traffic,

which is the sum of incoming and outgoing packets over

time. Although we can observe the statistics for each di-

rection, we currently can’t set a different limit on each.

4.3.2 Example: Diagnosing a Scalability Issue

Consider a multi-processor system under heavy network

load that uses the NIC ixgbe0 and whose receiver side

network performance needs improvement. Suppose that

the output of dlstat -r -L is satisfactory. That is,

after listing per-hardware lane packet and byte counts as

well as poll and interrupt counts, you observe that traffic

is evenly distributed across hardware lanes and that 95%

of packets are delivered by polling. You can then check

CPU utilization as follows:

58 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

• dlstat -r -F ixgbe0 gives the breakdown

of which CPUs are currently being used to process

packets received by ixgbe0.

• dladm show-linkprop -p cpus ixgbe0

displays the list of CPUs associated with the data

link.

• mpstat(1M) provides information about the uti-

lization of each CPU that is associated with

ixgbe0.

Suppose that the data indicates that all the CPUs that

are currently assigned to ixgbe0 for packet processing

are fully utilized while other CPUs in the system are at an

idle or near-idle state. To dedicate a new list of CPUs for

ixgbe0’s use, the following command syntax is used:

dladm set-linkprop \

-p cpus=<list of cpus> ixgbe0

5 Virtual Wire: Network in a Box

We have described so far the major components needed

for achieving network virtualization using convenient

and intuitive tools. We then showed how bandwidth and

computing resources can be awarded and controlled at a

fine granularity to data links and VNMs. We can now

use the VNMs, VNICs, etherstubs, along with the vir-

tual switching and resource control capabilities as the

building blocks to construct fully functional vWires of

arbitrarily complex topologies in a single or small set of

machines. The three scenarios below are examples of

vWires used for consolidation of subnet and enterprise

networks and for planning of horizontal scaling.

5.1 Example 1 – Seamlessly Consolidating

Multiple Subnets

This example illustrates the high availability and elastic-

ity features of vWires. It shows how two subnets can be

consolidated together without any change to the IP con-

figuration of the machines. It also shows how this con-

solidation not only reduces the cost but also increases the

availability of all existing services. Figure 5 represents

the two independent subnets. To emphasize the elasticity

point, the subnets use the same internal IP addresses.

The consolidation must meet the following two re-

quirements:

• Existing IP addresses must be retained. Many ser-

vices in the network such as firewalls, proxies, di-

rectory services, kerberos, and so on depend on IP

addresses. Reassigning IP addresses during consoli-

dation risks breaking down these services and there-

fore must be avoided.

Figure 5: Example 1 – two separate physical subnets

Figure 6: Example 1 – two VLANs sharing a physical

network

• The consolidation must preserve the separation of

traffic from the different subnets on the wire.

The traditional way to consolidate the two subnets on

the same physical network would be to assign each sub-

net a VLAN ID, and then configure the switch ports with

the appropriate VLAN IDs of the subnet. Finally, each

machine is connected to the correct port. A VLAN-based

network consolidation is represented in Figure 6. Note,

however, that the resulting consolidation still retains the

same number of machines and connections to a switch

port.

A second approachwould be to use virtualization. The

two servers can be converted into two virtual machines

that are co-hosted on a physical server. The same num-

ber of physical NICs for the two VMs can be retained,

as well as the wire-port connectivity to the switch. From

a hardware perspective, the redundancy of network con-

nectivity ensures that there is no single point of failure.

The administrator has several options when assigning

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 59

NICs to the VMs. An obvious choice would be to assign

the physical NICs, one to each VM. However, this option

loses the advantage of high availability. In fact, the NIC

of a specific VM becomes the single point of failure for

that VM’s network. If that NIC fails, then all the VMs be-

hind that failed NIC become unreachable. Furthermore,

this setup restricts the scalability of the configuration to

the limited number of physical NICs that can be installed

on the bus as well as the number of ports on a switch.

A better approach would be to first create a link ag-

gregation that bundles the physical NICs together. The

aggregation is then virtualized into multiple VNICs and

assigned to their respective VMs. Figure 7 shows this

virtualized consolidation. In Figure 7, the VNICs are

created based on the VLAN ID of their respective VMs.

Thus, even after the transformation to a virtual environ-

ment is completed, traffic from the different VMs can

still be differentiated on the wire.

Furthermore, every VM benefits from the HA of the

networking connectivity because it has a redundant path

to the network. An outage of one of the NICs or its port

on the switch will result in a possibly slower overall net-

work, however each VM is still reachable.

We show below the steps needed to create the link ag-

gregation and then the VNICs to create the configuration

of Figure 7.

dladm create-aggr -l nxge0 -l nxge1 \

aggr0

dladm create-vnic -l aggr0 -v 1 vnic1

Note that in this example, the single switch consti-

tutes a single point of failure. Switch stacking or layer-3

multi-pathing can be combined with link aggregations to

provide high availability across multiple switches, as de-

scribed in Section 3.6.

5.2 Example 2 – Consolidating Multi-Tier

Enterprise Networks

This example is a typical scenario for a cloud operator

that offers hosting services for its enterprise clients. Each

client tenant of the cloud operator’s data center expects

complete separation from the other tenants. This exam-

ple demonstrates that all the three tiers (web server, App

server, Database server and iSCSI storage) of the client

data center as shown in Figure 8 can move to the cloud

but remain isolated and separate from other virtualized

data centers in the cloud.

The following steps show how to convert one of the

client enterprise’s Intranets. First create the etherstub for

the Intranet and three VNICs on top of it.

dladm create-etherstub stub1

dladlm create-vnic -l stub1 VNIC_WS1

Figure 7: Example 1 – a vWire with two VLANs in a box

dladlm create-vnic -l stub1 VNIC_AS1

dladlm create-vnic -l stub1 VNIC_DB1

The VNICs can then be assigned to the zone

Webserver1 as described in Section 4.2.1. Similarly,

assign VNIC AS1 and VNIC DB1 to AppServer1 and

DBServer1, respectively. Now connect the Database

server to the back-end storage served by the iSCSI tar-

get: Create a VNIC on the back-end physical NIC:

dladm create-vnic -l NIC2 VNIC_ST1

Assign VNIC ST1 to DBserver1 as described in

Section 4.2.1. Finally, connect the virtual enterprise sub-

net to the front-end edge router VNM by creating the

VNIC1 on the Etherstub1 and assigning it to the Vir-

tual Router VNM.

Figure 9 shows the resulting virtualized and consoli-

dated Intranets for the two client enterprises. The phys-

ical servers have been converted into virtual appliances

that are running in their respective zones. At the same

time, the virtual network topology mimics the physical

Intranets.

The two enterprises are competing for the CPU re-

sources available on the virtualized server. Therefore,

a remaining step is to define processor sets for each

client, assign them to the zones, and bind the VNICs

accordingly. Assume, for example, that AppServer1

is assigned a processor set containing CPUs 1, 2, and

3. The VNIC can be bound to the CPUs assigned to

AppServer1 by issuing the following command:

60 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 8: Example 2 – consolidating multi-tier enterprise

networks, physical View

Figure 9: Example 2 – consolidating multi-tier enterprise

networks, virtual View

dladm set-linkprop cpus=1,2,3 VNIC_AS1

Future improvements will allow the data links to be

automatically bound to the CPUs that are assigned to

the zone, without requiring the administrator to manu-

ally bind the CPUs as shown above.

5.3 Example 3 – Try-Before-Deployment

and Scale Out Scenario

In this example, we show how some of the observability

and virtualization features of Crossbow can be employed

to plan for scaling up the physical configurations as the

need grows. The starting point is a small web server rep-

resented in Figure 10. As long as the amount of trans-

actions coming from clients over the Internet is low, a

single server is capable of handling the level of load re-

quired.

Figure 10: Example 3 – initial setting

In this scenario, the monitoring tools described in Sec-

tion 4.3 can be used to log the usage history on the NIC

to which the IP address 192.0.2.1 is associated:

acctadm -e basic -f /var/log/net.log net

At this stage, only basic accounting for the networking

interface is captured, and no flows are required. As the

business picks up, the web server receives an increasing

number of hits. A simple report to indicate the increased

traffic activity can be obtained thus:

dlstat -u -f /var/log/net.log

LINK IBYTES OBYTES BANDWIDTH

e1000g 2.5M 0.1G 200.4 Mb/s

Anticipating further increase of traffic, the administra-

tor can plan to horizontally scale the network up to mul-

tiple servers. However, before actually investing or com-

mitting any new physical resources to the network, it is

desirable for the administrator to first understand how the

new network configuration would actually behave while

handling increased traffic. With Crossbow, the new dis-

tributed environment can be deployed and tuned in a vir-

tual environment first.

In the give scenario, the web server is first virtual-

ized into multiple virtual server instances running inside

zones. Each instance can handle any of the URIs orig-

inally served. The virtual servers are connected to an

in-box virtual switch through their respective VNICs. A

load balancer and NAT appliance translates the IP ad-

dresses before forwarding the packet to the appropriate

virtual server. An integrated load balancer [1] is ex-

pected to be available in OpenSolaris late 2009. Fig-

ure 11 shows the virtualized topology.

With the network usage history logging is still en-

abled, the amount of traffic on each link on the virtu-

alized server can be monitored2:

dlstat -u -f /var/log/net.log

LINK IBYTES OBYTES BANDWIDTH

2It is understood that most web servers also include logging of ac-

cess statistics per URL. The authors’ point here is to show how network

infrastructure tools can be used for such accounting, whether the ser-

vice being deployed included internal logging or not.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 61

Figure 11: Example 3 – vWire for live workload analysis

Figure 12: Example 3 – De-virtualizing for horizontal

scaling

e1000g0 2.5M 0.1G 180.4 Mbps

vsw1 1.5M 52.7M 203.4 Mbps

vnic1 0.1M 3.0M 47.4 Mbps

vnic2 1.4M 49.8M 156.0 Mbps

This test run shows that the balance of traffic between

the two virtual server appliances is imbalanced. The traf-

fic through vnic1 is only 23% of all traffic coming in

the system, as opposed to the 77% being handled by the

second virtual web server. The system administrator can

then adjust the load balancer parameters to bring a more

equitable distribution of the load.

When the load nears saturation levels for a single

physical server to handle, the administrator can make an

educated decision on the configuration of the new hard-

ware. Note that the virtual web servers can be migrated

to the new physical host with the exact same network

configuration, without any need for IP renumbering. The

final deployment is represented Figure 12.

It should be noted that more information can be de-

rived from the usage history. The administrator could

for example quantify the variation of load over time, and

study the peaks of load, and the progression of the net-

work usage, and extrapolate that progression to estimate

the right time to start considering an upgrade.

6 Related Work

The Crossbow architecture provides mechanisms to

achieve network virtualization within a host with ease of

use andminimum performance penalty. The virtual NICs

and flows leverage NIC hardware advancements such as

classification and multiple receive and transmit rings to

ensure the separation of virtualized packet streams with-

out any processing overhead on the host. The virtual

NICs and flows can be created over physical NICs, link

aggregations, and etherstubs to provide private connec-

tivity between virtual machines.

The idea of virtual switching has been implemented

in other main stream virtualization technologies as well.

Citrix System Xen [7] has a native Linux implementation

where the physical NIC is owned by the hypervisor and

virtual machines access the network by means of a front

end driver that run in the guest domain and the back end

driver that runs in the hypervisor. The hypervisor runs

the physical NIC in promiscuous mode and uses a soft-

ware based bridge implementation to provide all packets

to the back-end drivers, which then select the packets that

match their respective MAC addresses. There are mech-

anisms available to enforce bandwidth limiting and fire-

wall rules on the traffic for virtual machines. However,

these are typically separate subsystems, often very com-

plex in implementation and administration, and can re-

sult in significant performance overheads [25]. VMware

ESX based hypervisor has a proprietary implementation

on a Linux variant but apparently suffers from some of

the same issues [26] in terms of demultiplexing packets

for various virtual machines and resource separation.

More recently, Cisco Systems announced a new virtu-

alization offering under the Unified Computing System

(UCS) [22] umbrella and based on the VMware EX hy-

pervisor. The solution uses a specialized NIC along with

a Nexus switch where packets from individual virtual

machines are tagged to allow the switch to implement

virtual ports and provide features similar to the Cross-

bow implementation. A centralized management solu-

tion in the form of a Virtual Supervisor module manages

the physical and virtual components on the switch as well

as hosts to provide easy management of resources and fil-

tering policies. At the same time, the implementation is

proprietary to Cisco software and hardware and VMware

ESX hypervisor.

Some work is also occurring in the research com-

munity as part of the OpenFlow [11] consortium which

helps in building a standard based programmable switch.

62 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Such a switch would enable the Crossbow based hyper-

visor to program the switch with VLAN tags that are as-

sociated with customers and thus create more dynamic

virtual networks where the switch can also provide sepa-

ration, fairness, and security for the Crossbow vWire.

7 Conclusion and Future Work

The Crossbow virtualization and QoS components pre-

sented in this paper provide a unique mechanism to

achieve network virtualization and consolidate multiple

networks into one physical network. Assigning VLAN

tags to VNICs and performing host based VLAN switch-

ing allow the creation of fully virtualized and isolated

networks. Because the VNICs can be assigned link

speeds, priorities, and dedicated NICs and CPU re-

sources, a collection of virtual machines can span mul-

tiple physical machines and yet have deterministic per-

formance characteristics. The configuration of VNICs

and resource assignment is easy to configure and can be

driven by external management tools with the provided

APIs.

Apart from VNICs and virtual switches, multiple

VNICs on different physical NICs can be assigned to

OpenSolaris zones or virtual machines to create network

components like routers, load balancers, firewalls, and

so on. These virtual network machine along with VNICs

and virtual switches can be combined together to create

a fully virtualized network called vWire.

The Crossbow vWire offers a fully elastic, isolated,

and dynamic virtualized network where virtual machines

can migrate to other physical machines. The vWire ex-

tends with these VMs without needing any changes to

the physical cabling or switches. Since the vWire uses

VLAN tags and extended VLAN tags to provide isola-

tion, it can work with any existing switch.

The various enterprise level features for failover and

high availability such as link aggregation and IPMP, are

designed in the architecture. Thus VNICs can be created

over link aggregations and multiple VNICs on different

attach points can be assigned to the same IPMP group.

Care has been taken to ensure that a VNIC shows up

as a separate interface on the MIB with the configured

link speed as the interface speed. Existing network man-

agement tools can thus continue to work seamlessly in a

virtualized environment.

The various examples in this paper show some of the

possibilities where Crossbow can be used in an enterprise

to decouple the application from the physical hardware

and network to ensure easier deployment, management,

and hardware upgrade. Because the vWire is a collec-

tion of rules and objects, it can be easily migrated from

one physical network to another. This flexibility allows

enterprises to migrate their network in full or in part to

a public cloud when needed. The same concepts can be

used by startups to create their data-center in a box in

a public cloud. They can use Crossbow tools to analyze

their usage and scale out to multiple machines seamlessly

as business needs and traffic grow.

The core of the Crossbow architecture and all the

features described in this paper have been imple-

mented and integrated in OpenSolaris and available at

http://opensolaris.org to any user.

Near term work focuses on enhancing the manage-

ment tools to visualize and configure these vWires and

virtual network machines. Crossbow has achieved a

powerful level of control and observability over the net-

working resources inside a single system. One of the

directions being pursued is to extend that kind of con-

trol beyond the boundaries of a single box, to encompass

flows that span multiple subnets of physical and virtual

machines. To that end, new wire protocols are being ex-

plored to convey some of the QoS requirements between

nodes. We need to address both the data plane, and the

control plane. Priority-based Flow Control (PFC) is the

layer-2 mechanism defined by the IEEE and used for dis-

criminating based on the VLAN tag’s priority field on

data packets. On the control plane, Generic Attribute

Registration Protocol (GARP) and Multiple VLAN Reg-

istration Protocol (MVRP) are being considered for two

reasons: The scalable administration of multiple inter-

connected nodes underscores the need for a hands off

propagation of QoS information across the links. Sec-

ondly the network must be protected from the floods of

unnecessary broadcasts from unused VLANs.

8 Author Biographies

Sunay Tripathi is a Distinguished Engineer at Sun Mi-

crosystem working on networking and network virtu-

alization. He received a MS in Computer Science

from Stanford University in 1997. His blog is at

http://blogs.sun.com/sunay, and he can be reached at

sunay.tripathi@sun.Com

Nicolas Droux is a Senior Staff Engineer and archi-

tect with the Solaris Core OS group at Sun Microsys-

tems. Nicolas has led, designed, and implemented sev-

eral kernel projects in the areas of High Performance

Computing, I/O, security, virtualization, and networking.

His blog is at http://blogs.sun.com/droux, and he can be

reached at nicolas.droux@sun.com.

Kais Belgaied is a senior staff engineer and a techni-

cal leader at Sun Microsystems, Inc. His areas of interest

include networking, virtualization, operating systems,

cloud computing, and IT security. He is a voting member

of the Platform Architecture Review Counsel with Sun

Microsystems, and an active participant in multiple IETF

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 63

working groups. His blog is http://blogs.sun.com/kais,

and he can be reached at kais.belgaied@sun.com.

Shrikrishna Khare is a Solaris Kernel Networking

engineer at Sun Microsystems. He received a M.S.

in Computer Science from North Carolina State Uni-

versity, USA in 2008. He can be reached at shrikr-

ishna.khare@sun.com

References

[1] http://opensolaris.org/os/project/vnm/ilb

(PSARC/2008/575).

[2] http://www.virtualbox.org.

[3] http://www.vmware.com/pdf/virtualization.pdf.

[4] M. Allman and W. S. V. Paxson. TCP Congestion

Control. In RFC 2581, 1999.

[5] W. Almesberger. Linux Network Traffic Control.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. H. Katz, A. Konwinski, G. Lee, D. A. Patter-

son, A. Rabkin, I. Stoica, and M. Zaharia. Above

the Clouds: A Berkeley View of Cloud Computing.

In Technical Report No. UCB/EECS-2009-28.

[7] P. Barham, B. Dragovic, K. Fraser, T. H.

Steven Hand, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield. Xen and the Art of Virtualization. In

19th ACM symposium on Operating System Princi-

ples, pages 164–177. ACM, 2003.

[8] Carson. Limiting Bandwidth Usage on Xen Linux

Setup.

[9] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and

A. Warfield. QoS’s Downfall: At The Bottom, or

Not at All! In RIPQOS’03: Proceedings of the

ACM SIGCOMM workshop on Revisiting IP QoS,

2003.

[10] Intel. Intel 82598 10GbE Ethernet Controller Open

Source Datasheet, 2008.

[11] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner. Enabling Innovation in Campus Net-

working. 2008.

[12] Neterion. Neterion Xframe II 10 Gigabit Ethernet.

[13] L. M. S. C. of the IEEE Computer Society. IEEE

Standards for Local and Metropolitan Area Net-

works: Virtual Bridged Local Area Networks. In

IEEE Std 802.1Q-1998, 1998.

[14] D. Price and A. Tucker. Solaris Zones: Operat-

ing System Support for Consolidating Commercial

Workloads. In 18th Large Installation System Ad-

ministration Conference, pages 241–254.USENIX,

2004.

[15] T. H. Ptacek and T. N. Newsham. Insertion, Eva-

sion, and Denial of Service: Eluding Network In-

trusion Detection. White paper, 1998.

[16] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spaf-

ford, A. Sundaram, and D. Zamboni. Analysis of a

Denial of Service Attack on TCP. In In Proceed-

ings of the 1997 IEEE Symposium on Security and

Privacy, pages 208–223. IEEE Computer Society

Press, 1997.

[17] M. Seaman. A Multiple VLAN Registration Proto-

col (MVRP), 2003.

[18] S. Soltesz, H. Potzl, M. Fiuczynski, A. Bavier,

and L. Peterson. Container-Based Operating Sys-

tem Virtualization: a Scalable High-Performance

Alternative to Hypervisors. In 2nd ACM

SIGOPS/EuroSys European Conference on Com-

puter Systems 2007, pages 275–287. ACM, 2007.

[19] Sun Microsystems. Solaris 10 System Administra-

tion Guide: IP Services, 2008.

[20] Sun Microsystems, Inc. Sun Multithreaded 10GbE

(Gigabit Ethernet) Networking Cards, 2007.

[21] Sun Microsystems, Inc. System Administration

Guide: Solaris Containers-Resource Management

and Solaris Zones, 2009.

[22] C. Systems. Unified Computing Systems.

[23] S. Tripathi, K. Belgaied, and N. Droux. Crossbow:

Network Virtualization Resource Partitioning.

[24] S. Tripathi, N. Droux, T. Srinivasan, and K. Bel-

gaied. Crossbow: FromHardware Virtualized NICs

to Virtualized Networks. In In Proceedings of the

ACM SIGCOMM Workshop VISA’09, 2009.

[25] S. Tripathi, N. Droux, T. Srinivasan, K. Belgaied,

and V. Iyer. Crossbow: A Vertically Integrated QoS

Stack. In In Proceedings of the ACM SIGCOMM

Workshop WREN’09, 2009.

[26] J. S. G. Venkitachalam and B. Lim. Virtualizing

I/O Devices on VMware Workstation’s Hosted Vir-

tual Machine Monitor. In Proceedings of the 2001

USENIX Annual Technical Conference, 2001.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 65

EVA: A Framework for Network Analysis and Risk Assessment

Melissa Danforth
Department of Computer Science

California State University, Bakersfield
Bakersfield, CA 93311

mdanforth@csub.edu

Tags: security, research, attack graphs

Abstract

EVA is an attack graph tool that allows an administrator
to assess and analyze a network in a variety of fashions.
Unlike other attack graph tools which just focus on vi-
sualizing the network or recommending a set of patches
to secure the network, EVA goes beyond these modes to
fully explore the power of attack graphs for a multitude
of administrative and security tasks. EVA can be used
to derive a set of hardening measures for a network, to
perform strategic analysis of a network, to design a more
secure network architecture, to assist in forensic evalua-
tions after a security event and to augment an intrusion
detect system with information about the likely targets
of an attack. This paper summarizes the framework used
by EVA, provides real-world results of using EVA and
shows how EVA is scalable to large networks.

1 Introduction

Securing a computer network against intrusion is a com-
plicated task. The risk profile of the network depends
not only on the configuration of individual machines, but
also on the connectivity between machines. If an admin-
istrator only evaluates the risk profile of each machine
individually, he will miss multi-stage attacks that propa-
gate across the network. For example, an attacker might
compromise a public web server and then use that server
to compromise the database server. This is a classic
“foothold” scenario whereby the attacker compromises
one machine to use as a base for gaining access to inter-
nal networks he could not directly access. Such scenarios
must be considered when evaluating a network.
Attack graphs [2, 4, 10, 11, 14, 15, 16, 17, 18, 19, 9,

21] and attack trees [6, 7] provide a method to discover
and visualize such “foothold” scenarios in the network.

Attack graphs and trees compute exploit paths that a the-
oretical attacker might take through the network, given
knowledge of the vulnerabilities on each machine, the
firewall rules in the network and the topology of the net-
work. Attack graphs by themselves are purely just a
method to represent and possibly visualize these paths.
The true power of attack graphs lays in analyzing the at-
tack graph.
EVA (Evolutionary Vulnerability Analysis) is an at-

tack graph tool that supports a multitude of analysis
modes. As shown in [5], it is scalable to large networks
containing hundreds of hosts. This paper describes fur-
ther improvements that increase the scalability to net-
works containing thousands of hosts. EVA is a policy
driven model, which allows administrators to tune the
analysis to the specific operating criteria or mission for
their networks. The policy model is flexible so that the
administrator does not need to provide extensive infor-
mation to it.
Most prior work has focused on two modes of analy-

sis: finding a set of hardening measures and performing
“what if” scenarios. A set of hardeningmeasures are typ-
ically patches or firewall rules that prevent the attacker
from achieving one or more goals. The “what if” scenar-
ios allow the administrator to pretend there are unknown
vulnerabilities in the network. This allows an adminis-
trator to explore the consequences of unknown vulnera-
bilities, such as “zero-day” exploits. The “what if” mode
essentially alters the input into the attack graph tool to
support the scenario instead of the actual network. The
resulting “what if” attack graph that can be analyzed us-
ing other modes of analysis. EVA supports these modes
of analysis and uses the policy to guide the analysis.
EVA goes beyond these modes of analysis to further

unlock the power of the attack graph model. It can also
be used for network design, forensic evaluation and IDS
monitoring. For the network design mode, the tool can
be used in two ways. First, it can be givenmultiple proto-
type networks to evaluate and decide which has the best

66 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

security. The mode of analysis has also been used in
GARNET [21]. The second use of the tool for network
design is unique to EVA. Given a prototype network, it
can automatically alter the connectivity and/or add IDS
sensors to improve the security of the network. As with
hardening measures, this analysis is guided by the policy
for the network.
For forensic analysis, the evidence gathered during the

course of the investigation is given to the tool. The tool
then produces a list of resources that the attacker could
have also compromised given the evidence. This gives
direction to the forensic evaluators by pointing out likely
paths the attacker took during the compromise. IDS
monitoring uses a similar approach, but in real-time as
opposed to after-the-fact. Theoretically, the list of poten-
tial exploit paths could be given to a intrusion response
system to prevent the attacker from actually exploiting
those paths.
These analysis modes have not been explored in other

attack graph tools. This work describes how EVA can be
expanded to supporting these new analysis modes. By
supporting these modes, EVA has a much wider use than
simply visualizing or securing the network. It can be
used in multiple phases of operation for a variety of se-
curity purposes.
Section 2 describes prior works in attack graphs and

attack trees. This section highlights how EVA differs
from these prior works. Section 3 details the attack graph
model used by EVA. In Section 4, the methodology used
to generate the attack graphs is given. Section 5 describes
the genetic algorithm used for analyzing attack graphs.
Section 5 also details the policy model and the various
modes of analysis. Section 6 provides some experimen-
tal results of using EVA on our student lab network and
on simulated networks. Section 7 talks about future work
to improve this tool.

2 Related Work

Several prior works [11, 15, 17, 18] have shown that de-
termining a set of hardening measures is in NP. Philips
and Swiler [15] also shows that the problem of plac-
ing sensors to maximize coverage of the exploit paths
an attacker could take is in NP as well. Given this, most
prior works have focused on non-adaptive approximation
methods to find a set of hardening measures.
Philips and Swiler [15] allow an administrator to se-

cure one resource at a time by computing shortest paths
to that resource. This does not actually provide a set of
hardening measures, but instead trims the attack graph to
just the most likely paths an attacker would take. Their
method requires extensive administrator interaction to
actually determine the hardening measures and to secure
all the resources on the network.

Other groups have proposed non-adaptive approxima-
tion methods to derive a set of hardeningmeasures. Noel,
et al. [10, 14] derive an algebraic expression of the initial
conditions that allow an attacker to compromise a single
resource. Sheyner, et al. [11, 17, 18] use a greedy algo-
rithm to protect a given resource. Ammann, et al. [2]
compute the hardening measures for a single resource
based on information added to each node during the at-
tack graph generation. These methods only compute the
set of hardening measures for a single “goal” at a time.
They must be repeated for each resource the adminis-
trator wishes to protect. This requires not only more
processing time, but most likely will result in repeating
computational steps when two resources share a portion
of their exploit paths. EVA on the other hand derives a
set of hardening measures to protect all the resources the
administrator has marked as critical.
Dewri, et al. [7] uses a genetic algorithm to compute

a set of hardening measures for one or more resources.
Their algorithm also supports each hardening measure
having a different cost. This is similar to the approach
used by EVA, but there are several critical differences, as
detailed in [5]. First, their cost model is not very flexible.
It requires the administrator to assign a cost and weight
for every single possible hardening measure. Since the
number of hardening measures increases dramatically as
the size of the network increases, Dewri’s method would
require extensive user input before being able to compute
the set of hardening measures for larger networks. EVA
uses a default cost for most hardening measures, but al-
lows the administrator to adjust the cost for any harden-
ing measure. The administrator also has flexibility in this
adjustment. One can adjust a measure globally, such as
“do not allow port 80 to be disabled”, or one can adjust
a measure for a specific machine. Thus, the administra-
tor only has to specify costs for those measures deemed
desirable or undesirable for the network.
Second, the genetic algorithm used in [7] is not very

scalable to large networks, as shown in [5]. This is be-
cause they use a multi-objective genetic algorithm that
treats the security provided by the set of hardening mea-
sures and the cost of that set as equals. As shown in [5],
this leads to their algorithm maintaining a set of low cost
but also low security hardening measures. Most of these
low cost solutions turn out to be evolutionary dead-ends
because they provided very little security. By maintain-
ing them, the genetic algorithm in [7] is essentially wast-
ing memory and computational time on untenable solu-
tions. The genetic algorithm used by EVA uses a priority
based method which first prioritizes on securing the net-
work and then looks at minimizing the cost of the set
of hardening measures. The experimental results shown
in [5] show that this is a far more suitable approach for
the attack graph problem.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 67

Figure 1: The Computer Science instructional network that was scanned for modeling in EVA.

NetSPA [9] and its graphical front-end GARNET [21]
are the closest competitors to EVA in the market today.
NetSPA is a project out of MIT Lincoln Labs that was
awarded $10k in MIT’s 2008 Entrepreneurship Compe-
tition to form a startup company based around NetSPA
called CyberAnalytix [13]. While NetSPA is similar to
EVA, there are several key differences between NetSPA
and EVA. First, NetSPA uses a different technical ap-
proach to the attack graph problem than EVA. NetSPA
focuses on the data structure of the attack graph and post-
processing the attack graph to reduce complexity. EVA
uses a classic adjacency-list data structure for the attack
graph and focuses on pre-processing the network using
an abstract exploit model described in Section 3.1 and
a meta-machine model described in Section 3.2 to re-
duce the complexity of the network. Both approaches
provide scalability, but are fundamentally different in na-
ture. Second, NetSPA uses a non-adaptive algorithm to
compute the set of hardening measures while EVA uses
an adaptive genetic algorithm that incorporates the site’s
policy when computing the set of hardening measures.
By incorporating the policy, EVA is able to provide rec-
ommendations tuned to the site’s mission or operating
criteria. Third, NetSPA and GARNET focus on pro-
viding a set of hardening measures and visualizing the
network for both actual networks and theoretical (“what
if”) scenarios. EVA supports these modes and also adds
modes for network design, forensic evaluation and IDS
monitoring. This gives EVA more versatility.

3 Attack Graph Model

The attack graph model used by EVA was first described
in [4]. The attack graph itself is an adjacency-list ma-
trix that describes the exploit paths an attacker could
take through the network. The inner nodes of the graph
represent various states the attacker has achieved, such
as “user privilege on host5”. The initial nodes of the
graph represent the initial state of the network, such as
what vulnerabilities are present and what privileges the
attacker has initially. The edges of the graph represent
exploits the attacker has executed. An attack graph for
the network evaluated in Section 6 is shown in Figure 2.
The primary underpinning of the model is a set of ex-

ploit templates that describe exploits an attacker could
use in the network. These templates are represented in
a “requires/provides” [12] format. The “requires” por-
tion of the template specifies what conditions must exist
for the exploit to occur. The “provides” portion of the
template states the consequences of the exploit, such as
new privileges the attacker gains from the exploit. An
attack graph is built by matching templates to the current
knowledge about the network. When all of the “require”
conditions are met for a template, it is executed and all
of its “provide” conditions are added to the attack graph.
For purposes of the representation, each condition is tied
to an individual node in the attack graph.
The initial nodes of the attack graph are derived from

several sources: a model of the network connectivity, a
list of vulnerabilities present on all machines in the net-
work and an attacker model. The model of the network
connectivity describes the firewall and/or routing rules
that would prevent two hosts from communicating with
one another. By default, EVA assumes two hosts can

68 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

0: pe_noauth on se rver1

r2r -noauth Zero -> se rver1

r2r -noauth* se rver2 -> se rver1

0: pe_noauth on se rver2

r2r -noauth Zero -> se rver2

r2r -noauth* se rver1 -> se rver2

1: Root pr ivi lege on server1

1: Root pr ivi lege on server2
0: Root privi lege on Zero

0: No pr ivi lege on server1

0: No pr ivi lege on server2

(a) Unpatched

0: pe_noauth on se rver1

r2r -noauth Zero -> se rver1

r2r -noauth* se rver2 -> se rver1

0: pe_noauth on se rver2

r2r -noauth Zero -> se rver2

r2r -noauth* se rver1 -> se rver2

1: Root pr ivi lege on server1

1: Root pr ivi lege on server2
0: Root privi lege on Zero

0: No pr ivi lege on server1

0: No pr ivi lege on server2

(b) Patched

Figure 2: The attack graph for the basic network configuration and the patched attack graph after analyzing it. The
color scheme for the graphs is as follows. The orange oval is the attacker’s starting point. Red boxes represent
machines where the attacker has obtained root privileges. Yellow boxes are machines where the attacker has gained
user privileges. Orange diamonds are the attacks executed against the network. Clear ovals are the initial conditions
in the network. In the patched graph, disabled attacks and nodes are grey while the patched vulnerabilities are aqua.
For this network, the recommended patches prevent the attacker from getting root on both machines, since both root
nodes have been disabled in the patched graph.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 69

communicate on a given port. The connectivity model
only needs to specify denied connectivity. When refer-
ring to TCP connections, the denied connectivity is as-
sumed to be a denied SYN packet. The denied connectiv-
ity is directional, just as firewall rules are. For example,
if you deny host1 from connecting to port 443 on host4,
this does not prevent host4 from connecting to port 443
on host1. This connectivity matrix can be derived from
knowledge of the network’s firewall and routing rules.
The list of vulnerabilities on all machines in the net-

work can be obtained via vulnerability scanner reports.
The vulnerability name must match the naming struc-
ture used in the exploit templates. Currently, EVA can
translate certain Nessus [20] plugin IDs to a vulnerability
name. The machines must also be given unique names in
this list and these names must match the names used in
the connectivity model. IP addresses or domain names
are a very logical name to use for this model. One can
also rename machines in both the vulnerability list and
connectivity model to any name of the administrator’s
choosing.
The attacker model describes what initial privileges

the attacker has in the network and where the attacker
is located in the network. For example, one can model
an attacker that is outside of the network and who has no
initial privileges in the network (the “outsider” problem).
One can also model an attacker who has a machine inside
the network under his control or who has certain priv-
ileges inside the network (the “insider” problem). One
can also use any combination of these two problems, al-
though currently EVA assumes a single-attacker model,
so it cannot distinguish between the nodes achieved by
two or more attackers. In other words, if you model both
an insider and outsider, EVA assumes them to be the
same person. Allowing multiple attackers is a planned
future refinement (see Section 7).
One of the issues with attack graphs that was described

in more detail in [4] is that the number of edges in the
graph, in other words the number of exploits executed
by the attacker, is dominated by the number of exploit
templates in the model and the number of machines in
the network. If a is the number of exploit templates and
n is the number of machines, then the number of edges
is O(an2). To achieve scalability, one must reduce the
number of exploit templates and the number of machines
in the network in such a way that it does not affect the
functionality of the attack graph. To do this, EVA uses
two approaches: an abstract model of exploit classes and
clustering of identical machines.

3.1 Abstract Model of Exploit Classes

When looking at the early literature on attack graphs,
particularly the work of Sheyner, et al. [11, 17, 18], two

things became clear. First, if one were to model each and
every exploit that existed in the world, the exploit tem-
plates would quickly grow to an enormous size. Second,
many exploits shared characteristics and only varied by
the name of the vulnerability and/or the port number used
in the exploit. One could greatly reduce the number of
exploit templates required by coming up with abstracted
templates that apply to a variety of actual exploits.
The difficulty with this approach is creating abstract

templates that retain the ability to model different types
of exploits while still grouping multiple exploits to-
gether. Essentially, a classification system had to be de-
veloped for exploits. The details of this classification
system are given in [4]. In brief, exploit classes such
as “remote to user” or “remote to root” were developed.
Most of the classes focus on privilege escalations, client-
side privilege escalations (such as a browser exploit),
username/password guessing, password cracking, infor-
mation leaks, bypassing firewall rules or altering router
rules. The model currently does not support denial of
service, but it could be extended to do so by writing a
new set of rules for that class.
Rewriting the exploit templates is only part of the ab-

straction process. The vulnerability list also must be
translated from actual vulnerabilities to abstract vulnera-
bilities. This is done currently by comparing the Nes-
sus [20] plugin ID to a mapping that converts known
Nessus plugin IDs to their corresponding abstract vulner-
ability. This mapping is currently maintained by hand.
The translation of the vulnerability list is done during the
pre-processing stage, before generating the graph. For
each machine in the vulnerability list, its set of vulner-
abilities are translated to the abstract vulnerability class.
If two or more vulnerabilities for that machine map to
the same abstract class, the duplicates are discarded.
When post-processing the reports generated by the anal-
ysis tool, this process is reversed.
Likewise, the port numbers given in the model of

network connectivity must also be abstracted. This is
a slightly more complex process, since any given port
may be used for more than one abstract exploit class.
Again, a mapping of port number to abstract port name
is used, except this mapping supports one-to-many map-
pings where one port number might be associated with
several abstract exploit classes.
There are two major advantages to having an abstract

model for the exploit templates. The first advantage is
that this greatly reduces the size of the template set. By
reducing the number of templates, the number of edges
in the graph are also reduced, as detailed above. This
increases the scalability of the model since, as described
in [4], the number of edges are a prime indicator of the
complexity of the attack graph. The second advantage
is reduced administrative overhead. One does not have

70 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

to alter the exploit templates every time a new exploit
comes to light. Instead, the administrator can see if that
exploit is part of an existing abstract class. If so, the pre-
processing mappings can be altered to support this new
exploit. If not, the model allows an administrator to write
templates for specific exploits that are not covered by the
abstract templates.

3.2 Clustering
The second approach to reduce complexity and increase
scalability is to group identical machines into a cluster.
In [4], this cluster was modeled as one meta-machine.
This has been updated to model each cluster as two ma-
chines, so that the interactions between machines in a
cluster can be observed.
The process of clustering is similar to what was de-

scribed in [4]. After the connectivity model and list of
vulnerabilities has been pre-processed for the abstract
template model, it is further pre-processed to discover
the clusters. On the first pass, all machines with identical
vulnerabilities are put into a proto-cluster. On the sec-
ond pass, each proto-cluster is subdivided into the final
clusters based on the connectivity. Each final cluster con-
tains machines with identical vulnerabilities and identi-
cal connectivity. Each cluster is assigned a name and the
members of that cluster are recorded. Then the vulnera-
bility list and connectivity model are updated as follows.
If a cluster contains only one machine, that machine is
left as-is in both the vulnerability list and the connectiv-
ity model. If a cluster contains two or more machines,
all machines in the cluster are removed from both the
vulnerability list and connectivity model. Then two ma-
chines whose names are based on the cluster name are
added to both the connectivity model and vulnerability
list. These two cluster machines have all the vulnerabil-
ities and connectivity rules specified by the original ma-
chines in the cluster. Clustering is currently done with a
Perl script to parse and alter the input files.
For a network which has large segments of identi-

cal machines, clustering can greatly improve the perfor-
mance of EVA by reducing the number of machinesmod-
eled in the attack graph. Since the members of the cluster
are recorded, it is easy in post-processing to augment all
reports about a cluster with the list of machines in that
cluster. The administrator can then tell that hardening
measures need to be applied to all machines in the clus-
ter.

4 Generation of Graphs

As described in Section 3, the exploit templates are in
a “requires/provides” format. This makes them well-
suited to be encoded as rules in an expert system. The

expert system JESS [8] is used by EVA. The abstract ex-
ploit templates are encoded as rules in the expert sys-
tem. These rules use the CLIPS [1] syntax, so the ruleset
could be exported to other expert systems that support
this syntax. The network connectivity model, the list of
vulnerabilities and the attacker model are encoded as ini-
tial facts to the expert system. From these initial facts,
the “requires” portion of zero or more templates is satis-
fied. The “provides” portion of the template asserts more
facts into the expert system. This in turn may satisfy
other templates.
Unlike some prior works [11, 17, 18, 16] which only

see if the attacker can achieve a specific goal, such as “get
root on the web server”, EVA uses an exploratory ap-
proach to seek out all possible exploit paths the attacker
could take through the network. The matching of facts to
exploit templates continues until the newly asserted facts
cause no more templates to be satisfied. Thus all avenues
of attacks that can be described given the initial facts and
the exploit templates are explored.
The expert system also records each exploit template

rule that is activated, the facts that caused it to be satis-
fied and the facts that are asserted as a consequence of
it being activated. This is equivalent to one edge in the
attack graph. The nodes in the attack graph are equiv-
alent to the facts in the expert system, which are also
recorded. A Perl script translates the output of the expert
system into two formats: a visualization format and the
genetic algorithm format. The visualization format uses
the DOT syntax of the Graphviz project [3]. From DOT,
one can produce images in a variety of formats such as
EPS and GIF. The genetic algorithm format is a list of an-
notated edges used to construct the adjacency-list matrix
for analysis.

5 Evolutionary Analysis

In order to determine a set of hardening measures, one
must first specify what is considered to be the “bad”
states in the attack graph, i.e. what the administrator does
not want the attacker to achieve. For example, the ad-
ministrator might want to prevent the attacker from gain-
ing root-level privileges on all hosts. When deriving the
hardening set, one then seeks to disconnect the attacker
from these undesirable states by applying a hardening
measure. The “bad” states correspond to a set of nodes
in the attack graph. This can be given specifically, such
as “prevent root access on host8”, or generally, such as
“prevent root access on all hosts”. These bad states are
referred to collectively as the goal nodes since they rep-
resent the goals of the attacker.
Related to finding a set of hardening measures, one

can also analyze the network to assess its risk profile. To
do so, one simply measures how many of these “bad”

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 71

(a) Unpatched

(b) Patched

Figure 3: The attack graph and analyzed attack graph for the scenario where a user visits a malicious website with a
vulnerable web browser. This is a classic outsider scenario where the attacker gains a foothold in the network then
uses this foothold to further compromise the network. The color scheme is as described in Figure 2.

states the attacker has obtained and output that as a risk
metric or a risk profile. Again, this can be tuned to the
particular needs of a given network by changing the set
of “bad” states to reflect what is undesirable for that par-
ticular network.

The hardening measures supported by EVA are patch-
ing a vulnerability, adding a firewall rule and placing an
IDS sensor. Priority is given to each hardening mea-
sure based on the policy model and the mode of anal-
ysis. Each measure has two attributes associated with
it: the cost of that measure and the security provided by
that measure. Both attributes can be manipulated by the
policy and by the mode of analysis. When the mode of
analysis is to derive a set of hardening measures, the de-
fault costs in order from cheapest to most expensive are
patches, firewalls and IDS sensors. The default behavior
is to have patches and firewall rules confer more security
than IDS sensors. Any of these defaults can be changed
by the policy model. One can also tell the genetic algo-
rithm to only consider a subset of hardening measures,
such as to just consider patches.

A genetic algorithm was chosen as the means of do-
ing the analysis. As described in [5], finding a set of
hardening measures directly is computationally infeasi-
ble. One cannot “brute force” the solution. Genetic al-

gorithms are an approximation method that allows one
to start with random solutions and then refine those so-
lutions into better solutions via an evolutionary process.
This is essentially a guided search of the solutions space.
Each solution is referred to as a chromosome. A group
of solutions being evaluated are called a population. The
evaluation continues iteratively for several rounds, with
each round being called a “generation”. Initially, in the
first generation, the population is randomly generated.
Then the “fitness” of each chromosome is evaluated. The
fitness function determines how well a given solution
works for the problem. The most fit chromosomes are
then selected as parents and recombined, with the hopes
of creating even better solutions. Finally, a few chromo-
somes are randomly mutated. In EVA, a mutation flips
the bit, so if a hardening measure was in use, it would
no longer be used and vis versa. After recombination
and mutation, the population moves on to the next gen-
eration, where it begins with evaluating the fitness of the
chromosomes. The population will keep passing through
the fitness evaluation, recombination and mutation steps
until the programmed maximum number of generations
has elapsed.

More details about the genetic algorithm can be found
in [5]. The code has been updated since that time to be

72 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

multi-threaded when evaluating the fitness of the pop-
ulation. Since each chromosome in the population has
its own fitness, this point of the evaluation is well-suited
to multi-threading. The population is broken down into
sub-groups and each sub-group spawns a thread to evalu-
ate the fitness of the chromosomes in its sub-group. The
number of threads is selected when the program is com-
piled. Currently, four threads are spawned. The main
program waits for each thread to complete before mov-
ing on to the recombination step.
The chromosome in the genetic algorithm corresponds

to a proposed set of hardening measures. During fitness
evaluation, each measure in the chromosome is applied
to the attack graph. Each node and edge in the attack
graph records how it is affected by the measure. A patch
disables an initial node, which corresponds to a vulner-
ability on a machine, and all edges leading out of that
node, which correspond to attacks enabled by that vul-
nerability. A firewall rule disables an edge, which corre-
sponds to the attack that the firewall rule blocks. An IDS
sensor watches an edge. This indicates that the attack
represented by that edge will be detected if it is executed.
After applying the hardening measures, a cascade effect
takes place throughout the graph, as described below.
Edges, which correspond to one specific attack, will

disable themselves if any incoming node to that edge is
disabled. This is because the incoming nodes correspond
to preconditions required for the attack to succeed. If any
precondition becomes disabled, the attack can no longer
succeed, so the edge disables itself. It does not disable
the other incoming nodes though since those have not
been affected by the fact that the attack can no longer
succeed. Similarly, if any of the incoming nodes for
an edge are watched, the edge marks itself as watched.
This indicates that one of the preconditions for the at-
tack is enabled by an attack that the IDS can detect. This
will only occur when several attacks are needed in or-
der for the attacker to reach a goal. While the IDS may
not detect the attack corresponding with this edge, it has
detected an early attack that is required for this edge’s
attack to succeed. Thus, this edge will mark itself as
watched.
Internal nodes will disable themselves when all their

incoming edges are disabled. This means that all at-
tacks which lead to that state have been disabled. When a
node disables itself, all edges leading out from that node
will disable themselves due to the behavior of edges de-
scribed above. Similarly, when all edges coming into
a node are watched or disabled, the node will mark it-
self as watched. This indicates that all possible paths to
the privilege or condition represented by the node have
been covered by IDS sensors. The attacker cannot reach
this node without triggering an IDS alarm, so the node
is marked as watched. This will then trigger all edges

leaving that node to mark themselves as watched, for the
reasons described above. If a node or edge is marked as
both watched and disabled, the disabled state takes pri-
ority.
At the end of applying all the proposed hardening

measures and this cascade effect, each goal node is
checked. The preferable result is that all the goal nodes
have been disabled. For each node that is not disabled, its
risk metric is calculated based on if it is being watched
by an IDS sensor and how many enabled edges can still
reach it. The sum of the risk metrics for each goal node
is the overall risk that is still present with that proposed
set of hardening measures. The genetic algorithm fit-
ness function first seeks to minimize this risk and then
attempts to minimize the cost of the measures in the hard-
ening set.
The primary advantage to using a genetic algorithm

for analysis are that the direction of the search can be
easily changed by altering the nature of the chromosome
or the fitness function. For example, if one is just con-
cerned with finding a set of patches to apply, the chromo-
some can be redefined as just the set of hardening mea-
sures corresponding to patches. The same genetic algo-
rithm described above will still work even with this re-
definition. EVA’s flexibility in analysis comes from this
flexibility that genetic algorithms provides.
Another advantage to genetic algorithm is many solu-

tions are evaluated in parallel. EVA keeps a record of
the best solutions across all generations. Each of these
solutions is unique. Currently the ten best solutions are
saved, but this is a tunable parameter. When the maxi-
mum number of generations has been reached, EVA out-
puts all of these saved best solutions, ranked by their fit-
ness. The administrator can then choose amongst the so-
lutions. This is particularly useful when multiple solu-
tions with identical fitness exist. The genetic algorithm
cannot distinguish between them since their fitness is the
same, but a human may have a preference for one solu-
tion over another. This is also useful to fine-tune the pol-
icy model, described below, to obtain better solutions if
the first analysis was not satisfactory to the administrator.
By reviewing the saved best solutions, the administrator
can see if one hardening measure is being excessively
preferred, which could indicate that its cost or benefit
needs to be modified.

5.1 Policy Model

The policy model is designed to give the administra-
tor great flexibility in overriding the default behavior of
the analysis. The administrator can override the secu-
rity provided by each class of hardening measures. This
would affect how the risk metric is calculated for each
goal node. The administrator can also override the cost

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 73

(a) Unpatched

(b) Patched

Figure 4: The attack graph and patched attack graph for the malicious student scenario. Since all students are allowed
to log in as a user on the lab machines, the analysis cannot disable the user privilege nodes in the patched graph.

of hardening measures. This can be done for a specific
hardening measure or a group of hardening measures.
The cost can also be changed on different machines.
For patches, the policy model allows an administrator

to specify an abstract vulnerability class from the abstract
exploit templates, a machine name template and the new
cost. The abstract vulnerability class corresponds to a
class of patches. The machine name template can be an
actual machine name, a cluster name or a partial name
which will match all machine and cluster names contain-
ing that name. The administrator can specify just the
vulnerability class or just the machine name template if
desired. The most specific cost is used when there is
overlap between multiple policies. For example, an ad-
ministrator can set the cost of a “privilege escalation”
class patch to 5 on all machines with one policy rule, but
say that the cost of the “privilege escalation” class is only
3 on host4 with another rule. The second rule would be
used for host4.
For firewall rules, the policy model allows the cost to

be set based on the source of the packet, the destination
of the packet and the abstract destination port from the
abstract exploit templates. As with patches, the source
and destination machine names can be an actual machine
name, a cluster name or a partial name. The destination
port can be one of the abstract port names or the keyword

“all”. Similar to the patch policy rules, not all fields need
to be specified. If two rules overlap, again the most spe-
cific rule will be used. IDS sensor placement has all the
fields that firewall rules have and adds a field for the ab-
stract exploit class. The abstract exploit class field allows
one to say it is cheaper or more expensive to monitor for
certain types of exploits.
Policy rules can be set for each mode of analysis. Only

the rules for the current mode of analysis will be consid-
ered. For any hardening measure not covered under a
policy rule, the default cost is used. The administrator
may alter these default costs for each hardening measure
class as well. Default costs can also be altered based on
not only the class, but also the mode of analysis.

5.2 Modes of Analysis
The genetic algorithm is adaptable to many modes of
analysis. Besides finding a set of hardening measures, it
can also be used for strategic planning, network design,
forensic evaluation and IDS monitoring. This is done
by changing the costs and priorities of each hardening
measure (thus altering the fitness of a chromosome), by
redefining the chromosome to only consider a subset of
hardening measures or by altering the input to the attack
graph generator.

74 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

(a) Unpatched

(b) Patched

Figure 5: These graphs are for the scenario where a user has a compromised laptop and plugs it in to the instructor’s
station in a lab. The attacker cannot be prevented from obtaining user privileges since an easily-guessed login is used
for student access to the lab machines. The policy prevents this login from being disabled.

For strategic planning, the desired task is to evaluate
how the network would respond to unknown risks by per-
forming “what if” scenarios. Essentially, an administra-
tor adds vulnerabilities to the vulnerabilities list file that
have not actually been detected in the network and/or al-
ters the connectivity of the network. For example, an ad-
ministrator would ask “what if machine x has a remote to
root vulnerability?” The “what if” scenarios are partic-
ularly useful to model vulnerabilities that a vulnerability
scanner can not easily find. For example, Nessus can-
not detect a client-side browser vulnerability, but this is
becoming a common method used to compromise a ma-
chine. If the administrator does not have a client-based
vulnerability analyzer, he can still model client-side at-
tacks by performing a “what if” scenario. The tool com-
putes the attack graph for the given scenario. The admin-
istrator can analyze the resulting attack graph in any of
the other supported modes.
With network design, the administrator wants to create

a network that is resistant to attack. There are two ways
attack graphs can be used to support network design. The
simplest method is to have the administrator design sev-
eral potential networks as input to the strategic planning
mode. The tool would then calculate an attack graph for
each network and its associated risk metric. The results
could then be displayed to the administrator so she can

choose the design which has the lowest metric and which
best suits the requirements of the installation.
A more interesting approach to network design analy-

sis, and an approach unique to EVA, is to give a proto-
type network design to the tool and have the tool auto-
matically reconfigure the network to minimize risk. The
genetic algorithm in this mode does not consider patches
as a possible hardening measure. Instead, it focuses on
firewall rules, which could also be interpreted as routing
rules, and IDS sensor placement. The fitness function
still seeks to minimize the risk of the network. The costs
are policy-driven, using the policy rules for network de-
sign. The set of firewall rules and IDS sensors that min-
imizes the risk and minimizes the cost is favored by the
algorithm. It outputs several potential network designs
that follow this desired outcome.
For forensic evaluation, the current evidence is given

as input. This evidence can consist of known resources
the attacker has achieved, which corresponds to nodes in
the attack graph, or IDS alerts about attacks seen, which
corresponds to edges in the attack graph. All evidence
that corresponds to the attack graph of the network is
highlighted and treated as the initial states of a subgraph
of the attack graph. Any other nodes reachable by these
states could be other resources the attacker could have
compromised. The IDS monitoring mode works simi-

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 75

larly, but with current IDS alerts. While it has not been
implemented yet, theoretically one could feed the output
of the IDS monitoringmode to an intrusion response sys-
tem. It could then use the knowledge of resources at risk
to add further protection measures for those resources.
This could prevent the attacker from compromising those
resources.

6 Experimental Results

The Computer Science instructional network, as shown
in Figure 1, was profiled as the input network to this tool.
The network consists of a server zone located outside
the firewall and a NAT zone for all the instructional labs.
The server zone contains five servers: two Debian Linux
servers, one Solaris 8 server, one Solaris 7 server and one
Digital Unix server. The instructional lab machines are
all identical within a single lab room. There are several
prototype lab machines that the administrator clones out
to all the machines in a particular room. These proto-
types are an Ubuntu Linux image for the general access
labs (51 machines), an Ubuntu Linux image for the pro-
gramming lab (36 machines), a Windows XP image for
the hardware labs (24 machines) and an Ubuntu Linux
image for the advanced computation lab (30 machines).
In total, there are 141 lab machines in the NAT zone and
5 machines in the server zone.
The clustering Perl script derived four clusters based

on the vulnerabilities present on the machines and the
connectivity allowed by the machines. The first clus-
ter consisted of the servers. The second cluster corre-
sponded to the general access labs. The third cluster cor-
responded to the programming lab. The fourth cluster
contained both the hardware and advanced computation
labs since they had identical abstracted vulnerabilities.
Even though the actual vulnerabilities differed, the ab-
stracted vulnerabilities are what matters for purposes of
clustering. The process of clustering the network took
0.25 seconds on a Xeon quad core 2.33GHz system.
Three “what if” scenarios were also generated for the

network. The first scenario assumes that a student in
the general access lab is using a version of Firefox with
an exploitable vulnerability that would give a malicious
website the same privileges on the machine as the stu-
dent. It is then assumed the student visits such a web-
site, giving the attacker user privileges on that machine.
The attacker model states that the attacker’s malicious
website would place a bot on that machine which would
then attempt to compromise other machines and would
“call home” to the attacker, thereby allowing the attacker
to communicate with the machine even though it is in a
NAT.
The second scenario assumes a student has decided to

compromise the network. This is a variation of the in-

sider problem. Since the student already has user priv-
ileges on all lab machines and several servers, his goal
is to escalate his privileges to root on one or more ma-
chines. The third scenario assumes an instructor has
brought a compromised laptop on to campus. All lab
rooms have an Ethernet jack at the instructor station
where the instructor can plug in a laptop. There are no
restrictions on the connectivity of these jacks. There-
fore, once plugged in, they have full access to the LAN
containing all the lab machines. Again, this scenario as-
sumes the compromised laptop can “call home” to the
attacker so the attacker can have direct access into the
NAT zone via the laptop.
All three scenarios and the base configuration of the

network were given as input to the attack graph genera-
tor. The attack graph for the base scenario showed that
two of the servers could be compromised via “remote
to root” vulnerabilities. These were two old servers ap-
proaching end-of-life which had not been maintained re-
cently. The attack graph for the Firefox vulnerability sce-
nario showed that once the attacker had a foothold into
the NAT zone, he was able to get user on all lab ma-
chines via the “student” account, which is the account all
students use to log in to the lab machines locally. The
cluster containing the hardware and advanced lab had a
“remote to root” vulnerability that the attacker was able
to exploit to get root privileges on those machines. The
programming lab had a “privilege escalation” vulnerabil-
ity that allowed the attacker to elevate from user to root
on those machines.
The attack graph for the malicious student showed

a similar course of action. The student is able to es-
calate from user to root on the programming lab ma-
chines. The student is also able to exploit the “remote
to root” vulnerability on the hardware and advanced lab
machines. Likewise, the attack graph for the rogue lap-
top also showed these compromise routes once the lap-
top had been plugged into the NAT zone. The generation
of each of these attack graphs took 0.5 seconds on the
aforementioned quad core Xeon machine.
Each attack graph was then given to the hardening

mode of EVA. The goal given to the analysis was to pre-
vent the attacker from gaining root privileges on any ma-
chine. The analysis was further restricted to only con-
sidering patches that could be applied, instead of all pos-
sible hardening measures. The policy rules applied to
the evaluation were that logins could not be turned off to
any machine and on the lab machines the “student” ac-
count could not be disabled, even though it has a guess-
able password. A run was made without these policy
rules and several of the highly fit solutions proposed by
the genetic algorithm did indeed suggest these courses of
action. When the policy rules were applied, none of the
highly fit solutions contained these courses of action.

76 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 6: This is the attack graph for the rogue laptop scenario after redesigning the network to segment off the
Ethernet port at the instructor’s station. Since the laptop plugged into that port can no longer connect to the lab
machines, it is unable to compromise them even though the easily guessed student login from Figure 5 remains.

The genetic algorithm was run several times using dif-
ferent population sizes and different maximum genera-
tion limits. Larger population sizes will more frequently
generate optimal results, but require more CPU time to
complete the analysis. A larger maximum generation
limit likewise can increase the optimality of the result,
but also takes more CPU time. Part of the testing was de-
termining values for these two parameters that balanced
good results against CPU time. In doing so, a “suggested
parameters” matrix can be developed for other networks
that are similarly sized.
When the base configuration was evaluated, the sug-

gested course of action was to patch two servers which
had “remote to root” vulnerabilities. No other courses of
action were suggested because the remaining machines
are inside the NAT and the attacker did not have a vector
into the NAT zone in the base configuration. It took 0.01
seconds to evaluate the base scenario using a population
of 50 chromosomes and 50 maximum generations for the
population. The original and patched attack graph for the
base scenario are shown in Figure 2.
For the Firefox scenario, the suggested course of ac-

tion was to patch the two servers, as before, and to patch
the Firefox vulnerability that gave the attacker a foothold
into the NAT zone. Again, the genetic algorithm was run
with a population of 50 and 50 maximum generations. It
took 0.04 seconds for the genetic algorithm to derive this
recommendation. The attack graph and analyzed attack
graph for this scenario are shown in Figure 3.
For both the malicious student scenario and the rogue

laptop scenario, the suggested course of action was to
patch the two servers, patch the privilege escalation vul-
nerability in the programming lab and patch the remote
to root vulnerabilities in the hardware and advanced labs.
This limits the attacker to just getting user privileges on
the machines via the “student” accounts, since it was not
allowed to disable those accounts. Again, with a popu-
lation of 50 and 50 maximum generations, it took 0.03
seconds for the genetic algorithm to derive these recom-
mendations for each scenario. The attack graphs for the

malicious student scenario are shown in Figure 4 and the
graphs for the rogue laptop are shown in Figure 5.

6.1 Network Design

The three scenarios were also analyzed using the network
design mode. For all scenarios, the most fit solutions
only required new firewall or router rules. None of the
recommendations included placing an IDS sensor for this
data set.
For the Firefox vulnerability scenario, it was assumed

that the vulnerability was just in the general access labs.
The most fit recommendation stated to block Firefox in
the general access labs, since there was no policy rule
stating to avoid this action. Since blocking Firefox was
considered the cheaper course of action, it was recom-
mended over segmenting the NAT zone. With a pop-
ulation size of 250 and 250 maximum generations, the
genetic algorithm was able to find this solution on the
majority of its runs. It took on average 1.3 seconds to
find this recommendation.
For the malicious student scenario, it was assumed the

student just had class in the campus-wide general access
lab. The student was assumed to not have physical access
to the programming, hardware and advanced computa-
tion labs. The most fit recommendation was to segment
the general access labs away from the remaining labs.
Again, a population of 250 and 250 maximum genera-
tions were needed to consistently produce this result. It
took an average of 1 second for the algorithm to run.
For the compromised laptop, the most fit design was to

segment the laptop Ethernet jack at the instructor’s sta-
tion away from the rest of the labs in the NAT zone. As
before, a population of 250 and 250 maximum genera-
tions were needed. It took an average of 1.05 seconds
to calculate. Figure 6 shows the attack graph after the
laptop port has been segmented into a different subnet.
This mode needed a larger population size and a higher

maximum generation limit than finding a patch set be-
cause there were more possible solutions. The number of

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 77

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500

C
P

U
 T

im
e

(s
ec

on
ds

)

Number of Hosts in Original Network

Original
Clustered

Figure 7: The CPU time for running the attack graph
generator and analysis in hardening mode for generated
networks with 5 to 500machines. The original time is for
the unclustered machines. The clustered time includes
the time it takes to cluster the machines before generating
and analyzing the graph.

edges in an attack graph are far greater than the number
of nodes in an attack graph since most nodes are highly
connected. Determining how to segment the network in-
volves finding the minimal set of edges to cut to discon-
nect the attacker from the goal nodes, while finding a
patch set involves finding a minimum set of nodes to dis-
able. Since there are more edges than nodes, the network
design mode has more possible solutions than deriving a
set of patches.

6.2 Scalability Testing

The simulated network described in [5] was run through
the clustering script, had the attack graphs generated and
then was evaluated using the hardening mode in order to
test the scalability of this approach. Previously in [5],
the tool was tested to a network with 500 unclustered
machines. Those same networks were clustered and run
again.
For both the unclustered and clustered networks, the

proposed hardening measures completely prevented the
attacker from getting root privileges on any machine in
the network. Figure 7 shows the CPU time of the two
methods when the genetic algorithm had a population of
250 and 500 maximum generations. The CPU time is
used for this figure since the results in [5] did not use
a multi-threaded form of the genetic algorithm. Com-
paring the CPU time allows the clustering results, which
do use the multi-threaded algorithm, to be meaningfully
compared to the single-threaded algorithm. It is clear
that with clustering, it took far less time to derive the
hardening set.
Again, the tool was run with multiple values for the

population size and maximum generations. This allowed
the “suggested parameters” matrix to be filled with in-
formation from larger networks than the Computer Sci-
ence instructional lab network. As expected, the smaller
networks needed only small values for these two param-
eters. The largest network tested, which contained 2500
unclustered nodes and 337 clustered machines, needed
a population size of 500 and a maximum generations of
500 to determine a set of patches. It took an hour and
a half on the Xeon quad core 2.33GHz system to ana-
lyze this graph due to the complexity of the graph and
the large genetic algorithm parameters needed to produce
optimal results.

7 Future Work

There are still several areas of improvement for this tool.
The first area of improvement is the gathering of input
data for the tool. Currently, the firewall and routing rules
have to be imported by hand. The next improvement will
be to automatically import firewall rules using tools that
can extract firewall rules from the network. Another area
of input automation is the Nessus plugin ID to abstract
vulnerability mapping. A student is currently working
on a evolutionary technique to scan the plugin descrip-
tion and classify the plugin based on the keywords in the
description. If this works, it should greatly reduce the
maintenance needed for the abstraction mappings. Of
course, another area for input improvement is to support
other vulnerability scanners besides Nessus. This is also
planned for the tool.
The second area of improvement is the attacker model.

Currently, only one attacker is assumed. If one wishes to
model multiple attackers, one needs to run several sce-
narios, similar to what was described in the results sec-
tion. A future improvement is to allow multiple attacker
models for a single attack graph. This will require mark-
ing the nodes to identify which attackers have gained that
node and altering the genetic algorithm to pay mind to
this node marking.
Another area of improvement is the visualization of

the attack graphs. While DOT [3] is nice for small net-
works, it does not visualize large networks well. A better
visualization technique would allow an administrator to
“drill down” into the graph to see more specific details or
“zoom out” to see more general details.
On the analysis side, one desired area of improvement

is to integrate the IDS correlation mode with an intrusion
response system to see if it would be feasible to run the
analysis in real-time and also if doing so would stop an
attacker before they compromised resources. This would
be a very powerful extension to the tool.

78 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

8 Acknowledgements

I would like to thank the undergraduate students who
have worked on this project for their hard work. Jonathan
Berling was instrumental in translating the Nessus re-
ports into the appropriate format for attack graph gen-
eration and in assisting with the creation of the scenarios
that were presented in this paper. Fred McHale and John
Millikin played a key role in setting up the isolated net-
work that was used to test the scalability of EVA. I’d also
like to thank the Computer Science network administra-
tor, Steve Garcia, and his student assistant, Nick Tooth-
man, for their help in scanning and modeling the Com-
puter Science instructional network.

References
[1] CLIPS: A Tool for Building Expert Systems. [Online]

http://clipsrules.sourceforge.net/.

[2] AMMANN, P., WIJESEKARA, D., AND KAUSHIK, S. Scal-
able, Graph-Based Network Vulnerability Analysis. In CCS02:
9th ACM Conference on Computer and Communication Security
(Washington, DC, November 2002), ACM, pp. 217 – 224.

[3] AT&T RESEARCH. Graphviz - Open Source Graph Drawing
Software. [Online] http://www.graphviz.org/, April 2006. Ver-
sion 2.8.

[4] DANFORTH, M. Models for Threat Assessment in Networks. PhD
thesis, University of Califonia, Davis, Davis, CA, USA, June
2006.

[5] DANFORTH, M. Scalable Patch Management using Evolutionary
Analysis of Attack Graphs. In Proceedings of the 7th Interna-
tional Conference on Machine Learning and Applications (San
Diego, CA, USA, December 2008), pp. 300–307.

[6] DAWKINS, J., CAMPBELL, C., AND HALE, J. Modeling Net-
work Attacks: Extending the Attack Tree Paradigm. In Proceed-
ings of the Workshop on Statistical and Machine Learning Tech-
niques in Computer Intrusion Detection (June 2002).

[7] DEWRI, R., POOLSAPPASIT, N., RAY, I., AND WHITLEY, D.
Optimal security hardening using multi-objective optimization on
attack tree models of networks. In CCS ’07: Proceedings of the
14th ACM conference on Computer and Communications Secu-
rity (New York, NY, USA, 2007), ACM, pp. 204–213.

[8] FRIEDMAN-HILL, E. JESS: Java Expert System Shell. [Online]
http://www.jessrules.com. Version 6.1p6.

[9] INGOLS, K., LIPPMANN, R., AND PIWOWARSKI, K. Practical
Attack Graph Generation for Network Defense. In Proceedings
of the 22nd Annual Computer Security Applications Conference
(Miami, FL, USA, December 2006), pp. 121–130.

[10] JAJODIA, S., NOEL, S., AND O’BERRY, B. Managing Cy-
ber Threats: Issues, Approaches and Challenges. Kluwer Aca-
demic Publisher, 2003, ch. Topological Analysis of Network At-
tack Vulnerability.

[11] JHA, S., SHEYNER, O., AND WING, J. Two Formal Analyses of
Attack Graphs. In IEEE Computer Security Foundations Work-
shop (Cape Brenton, Nova Scotia, Canada, June 2002), pp. 49–
63.

[12] J.TEMPLETON, S., AND LEVITT, K. A Require/Provides Model
for Computer Attacks. In Proceedings of the New Security
Paradigms Workshop (Cork Island, September 2000).

[13] MIT PRESS RELEASE. MIT Lincoln Laboratory
software aims to thwart cyber hackers. [Online]
http://web.mit.edu/newsoffice/2008/security-0827.html, Au-
gust 2008.

[14] NOEL, S., JAJODIA, S., O’BERRY, B., AND JACOBS, M. Ef-
ficient Minimum-Cost Network Hardening Via Exploit Depen-
dency Graphs. In Proceedings of the 19th Annual Computer Se-
curity Applications Conference (Las Vegas, NV, USA, December
2003).

[15] PHILLIPS, C., AND SWILER, L. A Graph-Based System for
Network-Vulnerability Analysis. In Proceedings of the New Se-
curity Paradigms Workshop (Charlottesville, VA, 1998).

[16] RITCHEY, R. W., AND AMMANN, P. Using Model Checking
to Analyze Network Vulnerabilities. In Proceedings of the 2000
IEEE Symposium on Security and Privacy (Oakland, CA, May
2000), pp. 156 – 165.

[17] SHEYNER, O. Scenario Graphs and Attack Graphs. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, April 2004.

[18] SHEYNER, O., HAINES, J., JHA, S., LIPPMANN, R., AND
WING, J. Automated Generation and Analysis of Attack Graphs.
In Proceedings of the IEEE Symposium on Security and Privacy
(May 2002), pp. 254 – 265.

[19] SWILER, L., PHILLIPS, C., ELLIS, D., AND CHAKERIAN, S.
Computer-Attack Graph Generation Tool. In Proceedings of the
DARPA Information Survivability Conference and Exposition II
(June 2001).

[20] TENABLE NETWORK SECURITY. Nessus. [Online]
http://www.nessus.org/.

[21] WILLIAMS, L., LIPPMANN, R., AND INGOLS, K. GARNET:
A Graphical Attack Graph and Reachability Network Evaluation
Tool. In Proceedings of the 5th International Workshop on Visu-
alization for Computer Security (Cambridge, MA, USA, Septem-
ber 2008), pp. 44–59.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 79

An Analysis of Network Configuration Artifacts

David Plonka and Andres Jaan Tack
University of Wisconsin-Madison

Abstract
Computer networks and the Internet have become nec-

essary tools in many daily activities; as such, they share
the expectation to be “always on” and highly available.
Throughout a decades-long evolution of increasing re-
liance, campus/enterprise networks and Wide-Area Net-
works (WANs) have been engineered and maintained by
an increasingly large set of skilled practitioners, i.e., net-
work operators or engineers. While strikingly similar to
the evolution of software and software development by
programmers and software engineers, there has not been
similar attention to the discipline of network operations
as there has to that of software engineering.

In this work, we analyze the deployment and operation
of two large networks over a period of five to ten years.
Our analogy-based approach is to apply software source
code artifact analysis techniques to network device con-
figurations. Specifically, we analyze the repositories of
router and switch configurations of both a large cam-
pus and a service-provider network; these repositories
store the actions of hundreds of practitioners maintain-
ing thousands of pieces of equipment over more than ten
years time. Our results expose the evolution of these net-
works both longitudinally in time and by network device
types and topological roles. We reverse-engineer oper-
ators’ work behavior in terms of how they use version
control tools, how they change network device configu-
rations, and how long their changes last in a production
network. Lastly, we evaluate our proposed analogy be-
tween software engineering and network operations, i.e.,
that network operators are programmers, by comparing
and contrasting the analysis of software development to
that of modern network operations.

1 Introduction

The evolution of network engineering and operation has
brought it to the point of being the respected profes-
sion of increasingly skilled practitioners. This evolution

has brought with it tools and techniques which make the
administration of large networks feasible. Networking
practitioners in these large networks use integrated devel-
opment environments (IDEs) to guide and control their
changes and they use source code management tools
to communicate with each other and record a history
of their work. Networks, like software projects, have
“bugs,” i.e., configurations that have negative effects on
the system. Also like software projects, networks are
subject to the culture of its governing practitioners.

An artifact is defined as “any object created by hu-
mans, especially one remaining from a particular pe-
riod.” The software engineering profession has coined
the term, “software artifacts,” to mean specifically any
such object produced by human being during the course
of software development. These artifacts include code,
bug databases, communications, design documents, and
revision histories by Source Code Management (SCM)
and Version Control Systems (VCS). Following from
this, we define network artifacts as anything produced
by network practitioners in the course of their practice.
Matching the world of software, these include device
configurations (code), trouble tickets (“bug” reports),
communications, design documents, and configuration
change histories.

We find the similarity between the software and net-
working professions compelling. It suggests to us that
the two professions may be closely related. However,
whereas software has received a great deal of attention
from the research community with respect to artifacts
and practitioner workflow, the artifacts of network prac-
titioners have gone woefully unstudied. We hypothesize
that, just as the analysis of software artifacts has made an
impact in the software domain, a similar analysis would
be prudent in the networking domain.

We herein propose an analogy-based approach to the
analysis of network artifacts, concentrating specifically
on the VCS repositories of two long-standing networks
as case studies. Our examination makes use of existing

80 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

tools designed for software version histories as well as
our own longitudinal static analysis of device configura-
tions. While we test our hypothesis, we point out that
our approach is unprecedented in the networking com-
munity. Therefore, while we might expect some natural
similarities, we must be prepared to witness patterns in
network practice which do not have obvious counterparts
in software development. It is discovering the extent of
their similarity that is our motivation.

In this paper, we use the following set of terms to refer
to elements of network configuration management repos-
itories and network configurations (similarly to source
code management and software source code):

practitioner regardless of domain, the actor or author
that is responsible for a configuration change. In
the network domain, the practitioner is a network
operator or engineer; in the software development
domain, this is the programmer or software engi-
neer.

revision a file revision expressing a change to a single
device configuration. This is the smallest repre-
sentable change in the systems under study and typ-
ically is the work of one authoring practitioner.

commit a set of one or more supposedly related revi-
sions, submitted for storage in a repository by a
practitioner. In some prior work, the commit is
known as a transaction; we use the CVS command
name, commit, instead. (In this work we used a
window of six hours to coalesce related revisions
with cvs2cl.)

module a component of the system under study. In the
networks we study, the modules are either collec-
tions of devices by similar topological role (e.g.,
core, distribution, access) or by device type (e.g.,
router, switch, firewall, uninterruptable power sup-
ply). In software development a module is typically
is a sub-directory containing a subsystem or a class
of components, such as header files or library func-
tions.

stanza a line, set of adjacent related lines, or a para-
graph of configuration with a common purpose. For
instance, a single interface or access-list
definition in Cisco’s Internet Operating System
(IOS) configuration language. (See Listing 1 for a
sample IOS configuration fragment.)

LOC lines of configuration. Network devices are typ-
ically configured using a vendor-specific declara-
tive language. This metric is roughly comparable
to lines of code in more general programming lan-
guages.

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce the two networks that we study. We
subsequently present, in Section 3, the existing tools that
we applied to our task. We describe the preparation of
the network configuration data in Section 4 and point
out some of the similarities and differences between soft-
ware development and network operations. In Section 5,
we first present the results of processing this repository
essentially as if it contained software source code. Fol-
lowing those results, we introduce two network-specific
analyses and results: (i) revision lifetimes and (ii) stanza-
based activity in Subsections 5.5 and 5.6, respectively.
Section 6 reports on our expert interview-based valida-
tion of our analyses. Lastly, we report related work in
Section 7, propose future work in Section 8, and con-
clude.

2 Networks Under Study

We studied two large networks: a campus network and a
service-provider network.

Table 1 summarizes the characteristics of the two net-
works under study.

2.1 Campus Network
The campus network under study is a very large network,
with approximately 90,000 ethernet access ports and per-
vasive wireless ethernet access in many campus build-
ings. In Table 1 note that the number of operators for
the campus network is very high, 343 in total. This is
due to the fact that the access layer of this network is
partially administered by “authorized agents” employed
in “end user” departments throughout the campus that
use a sort of a network IDE with a web interface to per-
form changes, rather than a command-line interface as
the super-users often use. (AANTS [16] is one example
of such a network IDE.) Of the 343 campus operators,
64 of them are network “super users,” i.e., the most priv-
ileged operators (with similar responsibilities to the 31
operators of the service-provider network). In summary,
the campus network is a large IP and ethernet network,
with a 3-tiered layout: a set of core and distribution layer
routers and switches providing redundant paths to a very
large set of ethernet access layer switches.

2.2 Service-Provider Network
The service-provider network is significantly different
from the campus network. It is a mostly router-based
Wide-Area Network (WAN), with approximately 500
customer sites in nearly as many cities and municipali-
ties. In Table 1, we see that it has been continually op-
erated for more than ten years under the SCM system;

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 81

Network Period (years) Operators (super users) Files Revisions Lines of Code
Campus 5+ 343 (64) 3,839 128,394 2,898,362

Service Provider 10+ 31 (31) 519 41,787 163,882

Table 1: Network Characteristics.

actually, the network was created in the late 1980s, and
thus has been operated for nearly 20 years in total. We
also see that there are many fewer operators, and devices
(files) than the campus network. This is to be expected
though, given that it contains almost no access layer
equipment; the customers of this service-provider oper-
ate their own ethernet Local-Area Networks (LANs) and
thus access devices are not part of the service-provider
network under study.

3 Tools

As mentioned above, our goal is to utilize existing tools
to form a database from our repository of RCS files
for the Campus and Service-Provider networks. To this
end, we surveyed and experimented with many freely-
available tools, both from the research and the open
source software developer communities. In general, the
former seemed more applicable to our research, however
the latter were more easily available and functional in
that they were often still currently maintained. For in-
stance, we initially intended to use Bloof [8] because
it was feature-rich and extensible, but we found it un-
satisfactory in that has not been maintained in years,
would not build in our modern development environ-
ments, and was also lacking set-up documentation. Since
most tools were introduced for use with the popular CVS
source code management system, it was convenient that
we were able to directly convert our two networks’ direc-
tories of RCS files to modules within a CVS repository.
(CVS actually uses RCS underneath.)

In this study we used the following existing tools to
analyze both the campus and service-provider network
repositories:

StatCvs-XML StatCvs-XML [3] is a statistics tool for
CVS repositories that generates a hierarchy of
HTML documents and images from CVS log files.
It conveniently supplies a web presentation of both
longitudinal and summary statistics.

cvs2cl cvs2cl [1] is a tool of singular purpose: it con-
verts a cvs log to a more concise “ChangeLog”
file. This is useful to us primarily because it im-
plements the sliding-window algorithm described in
German and Mockus’ work [9], that coalesces indi-

vidual file revisions into the author’s commit trans-
actions.

From the tool selection process, we’ve learned that
there are a lot of tools available but many, while per-
haps useful to practitioners, do not expose enough of the
details (e.g., they only produce bit-mapped graphs rather
than tabular numeric data) to facilitate new analyses.

4 Data Preparation and Transformation

In this work, we report on two case studies each involv-
ing the analysis of a repository of configuration files for
the devices in a large network. Combined, the data com-
prises over four thousand files, maintained over approx-
imately ten years, by hundreds of authors. Furthermore,
the data was managed in two custom network configu-
ration management systems written in 1997; these sys-
tems were similar, and both stored device configurations
in files such as that shown in Listing 1, using the legacy
file revision control system, RCS. Our analyses, how-
ever, expect the data to be in a more modern form. Con-
sequently, perhaps it is not surprising that the raw data
needed to be pre-processed, and then transformed. Here
we describe the ways in which the network configuration
data was prepared for our analogy-based analysis as if it
were source code for large software systems.

4.1 Converting From RCS to CVS
Most of converting an RCS-based repository to CVS is
straightforward because CVS is based on RCS. We sim-
ply created a directory structure of modules and move the
RCS files into that structure. We chose to use modules
which represented the position of each device in the hi-
erarchical topology of a network, e.g., core, distribution,
or access layers.

One limitation of our conversion to CVS is that, be-
cause RCS does not record when a file has been removed,
our CVS repository does not contain file deletions in-
formation, so network device removal is not exposed by
our analysis. While there are some creative proposals for
how this limitation might be addressed (such as using the
final revision date as an approximate removal date), we
chose to simply not report on any devices whose config-
urations were ever removed in the years studied. Overall

82 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

v e r s i o n 1 2 . 2
no s e r v i c e pad
s e r v i c e t i m e s t a m p s debug d a t e t i m e l o c a l t i m e
s e r v i c e t i m e s t a m p s l o g d a t e t i m e l o c a l t i m e
s e r v i c e password−e n c r y p t i o n
!
hos tname s−bldg−5−2−a c c e s s
!
i n t e r f a c e F a s t E t h e r n e t 1 / 0 / 1

d e s c r i p t i o n sample 100Mbps e t h e r n e t i n t e r f a c e
s w i t c h p o r t a c c e s s v l a n 42
s w i t c h p o r t mode a c c e s s
. . .

!
i p a c c e s s−l i s t e x t e n d e d n o d h c p s e r v e r

remark Id : ndhcp . a c l , v 1 . 2 2005−05−20 1 1 : 2 6 : 0 3 a s h l e y Exp
deny udp any eq b o o t p s any
p e r m i t i p any any

!
a c c e s s−l i s t 5 p e r m i t 1 9 2 . 2 . 0 . 1
a c c e s s−l i s t 5 remark Allow foo , bar , and baz s e r v e r s
a c c e s s−l i s t 5 p e r m i t 1 9 2 . 2 . 0 . 1 0
a c c e s s−l i s t 5 p e r m i t 1 9 2 . 2 . 0 . 1 1
!
end

Listing 1: A representative example of IOS configura-
tion code. Most multi-line stanzas types are separated by
exclamation points.

it is relatively uncommon to remove devices completely;
more often they are replaced, but keep the same device
and file name, so are represented accurately.

4.2 Cleaning the Data
In the course of our analysis work, we discovered a few
interesting features of the data itself. Some of these (in-
cluding some non-printable characters) required manual
attention to permit a clean analysis. Others appeared as
systemic properties of the network revision control sys-
tem, and deserve attention as they would have appeared
as quite distracting anomalies in visualizations of the net-
work history.

For some devices, we discovered revisions where the
change committed removed every line of the configura-
tion. These revisions, then, were immediately replaced
by whole files (as they were before the removal). We
identified the source of this problem as an intermittent
failure of the network devices themselves; these failures
were not handled sensibly by the network configuration
management systems. Although there were a relatively
small number of these “empty” revisions (111 in campus
and 21 in service-provider), they needed to be removed
so that the subsequent revisions would not have all the
configuration lines erroneously attributed to a single au-
thor. We cleaned these sources with the heuristic that
any revision removing 90% or more of the configuration
lines, based on the most lines that had ever been observed
prior, should be ignored. After manual inspectection of
just that subset of candidates, we found that this heuristic
yielded zero false positives and we removed all the errant

revisions.
Note that the presence of these empty revisions is a

side effect of one major difference between how SCM
is done in network operations versus software develop-
ment. In software development, especially at a large
scale, there are many developers, perhaps in many re-
mote locations, that periodically push their changed files
back to a central repository, from which software re-
leases are subsequently built. By contrast, in network op-
erations, the operators typically operate the SCM system
from one central server and they pull the configuration
file content from the devices’ persistent storage (such as
non-volatile RAM) back to that central repository. While
this push versus pull model is dramatically different, it
has only limited effects on the analysis results. That said,
it is worth remembering that networks typically do not
have full “development” environments (as in software);
the network configuration changes pulled back from de-
vices in the network are immediately in production, if
they weren’t in production already before the revision
was committed. (By contrast, software changes typically
don’t affect a production system until after a software re-
lease.)

4.3 Authors and Author Groups

The campus network had very many active operators at
343 in total. Rather than deal with this overwhelming
number of authors for visualizations, a portion of our
analyses report on groups of operators rather than indi-
viduals. The task of translating the practitioner names
to their corresponding group was non-trivial because, in
ten years, some practitioners had left their jobs, changed
to different groups, or even changed names. However,
we were able to accurately assign practitioners by us-
ing a revision history of their group assignments, kept
as described in [12], combined with expert knowledge of
the operator employees by other employees that had re-
mained for the duration. Manual effort was also required
to combine multiple author (account) names that were
really the same practitioner.

5 Analysis and Results

In this section we present graphical and tabular analy-
sis results and comment on characteristics, prominent
features, and anomalies that are either similar or dif-
ferent between the campus and service-provider net-
works under study. Wherever our results mention user
login names or real names, these names have been
anonymized.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 83

(a)

(b)

Figure 1: Campus (a) and service-provider (b) file/device
count over time. These two networks experienced very
different growth rates and changes in rate.

5.1 Network Evolution

First, we present the entire lifetime of each network in
time series, i.e., each network’s evolution in time. While
the active portion of the campus network is approxi-
mately only five years, both networks are shown in an
approximately ten year time range that allows the plots
to be easily compared.

Figure 1 shows the number of devices, such as routers
and switches, that existed at each point in time for
both the campus and service-provider networks. In the
campus graph, Figure 1a, notable elements include the
growth rate, and its change over time, nearly reaching
4,000 total devices. The shape of this curve suggests
that we’ve captured the network deployment from its in-
ception and that it has gone through periods of differing
growth rates. In the service-provider graph, Figure 1b,

the adoption of the configuration management system is
marked by a sudden increase in device count. There have
been two other prominent increases in new devices, be-
ginning roughly September, 1998 and January, 2006, ul-
timately reaching more than 500 devices in total. Our
expert interview from Section 6 was able to offer an ex-
planation for these events.

In Figure 2 we see a time series plot over that same
time as Figure 1, but here we show the evolution of the
portions of the topology, i.e., by plotting the total LOC
for all devices that serve a particular role in the net-
work. We see in both the campus and service-provider
networks, that the periphery (campus access layer and
service-provider customer sites) are responsible for the
most LOC, and that the peripheral topological layers
most contribute to the overall growth in configuration
content. This is perhaps to be expected as these de-
vices are the most numerous, connecting approximately
90,000 ethernet ports plus wireless access points in the
campus and all the service-provider’s customers. An-
other prominent feature is the addition of management
equipment after January 2007, and firewall devices after
September 2007. However, It is not clear whether these
devices were very quickly deployed or whether they were
merely inducted into the configuration management sys-
tem at this time.

5.2 Activity by Topological Role and De-
vice Type

In Tables 2a and 2b we show how much of each mod-
ule (collections of devices by their topological role) con-
tributes to activity in terms of commits and LOC, for
the campus and service-provider networks, respectively.
One points of interest is that more than 75% of the
commits are performed within each network’s periph-
ery (campus access and wireless, and service-provider’s
customer sites). However, the LOC per commit is quite
different between campus and service-provider. This
suggests that campus/enterprise access switches require
much less fine-tuning than do site routers in this service-
provider WAN. We also see that, in both networks, out-
of-band management equipment and firewall services
represent a much smaller portion of the work, in terms
of commits.

5.3 Author Activity
Figure 3 presents the activity for every practitioner that
authored revisions in the campus and service-provider
networks. Because the number of practitioners involved
in the campus network is clearly overwhelming, we
present the same campus data in Figure 4 based on the
group in which they are employed. Specifically, “net”

84 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Module Commits LOC Added LOC LOC per Commit
campus/access/ 89833 (70.0%) 1912430 (66.0%) 2883860 (68.2%) 21.29

campus/access/wireless/ 18164 (14.1%) 601836 (20.8%) 657409 (15.5%) 33.13
campus/dist/ 7598 (5.9%) 98921 (3.4%) 143155 (3.4%) 13.02

campus/core/ 6022 (4.7%) 47272 (1.6%) 97295 (2.3%) 7.85
campus/firewall/ 5557 (4.3%) 120147 (4.1%) 319426 (7.6%) 21.62

campus/mgmt/ 1220 (1.0%) 117756 (4.1%) 126903 (3.0%) 96.52
(a)

Module Commits LOC Added LOC LOC per Commit
isp/dist/site/ 31931 (76.4%) 92977 (56.7%) 309604 (55.7%) 2.91
isp/dist/hub/ 5203 (12.5%) 28116 (17.2%) 98581 (17.7%) 5.40

isp/border/ 3373 (8.1%) 18665 (11.4%) 98985 (17.8%) 5.53
isp/firewall/ 445 (1.1%) 12516 (7.6%) 25939 (4.7%) 28.13

isp/mgmt/ 835 (2.0%) 11608 (7.1%) 22434 (4.0%) 13.90
(b)

Table 2: Commits by topological role of the device for campus (a) and service-provider (b) networks.

is the network engineers, “contract” represents the con-
tractors, “noc” is the Network Operations Center (NOC)
staff, “field” the field service agents, “authorized-agents”
are employees in various peripheral campus departments
that are authorized to make access layer changes only,
and “security” is an IT security group. From this pie
chart, we see that the operators responsible for most of
the LOC are network engineers proper. Also, the con-
tractors performed a significant amount of similar work.

In Tables 3a and 3b, we show the top ten most active
practitioners based on their number of commits. Note
also that the LOC per commit is approximately an order
of magnitude different between the campus and service-
provider network operators. This suggests that the cam-
pus, with very many switches rather than routers, is in a
higher state of flux and perhaps recently in a deployment
mode. In contrast, the service-provider network experi-
ences relatively small changes in terms of LOC per com-
mit, perhaps suggesting that it is largely stable and in a
maintenance mode.

5.4 Anomalies
Here, we describe a number of curiosities or anomalies
discovered in the networks studied, solely based upon the
results presented thus far.

5.4.1 Activity by Campus “system” Author

In the campus network, and shown in Table 3a, we can
see that one of the “Top 10” most active authors is the
software system itself (by the name system), rather
than a real person/practitioner. This entry is additionally

interesting in that overall it has removed more lines that
it has added and thus is very different from the real prac-
titioners. Further investigation identified two reasons for
this unexpected significant authorship of changes by the
SCM system itself: (1) some of the operators often do not
“follow the rules,” i.e., they do not commit their changes
in a timely fashion and thus the system sometimes has
to commit their changes implicitly just prior to applying
a subsequent automated change (so as not to mix unre-
lated changes together), and (2) a few operators have dis-
covered an unintended feature of their automated change
system; namely, that they can cause their earlier changes
to be committed implicitly to the version repository. This
avoids those changes being reported as unfinished in a
nightly email report to all operators. Both of these causes
demonstrate to how a VCS can produce both efficien-
cies and inefficiencies in the everyday work flow of net-
work operators. This suggests that the process by which
changes are merged into a network configuration version
control system can be improved. It is an open question as
to whether existing merging techniques from SCM sys-
tems will be similarly effective, but there are certainly
both syntactic and semantic differences between the net-
work device configuration files in a production network
and the source files in software development.

5.4.2 Outstanding Service-Provider Author

Considering the question of which operators perform
most commits, we see in Table 3b that both the most
commits and most of the LOC are authored a sin-
gle, seemingly “super human,” outstanding author, here
named “robert.” This suggests that operator involvement

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 85

(a)

(b)

Figure 2: Campus (a) and service-provider (b) LOC by
topological role over time. Most of the LOC are config-
uration of the periphery of each of these networks, i.e.,
the campus access layer and service-provider’s customer
sites.

varies widely amongst networks and amongst individual
practitioners with respect to the tasks of introducing de-
vices (i.e., introducing many LOC of their initial config-
uration) and subsequently managing a network’s device
configurations.

5.4.3 Common Commit Comments

Tables 4a and Tables 4b show the most common com-
ments provided by the operators in the campus and
service-provider networks, respectively. In Table 4a we
see that the second most common comment is “asdf,”
from the home row on a qwerty keyboard, suggesting
it’s a cavalier refusal to supply a meaningful comment.
Further investigation showed that this comment is al-

(a)

(b)

Figure 3: Campus (a) and service-provider (b) LOC per
author. In both networks, five authors are responsible for
approximately 75% of the LOC.

ways supplied by only one of the authorized agents us-
ing a web interface to perform changes. Unlike with the
CLI interface, here the comment is required, and thus the
practitioner is forced to supply something. Our hypothe-
sis is that this practitioner likely sees only himself as the
“audience” of the comments, and deems it unnecessary
to exert effort to carefully explain the changes he com-
mits.

In Table 4b we see that nearly 6% of all log comments
are empty. Like the campus “asdf” comment, these
empty comments are being supplied by only a small sub-
set of the practitioners, again perhaps ones that don’t see,
or have never realized, any value from such comments.
In the service-provider environment, the “?” comment
was occasionally supplied by the outstanding practitioner
that performs most of the commits. Further investiga-
tion suggests that he is stumbling across changes made

86 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Author Commits LOC Added LOC LOC per Commit
ashley 16430 (12.8%) 570408 (19.7%) 952945 (22.5%) 34.72
kevin 9296 (7.2%) 658818 (22.7%) 703006 (16.6%) 70.87

system 8164 (6.4%) -6595 (-0.2%) 49117 (1.2%) -0.81
nathan 5257 (4.1%) 279484 (9.6%) 329512 (7.8%) 53.16

sara 4790 (3.7%) 381178 (13.2%) 410738 (9.7%) 79.58
edith 4755 (3.7%) 122640 (4.2%) 134277 (3.2%) 25.79

brandon 4666 (3.6%) 75641 (2.6%) 91540 (2.2%) 16.21
ruby 4626 (3.6%) 99700 (3.4%) 190530 (4.5%) 21.55

peggy 3958 (3.1%) 345232 (11.9%) 365551 (8.6%) 87.22
emma 3483 (2.7%) 54658 (1.9%) 63449 (1.5%) 15.69

(a) Note that the third most active campus author, “system,” is not a practitioner but records automated commit
activity by the configuration management system itself.

Author Commits LOC Added LOC LOC per Commit
robert 30385 (72.7%) 85596 (52.2%) 396634 (71.4%) 2.82

michael 1489 (3.6%) 9439 (5.8%) 16443 (3.0%) 6.34
brian 1444 (3.5%) 3036 (1.9%) 15698 (2.8%) 2.10

joseph 1431 (3.4%) 6900 (4.2%) 13688 (2.5%) 4.82
linda 1174 (2.8%) 3716 (2.3%) 13091 (2.4%) 3.17

william 1058 (2.5%) 10326 (6.3%) 14566 (2.6%) 9.76
daniel 673 (1.6%) 2332 (1.4%) 7254 (1.3%) 3.47

john 628 (1.5%) 1644 (1.0%) 4952 (0.9%) 2.62
kenneth 511 (1.2%) 1318 (0.8%) 5461 (1.0%) 2.58

david 459 (1.1%) 2638 (1.6%) 6137 (1.1%) 5.75
(b) Note that the most active service-provider author, “robert,” is a single most outstanding operator that per-
formed more than 70% of the commits and was responsible for more than half of the LOC.

Table 3: Commits by author for the (a) campus and (b) service-provider networks. The bold entries are discussed in
Sections 5.4.1 and 5.4.2.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 87

Figure 4: Campus LOC per author group. We note that
the “net” (network engineering staff) group is responsi-
ble for approximately 80% of the LOC, followed dis-
tantly by contractors, field service agents, and authorized
agents.

by others, and is essentially using the “?” to say that
he’s checking in changes performed by someone else,
for which he does not readily have an explanation. He
thus commits that change, and carries on with his tasks
without having to wait for such an explanation.

These anomalous results of system authorship of com-
mits and common log comments both speak to the issue
of operator conformance with the system used in these
networks. In large part, practitioners appear to use the
tools as intended, and with a high degree of compliance.
However a subset of the operators seem to find it cumber-
some and sometimes find workarounds that make their
tasks easier. Such discoveries can effectively guide new
tools and features.

5.5 Revision Lifetimes

In Figure 5, we see a pair of plots demonstrating revision
lifetimes, or the time from a revision’s appearance within
a file to the first subsequent revision which affects any
of the same lines of configuration. Both plots are for the
campus network (the service-provider network does not
change often enough for this plot to be valuable). We are
particularly interested in short-lived changes, here clus-
tered to the bottom of the graph. Note that this version
history is unique in that it always reflects a production
environment.

In Figure 5a, we are surprised to see that such short re-
visions as to occur within a day or two of each other (sug-
gesting a network “bug”) are treated only during business
days, and very infrequently require overnight attention

Comment Frequency
Initial revision 1442 (2.8%)

asdf 584 (1.1%)
test 437 (0.9%)

‘newer bulk checkin’ 411 (0.8%)
change vlan 308 (0.6%)

(a)

Comment Frequency
*** empty log message *** 768 (5.9%)

Initial revision 350 (2.7%)
router swap 117 (0.9%)

config cleanup 107 (0.8%)
? 75 (0.6%)

(b)

Table 4: Top five commit comments for (a) the campus
network and (b) the service-provider network. In each
of these results, garbage comments indicate operator non
conformance and other habits. The bold entries are par-
ticularly unexpected and are discussed in Section 5.4.3.

from network operators even though these revisions are
ostensibly part of the production network.

Figure 5b, essentially the same data on a finer time
scale, tells its own story about change lifetimes from dif-
ferent contributor groups. The net group (squares) repre-
sents super-users on the network, whose access is com-
pletely unrestricted. This group makes relatively few
changes in the ten-minute window shown here. The
other group, authorized agents working at all levels of
the network infrastructure, composes the vast majority
of the plotted points (crosses). These agents make their
changes through a web interface (essentially an IDE for
the network) which automatically checks in the change
as soon as it is applied to the router.

Based on this last observation, we see that we have two
different data sets available to us in the revision history
for the campus network. For network engineers (the net
group), we see a traditional software-like history of com-
mits, where the user commits his changes most often af-
ter he has observed their effect and deemed them a valu-
able contribution. From the commits made by agents,
since they are not privileged to interact with the devices
directly, we actually have a richer version history. Their
history not only includes those changes which survive in
the long term, but also the changes that they make as part
of their efforts from one minute to the next. It is, one
may consider, an extrapolation of revisions to a perfectly
fine granularity of change. Thus, in the recorded history
of this network, we find an artifact which is entirely un-
available from any known software project.

88 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

A
pr

-2
00

3
Ju

n-
20

03
A

ug
-2

00
3

O
ct

-2
00

3
D

ec
-2

00
3

Fe
b-

20
04

A
pr

-2
00

4
Ju

n-
20

04
A

ug
-2

00
4

O
ct

-2
00

4
D

ec
-2

00
4

Fe
b-

20
05

A
pr

-2
00

5
Ju

n-
20

05
A

ug
-2

00
5

O
ct

-2
00

5
D

ec
-2

00
5

Fe
b-

20
06

A
pr

-2
00

6
Ju

n-
20

06
A

ug
-2

00
6

O
ct

-2
00

6
D

ec
-2

00
6

Fe
b-

20
07

A
pr

-2
00

7
Ju

n-
20

07
A

ug
-2

00
7

O
ct

-2
00

7
D

ec
-2

00
7

Ja
n-

20
08

M
ar

-2
00

8
M

ay
-2

00
8

Ju
l-2

00
8

Se
p-

20
08

N
ov

-2
00

80
4h
8h

12h
16h
20h
1d

1d 4h
1d 8h

1.5d
1d 16h
1d 20h

2d
2d 4h
2d 8h

2.5d
2d 16h
2d 20h

3d
3d 4h
3d 8h

3.5d

Ti
m

e
to

 fi
rs

t m
od

ifi
ca

tio
n

(d
ay

s,
ho

ur
s)

net
agents

Campus Network
Revision Lifetimes

(a)

A
pr

-2
00

3
Ju

n-
20

03
A

ug
-2

00
3

O
ct

-2
00

3
D

ec
-2

00
3

Fe
b-

20
04

A
pr

-2
00

4
Ju

n-
20

04
A

ug
-2

00
4

O
ct

-2
00

4
D

ec
-2

00
4

Fe
b-

20
05

A
pr

-2
00

5
Ju

n-
20

05
A

ug
-2

00
5

O
ct

-2
00

5
D

ec
-2

00
5

Fe
b-

20
06

A
pr

-2
00

6
Ju

n-
20

06
A

ug
-2

00
6

O
ct

-2
00

6
D

ec
-2

00
6

Fe
b-

20
07

A
pr

-2
00

7
Ju

n-
20

07
A

ug
-2

00
7

O
ct

-2
00

7
D

ec
-2

00
7

Ja
n-

20
08

M
ar

-2
00

8
M

ay
-2

00
8

Ju
l-2

00
8

Se
p-

20
08

N
ov

-2
00

80

1m

2m

3m

4m

5m

6m

7m

8m

9m

10m

Ti
m

e
to

 fi
rs

t m
od

ifi
ca

tio
n

(m
in

)

net
agents

Campus Network
Revision Lifetimes

(b)

Figure 5: Campus revisions, time to next modification: 3.5 days (a) and 10 minutes (b).

5.6 Activity by Stanza Type

The relatively simple structure of IOS configurations al-
lows some static analyses which consider stanzas, rather
than lines, as the basic units of change from one revision
to the next. Tables 5 describe the results of this analysis.
These results can guide the creation of tools to manage
the network under inspection: In both cases described
here, we confirm that any service built for the configu-
ration of these network devices would be well-advised
to cater specifically to the management of interface
and global stanzas.

5.7 Discussion

We close this section with our observation about LOC
as a metric for networks rather than software. While we
have not yet done analysis of code complexity, early in-
dications suggest that there are a number of reasons that
numbers of lines of configuration (LOC) is a poor candi-
date as a measure of complexity or work. First, the initial
versions of our configuration files (source code) contain
very many “boiler-plate” lines produced by the network
device itself; attributing these lines of code to the oper-
ator that introduced the device to the network dramat-
ically exaggerates the volume of the work done by that
operator. Secondly, the configuration files are rigidly for-
matted by the device rather than the operator (program-
mer), i.e., it is not a free format language. Thus, the
vendor-specific network device configuration language,
itself, dictates the numbers of lines more so than mod-
ern general software programming languages dictate the
number of lines of program source code.

Stanza Type Total Revisions
Revisions

per Instance
interface 471,238 4
vlan 25,591 1
global 12,534 4
logging 12,390 9
ip 12,006 1
bridge 4,353 1

(a) Campus network: the ratio of interface stanza revisions to
global stanza revisions is 19:1.

Stanza Type Total Revisions
Revisions

per Instance
interface 25,288 4
global 11,737 26
ip 8,207 4
line 6,146 14
router 3,974 4
policy-map 2,783 4

(b) Service provider network: the ratio of interface stanza revisions
to global stanza revisions is roughly 2:1.

Table 5: Number of revisions made per each IOS stanza
type, for the campus (a) and service provider (b) net-
works. The global meta-stanza included all unindented
lines at the top of a file, preceding the appearance of any
others in this list.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 89

6 Validation

This being an initial study of it’s kind, to the best of
our knowledge, we were left to interview domain experts
in network operations to validate our approach. For the
campus network, we interviewed the manager to whom
most of the super-user operators have reported. For the
service-provider network, we interviewed the director.

6.1 Campus Expert Feedback
Here are highlights of the feedback offered by our cam-
pus network expert:

• The top authors by LOC agrees with manage-
ments knowledge of their respective performance,
i.e., these are outstanding practitioners in that they
indeed have the most responsibility for network
equipment deployment.

• The data points, e.g., commit volume and common
comments, would be useful to demonstrate to cus-
tomer departments that we know how authorized
agents use the tools provided.

• The visualizations are useful to show the evolution
of the network’s architecture over time, e.g., the
wireless access deployment and the use of contract
labor to do so.

• The author-specific visualizations, such as activity
by days of week and times of day would be an inter-
esting addition to existing tools, such as the network
IDE provided to the practitioners themselves.

6.2 Service-Provider Expert Feedback
Here are highlights of the feedback offered by our expert
on the service-provider network:

• The file count evolution over time clearly shows in-
flections due to two significant events: (i) a $200M
influx of funding resulting in membership growth
by more than 100 sites and (ii) the merging of the
service-provider network with a similarly scoped
network, resulting in many devices being replaced
(to switch from T1 circuits to 10Mbps ethernet).

• One practitioner, a temporary employee, was re-
sponsible for an unexpectedly large number pro-
portion of the code. However, this coincides with
the person’s role, which was to deploy replacement
equipment. (Consequently, they were responsible
for much of the initial device configuration, thus a
large number of lines of configuration.)

• The similarity between network operations [when
viewed this way] and software development is strik-
ing.

• Common commit comments suggest the need for a
new standard operating procedure that would en-
courage practitioner’s to supply meaningful com-
ments; this would also aid analysis.

• Such linear trends over time were not expected.
There are some events that had significant costs
(such as router replacements by alternate brands)
that do show prominently in the time series graphs.
(This is akin to, perhaps, changing programming
languages in a portion of a software system.)

While clearly a subjective assessment, the feedback
from both experts showed the utility of our results, and
consequently the value of the analogy-based application
of these analyses.

7 Related Work

We are aware of one study in the literature, the recent
work of Sung, et al. [15], that longitudinally examined
network configuration repositories of network devices
such as routers and switches. Similarly, our work also ex-
amines and reports on the configuration changes in mul-
tiple real-world networks over time, examines stanzas by
type, and evaluates results by expert interview. However,
our work differs in that we apply software development
analysis techniques to expose practitioner behaviors and
network evolution over time, whereas they apply differ-
ent data mining techniques to identify correlated config-
uration changes. More generally, our work is informed
by related work in three areas: programming languages,
network management, and systems administration.

The Revision Control System (RCS [17]) is the ver-
sion control sub-system with which the versions of con-
figurations we consider are stored. In [4], Ball, et al.,
demonstrate some of the uses of the information stored in
such VCSs for software source code. Our work applies
analysis and visualization techniques to expose charac-
teristics of network management in a similar fashion to
that early examination of software development via VCS.
In [7], Draheim and Pekack introduced a freely-available
tool, Bloof [8]. Tools such as Bloof and cvsanaly2 [2],
introduced in work [14] by Robles, et al., could poten-
tially be used similarly to the one we used (StatCvs-
XML).

In this work, we study repositories of network config-
urations maintained by the Network Configuration Man-
agement System (NetCMS [11]) and AANTS [16]. An
alternative technique often used by network operators is
to retrieve device configurations using RANCID [13, 10]

90 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

and subsequently store them using tools such as CVS. A
very recent work [5] by Benson, et al., introduces a code
complexity metric for network devices configurations.
Their metric uses attributes including Lines of Code and
inter-stanza references (within and amongst configura-
tion files) to arrive at a numeric measure of complexity;
they subsequently validate their proposed metric by op-
erator interview. In this work, instead, we develop a way
to measure programmer effort by revision lifetimes, but
have not yet used it to evaluate a complexity metric.

There is a large literature concerning the profession
of system administrator and improvement to the pro-
cesses involved in system configuration. System admin-
istrators sometimes similarly use VCSs for their config-
urations [12] and researchers seek to improve configu-
ration management. For instance, Sun and Couch de-
velop a state-machine model of configuration manage-
ment in [6].

8 Future Work

While we have completed an analysis of two ostensibly
different, large networks, the process and results suggest
some directions for future work.

In our consideration of revision lifetimes, we have not
considered the author of the subsequent revision. It may
be useful to classify or characterize practitioners based
upon the lifetimes of the revisions they make. Also, one
might consider whether or not practitioners do a revi-
sion that modifies the configuration that they introduced
in a earlier revision, or whether or not practitioners just
as easily (and often) maintain each others configuration
fragments.

In this work, we did not much consider how the declar-
ative configuration can be influenced by the revising
practitioners intent or style. This because the layout of
the configuration is nearly completely dictated by the
device operating system. However, there are a subset
of stanza types that allow for more variety in the ex-
pression of their purpose. For instance, access control
lists (ACLs) contain statements that can be ordered by
the operator, and multiple orderings and arrangements
can have the same effect; some orderings are likely more
concise or understandable than others. Therefore, it may
be fruitful to consider whether or not some revisions are
simply refactorings, like in software development. Fur-
ther, the identification of cloned configuration fragments
amongst devices, as in code clone analysis of software,
could identify oft used configuration idioms.

Lastly, the goal of measuring effort in terms of revi-
sions lifetimes was to provide a measurement of com-
plexity. For instance, one might wonder which stanza
types are more complex as evidenced by their modifica-
tion (presumable fixes) in rapid succession. We did not

implement nor even propose a complexity metric in this
work, but future work could explore this topic, and de-
termine whether or not certain refactorings are more or
less complex.

Conclusion

In this paper we presented two techniques: (i) an ini-
tial application of software development analysis tools
to network operations and (ii) the beginnings of net-
work operations-specific approach to measuring practi-
tioner effort to guide new tool development. We applied
these techniques in case studies of the network configu-
ration repositories of both a large campus network and
a service-provider network. By analysis and visualiza-
tion, we compared and contrasted the two networks, in-
vestigating the value of metrics (e.g., LOC) and expos-
ing practitioner behaviors when using SCM and IDE-like
tools. Lastly, we evaluated the analogy-based applica-
tion of software development mining tools to the disci-
pline of network operations by performing expert inter-
views. This expert feedback suggests the promise of our
approach as both a technique to visualize the operation
of real networks and as an aid to management and other
stakeholders in understanding where operational effort is
concentrated in large computer networks.

In closing, we have provided evidence that existing
software development analysis techniques are of signif-
icant value when applied in the network operations do-
main. These methods expose practitioner behavior and
essentially show that network operators are program-
mers, at least in their use of similar tools. By analogy
to software development, this suggests that the study of
network operations can effectively inform and direct net-
work management tool development. Our hope is that
the resulting improved tools will liberate the network op-
erator from mundane tasks, will reduce mistakes in con-
figuration, and will enable skilled operators to focus their
efforts more completely on the goal of continually in-
creasing network reliability.

References
[1] cvs2cl. http://www.red-bean.com/cvs2cl/.

[2] cvsanaly2. http://forge.morfeo-project.org/
projects/libresoft-tools/.

[3] StatCvs-XML. http://statcvs-xml.berlios.de/.

[4] BALL, T., MIN KIM, J., PORTER, A. A., AND SIY, H. P. If Your
Version Control System Could Talk. In In ICSE ’97 Workshop on
Process Modelling and Empirical Studies of Software Engineer-
ing (1997).

[5] BENSON, T., AKELLA, A., AND MALTZ, D. Unraveling the
Complexity of Network Management. In NSDI ’09: Proceedings
of the 6th USENIX Symposium on Networked Systems Design and
Implementation (2009).

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 91

[6] COUCH, A., AND SUN, Y. On Observed Reproducibility in
Network Configuration Management. Science of Computer Pro-
gramming 53, 2 (November 2004), 215–253.

[7] DRAHEIM, D., AND PEKACKI, L. Process-Centric Analytical
Processing of Version Control Data. In IWPSE ’03: Proceedings
of the 6th International Workshop on Principles of Software Evo-
lution (Washington, DC, USA, 2003), IEEE Computer Society,
p. 131.

[8] DRAHEIM, D., AND PEKACKI, L. The Bloof Project. http:
//bloof.sourceforge.net, 2003.

[9] GERMAN, D., AND MOCKUS, A. Automating the Measurement
of Open Source Projects. In Proceedings of the 3rd Workshop on
Open Source Software Engineering (2003), pp. 63–67.

[10] GOULD, W. Backing up your network with RANCID. http:
//www.linux.com/feature/55873, 2006.

[11] PLONKA, D. NetCMS - Network device Configuration Manage-
ment System. http://net.doit.wisc.edu/∼plonka/
NetCMS/, 1997.

[12] PLONKA, D. Sys Admin File Revision Control with RCS. SysAd-
min - the Journal for UNIX Systems Administrators (1998), 8–24.

[13] RANCID - Really Awesome New Cisco Config Differ. http:
//www.shrubbery.net/rancid/.

[14] ROBLES, G., KOCH, S., AND GONZALEZ-BARAHONA, J. Re-
mote Analysis and Measurement of Libre Software Systems by
Means of the CVSAnalY Tool. In Proceedings of the 2nd ICSE
Workshop on Remote Analysis and Measurement of Software Sys-
tems (RAMSS), Edinburg, Scotland, UK (2004), pp. 51–55.

[15] SUNG, Y., RAO, S., SEN, S., AND LEGGETT, S. Extracting
Network-Wide Correlated Changes from Longitudinal Configu-
ration Data. In Proceedings of the 10th Passive and Active Mea-
surement Conference (PAM) (2009), Springer, pp. 58–67.

[16] THOMAS, C., AND PLONKA, D. AANTS: Web-Based Tools for
Cooperative Campus Network Administration. In Proceedings of
the Fall 2005 Internet2 Member Meeting, Philadelphia, PA, USA
(2005).

[17] TICHY, W. F. Design, implementation, and evaluation of a Re-
vision Control System. In ICSE ’82: Proceedings of the 6th In-
ternational Conference on Software Engineering (Los Alamitos,
CA, USA, 1982), IEEE Computer Society Press, pp. 58–67.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 93

Secure Passwords Through Enhanced Hashing

Benjamin Strahs Chuan Yue Haining Wang

Department of Computer Science

The College of William and Mary

Williamsburg, VA 23187, USA

{bgstra,cyue,hnw}@cs.wm.edu

Abstract

Passwords play a critical role in online authentication.

Unfortunately, passwords suffer from two seemingly in-

tractable problems: password cracking and password

theft. In this paper, we propose PasswordAgent, a new

password hashing mechanism that utilizes both a salt

repository and a browser plug-in to secure web logins

with strong passwords. Password hashing is a technique

that allows users to remember simple low-entropy pass-

words and have them hashed to create high-entropy se-

cure passwords. PasswordAgent generates strong pass-

words by enhancing the hash function with a large ran-

dom salt. With the support of a salt repository, it

gains a much stronger security guarantee than existing

mechanisms. PasswordAgent is less vulnerable to of-

fline attacks, and it provides stronger protection against

password theft. Moreover, PasswordAgent offers some

usability advantages over existing hash-based mecha-

nisms, while maintaining users’ familiar password entry

paradigm. We build a prototype of PasswordAgent and

conduct usability experiments.

1 Introduction

Passwords remain the most common security method to

authenticate or verify a user’s online identity [25]. They

provide a powerful guard against unauthorized access to

systems and data, and are ubiquitously used in various

online activities such as shopping, banking, communi-

cation, and learning. User authentication via password

relies on the something you know authentication factor,

i.e., you know some secret that no one else does. Al-

though two other authentication factors something you

have (e.g., hardware token) and something you are (e.g.,

fingerprint) have also been recognized and used in prac-

tice, they have not gained a wide acceptance on the Inter-

net, primarily because of their high cost, limited flexibil-

ity, and restricted portability. On the contrary, passwords

are simple, inexpensive, easy to implement, and conve-

nient to use. Consequently, they occupy the dominant

position in online user authentication, and this situation

will not change in the foreseeable future.

Despite their prevalence and importance in online au-

thentication, passwords do have two well-known and

long-standing problems: weak passwords are easy to

crack, and passwords are vulnerable to theft. Password

security depends on creating strong passwords and pro-

tecting them from being stolen. A strong password

should be sufficiently long, random, and hard to dis-

cover by crackers. In contrast, a weak password is usu-

ally short, common, and easy to guess. Examples of

strong passwords include “t3wahSetyeT4” and “Tpftc-

its4Utg!”; and examples of weak passwords include “su-

san123” and “password” [6]. Weak passwords suffer

from vulnerability to brute-force and dictionary attacks

[29]. The dilemma in a password system is that a user

will often choose guessable passwords simply because

they are easy to remember [11, 19, 29]. Moreover, no

matter how strong they are, passwords are also vulner-

able to theft. One of the most significant threats to on-

line users is phishing attack [18, 39], which uses social

engineering techniques to steal users’ personal identity

data on spoofed websites [1]. In recent years, this type

of identity theft has risen sharply and has cost billion-

dollar losses [2]. Other attacks like shoulder surfing [33]

can also steal user passwords, especially in public places

such as cybercafes, airports, and libraries.

As more online services are password-protected, users

have to create and memorize an increasing number of

passwords. This, combined with the inherent limitation

of human memory, forces users to revert back to insecure

habits such as choosing simpler passwords, reusing pass-

words across different websites, or even writing down

their passwords [37]. A recent large-scale study of web

password usage shows that on average, a user has ap-

proximately 6.5 passwords shared across 25 different

94 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

websites, and the majority of users choose weak pass-

words that contain only lower case letters [22].

To address these problems and enhance online pass-

word security, a number of techniques have been pro-

posed. For example, password managers generate

strong passwords and automatically store them in a lo-

cal database [8, 5]. Single sign-on systems allow users

to log into many websites using one account, which re-

duces the number of passwords a user must remember

[9]. Graphical passwords enable users to click on im-

ages to authenticate themselves [26, 17]. However, these

solutions all have their own limitations. Password man-

agers store passwords on a fixed computer and thus lack

mobility; single sign-on systems place too much trust on

a centralized system and thus are vulnerable to single-

point failure [27]; and graphical passwords, although

proposed as an alternative to traditional text-based pass-

words, are still hampered by security and usability con-

cerns [16, 34].

A promising approach to obtaining secure online pass-

words is password hashing, in which hashed passwords

are sent to remote websites instead of plain-text pass-

words. Password hashing is very attractive for a few rea-

sons: it is lightweight and convenient to use, increases

password strength, and can defend against phishing at-

tacks. This approach has been taken in projects such as

the Lucent Personal Web Assistant (LPWA) [23], Pwd-

Hash [31], Password Multiplier [24], and Passpet [38].

However, these systems still have security limitations

which will be discussed in Section 2. Moreover, pass-

word hashing systems, if not carefully designed and im-

plemented, suffer from usability problems that may di-

rectly lead to security exposures [14].

In this paper, we present PasswordAgent, an automatic

password management system with enhanced hashing,

which consists of a Salt Repository server and a browser

plug-in Agent for securing online passwords. The Salt

Repository stores a list of salts for each registered user

while the Agent provides the user interface, salt retrieval,

and hashing functionality. When a plain-text password

needs to be protected for a specific website, the user sim-

ply activates the Agent and enters the plain-text pass-

word. The Agent automatically concatenates the plain-

text password and the website specific salt to determinis-

tically generate the site password via a hash function.

The contribution of PasswordAgent to online pass-

word management lies in the following aspects. First,

it automatically provides a stronger security guarantee

by using randomly generated and securely stored salts.

Second, it improves phishing protection by giving users

accurate warnings if they attempt to enter protected ac-

count information on an unprotected website. More-

over, even if phishers obtain the plain-text passwords

by using subtle techniques such as JavaScript attacks or

“spoofed password field in Flash” [31], they still can-

not access users’ accounts because they do not have the

salts. Third, as long as the password to the Salt Repos-

itory server is not observed by an attacker, PasswordA-

gent also reduces the risks of shoulder surfing attacks.

Finally, a few usability suggestions made in [14] are in-

corporated into PasswordAgent, providing some usabil-

ity advantages over existing solutions.

The remainder of this paper is structured as follows.

We describe existing password hashing solutions in Sec-

tion 2. We present the design of PasswordAgent in Sec-

tion 3 and analyze its security and usability in Section 4.

We detail the implementation and usability evaluation of

PasswordAgent in Section 5. We discuss the limitations

of PasswordAgent in Section 6, and finally we conclude

in Section 7.

2 Related Work

In this section, we highlight the contributions of the Lu-

cent Personal Web Assistant (LPWA) [23] and three re-

cent systems: PwdHash [31], Password Multiplier [24],

and Passpet [38]. These existing systems exemplify the

concept and value of password hashing in online user au-

thentication, and they are most related to our proposed

PasswordAgent.

LPWA is an HTTP proxy providing data anonymity

services to users. To a user, LPWA generates secure, con-

sistent, and pseudonymous usernames, passwords, and

email aliases for different websites based on three inputs:

a UserID, a universal password to the proxy, and a desti-

nation website address. Using LPWA, users can protect

their real identities and weed out junk email based on

the recipient email address. LPWA was successful be-

fore, but now it has serious limitations. LPWA does not

support HTTPS, but the identities that need to be pro-

tected the most are those that are transmitted via HTTPS.

LPWA also requires users to fully trust the proxy server,

which knows all the login credentials to the destination

servers, resulting in security and privacy concerns.

PwdHash is a browser extension that transparently cre-

ates a different password for each site, improving web

password security and defending against phishing at-

tacks. PwdHash addresses a few challenges of imple-

menting password hashing as a secure and transparent

extension to web browsers. In particular, PwdHash uses

the destination domain name as a salt and sends a hashed

password to the remote site. However, PwdHash, as ac-

knowledged by the authors, is vulnerable to two major

kinds of attacks. One is a dictionary attack on the hashed

passwords. This vulnerability is due to three factors:

a phishing site can obtain hashed passwords, PwdHash

uses MD5 [30], a very fast hashing algorithm, and the

salt is publicly known. The second vulnerability of Pwd-

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 95

Hash is its susceptibility to advanced phishing attacks,

such as using Flash objects or focus stealing. Flash ob-

jects and focus stealing are a form of phishing that allows

keyboard strokes to be intercepted before other browser

plugins have a chance to handle them.

As a browser extension, Password Multiplier can gen-

erate strengthened passwords for an arbitrary number of

accounts while requiring the user to memorize only a

single short password. It uses the same three inputs as

LPWA: a UserID, a master password, and a destination

domain name. The key contribution of Password Multi-

plier is using a strengthened hash function to determin-

istically generate high-entropy passwords. However, the

main problem with Password Multiplier is that all the de-

rived passwords will be known to attackers if the master

password is stolen. At present, it is possible for an at-

tacker to steal a master password through a keylogger

or other spyware. Moreover, changing a password for

a specific site is complicated because Password Multi-

plier requires users to remember additional information.

Changing the master password also becomes tedious be-

cause the password on every site needs to be updated.

Built upon Password Multiplier and Petname Tool [7],

Passpet turns a single master password into distinct pass-

words for different websites and uses petnames to help

users recognize phishing attempts. In order to gener-

ate correct passwords, Passpet relies on a remote server

to store site label files. However, Passpet has the same

drawback as Password Multiplier in terms of master

password vulnerability. Changing the master password

is still tedious because a user needs to migrate passwords

for every site. In addition, its remote storage server

is vulnerable to various malicious attacks, which is ac-

knowledged by the authors. We compare PasswordAgent

with these existing systems and detail the advantages of

PasswordAgent in Section 4.

3 Design of PasswordAgent

3.1 Overview

PasswordAgent consists of two major components: the

Salt Repository and the Agent. The Repository stores

salt lists enabling PasswordAgent to function transpar-

ently across either enterprise networks or the Internet.

The Agent is used to retrieve the salts from the Reposi-

tory, provide visual security indicators, and generate site

specific passwords. In our design, each enterprise net-

work maintains a Salt Repository providing salt storage

services for its users. To achieve high reliability and scal-

ability, it is possible that multiple servers function as the

Salt Repository within one enterprise network. Usually,

each user has a primary Salt Repository, but it is possible

that one user has salt lists stored in multiple repositories.

Figure 1: The architecture of PasswordAgent.

In contrast, the Agent is associated with each individual

web browser as a browser extension. The basic architec-

ture of the PasswordAgent is shown in Figure 1. Before

continuing, it is important to have a grasp of the five dif-

ferent types of passwords discussed in this paper. Table 1

describes these passwords in detail.

Term Description Example

Plain-text Password The user’s password. “secret”

Protected Password The plain-text password but with

additional data (either the activa-

tion hotkey or activation prefix)

added to notify PasswordAgent

that a site password needs to be

generated.

“@@secret”

OR

[F2]“secret”

Site Password The unique password generated

for a site based on the site salt and

plain-text password.

“2T7fYe10”

Agent Password A password chosen by the user

to protect their salts. It is only

entered at the beginning of the

browser session.

“likk@#0”

Repository Password A password automatically gen-

erated from the Agent Password

and used to authenticate to the

Salt Repository.

“LT8@!dbn9”

Table 1: Password terminology.

To facilitate the deployment of the Salt Repository in-

side an enterprise network, the Repository can be inte-

grated with any accessible web service that implements

the Repository Interface. The web server can be pub-

licly accessed via the Internet so that users can retrieve

their salt lists from any location. The interface is a sim-

ple XML protocol that allows a user to register an ac-

count, save a domain and its associated salt, and retrieve

a list of domains and salts. All the information in the

salt list is encrypted before being stored. This not only

guards against a compromised Repository, but also alle-

viates privacy concerns by making the domains inacces-

sible to anyone but the user. An overview of the data

stored by the Salt Repository is illustrated in Figure 2.

96 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 2: Data stored by the Salt Repository.

The Agent directly integrates into a web browser, al-

lowing a user to generate passwords. The Agent is a vari-

ation of PwdHash for Firefox, but creating plug-ins for

other major browsers should be a relatively simple task.

A PasswordAgent session begins like a normal brows-

ing session with the user launching a web browser. The

user must then log into the Agent with a username and

Agent password. The Agent then transparently deter-

mines which Repository to use, and loads the user’s salt

list from it. The user continues to browse the web until a

login form is encountered. Once the user enters a pass-

word field, the Agent indicates whether the current site

is registered or not. If the user activates PasswordAgent,

a unique site password will be generated by hashing the

site’s salt and the entered plain-text password. The login

form is submitted with the site password, and the user

logs into the site.

3.2 User Flow

Before using the PasswordAgent service, the user must

register with a Repository and install the Agent. Reg-

istration consists of selecting a username and Agent

password. Because the Agent is Repository agnostic,

the username must provide enough information to de-

termine which Repository to use. In consideration of

this, all PasswordAgent usernames take the form of

username@domain where domain is the domain

name that the Repository belongs to. For example, a user

who has the username jsmith and utilizes the institu-

tion of XYZ’s PasswordAgent service would use the lo-

gin jsmith@xyz.edu. The Agent can then locate the

Repository at passwordagent.xyz.edu. This approach re-

quires minimal memorization for a user, and allows for

easy deployment and configuration of the Repository.

The Agent encrypts all the information that it stores in

the Repository, so there is a requirement for both an en-

cryption key and a password to authenticate to the Repos-

Figure 3: Basic user flow.

itory. To avoid having the user memorize two secrets,

the Agent password is used as the encryption key and

the Repository password is generated by hashing the full

username (including the domain) and the Agent pass-

word together:

PasswordRepository = SHA256(PasswordAgent||Username) (1)

EncryptedSalt = AESPasswordAgent
(PlaintextSalt) (2)

Since the Repository never knows the Agent password

of a user, it cannot decrypt the stored information. In

order to guarantee the integrity of the salt list, the Agent

also stores a Message Authentication Code (MAC) [12,

13] calculated as:

MAC = HMAC − SHA256P asswordAgent
(Domain1||Salt1

||Domain2||Salt2||...||Domainn||Saltn) (3)

Registration can be accomplished either with auto-

matic enrollment by a network administrator or via a web

form provided by the Repository. Once registered for an

account, a user would then need to install the browser

plug-in. After installation, the user is ready to log in and

begin a browsing session. An overview of a PasswordA-

gent session is given in Figure 3.

3.2.1 Login

When a web browser (e.g., Firefox) is first launched, the

Agent lacks a salt list and is unable to protect any pass-

words. The user must authenticate to the Repository via

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 97

Figure 4: Toolbar displaying the status of PasswordA-

gent.

a login dialog. A toolbar button displayed by the Agent

allows the user to enter the login dialog as shown in Fig-

ure 4.

Once the user enters a username and Agent pass-

word, the Agent determines the location of the Reposi-

tory based on the domain portion of the username, gen-

erates the Repository password, and retrieves the salt list

from the Repository. If successful, the salt list is de-

crypted using the user’s Agent password and the MAC

is verified. Should the MAC determine that the salt list

has been tampered with, the user is warned via a dialog

and the Agent remains logged out. Otherwise, the Agent

updates the toolbar to reflect the new logged in status and

retains the salt list in memory until the user logs out or

exits the browser. To guard against fraudulent Reposito-

ries, all communication is performed over HTTPS. Be-

cause the Repository has to identify itself via an SSL

certificate, the Agent is protected from being tricked into

divulging the Repository password.

3.2.2 Browsing

If the user enters a password field during the process of

web browsing, the Agent toolbar changes to inform the

user whether or not the current site is registered. A site

is considered registered if it has a salt associated with it,

as shown in Figure 5(a), and unregistered if it does not,

as shown in Figure 5(b). This allows the user to decide

whether or not to enter a protected password.

3.2.3 Password Protection

The password input mechanism of the Agent is similar

to that of PwdHash. In order to notify the Agent that

a site password should be generated, the user enters a

protected password. A protected password is created by

either prefixing the plain-text password with @@ or by

pressing a hotkey (F2). For example, a user who wishes

to protect the plain-text password “secret” would type

the protected password “@@secret” which would cause

PasswordAgent to generate a site password. When a pro-

tected password is entered, PasswordAgent captures all

keystrokes before they appear on the page, so JavaScript

keyloggers cannot steal the plain-text password. Once

the user leaves the password field, the protected pass-

word is analyzed to reveal the plain-text password (by

removing the @@ prefix) and hashed together with the

site’s salt to create the site password. The site specific

password is generated using the SHA256 hash function

[3]:

PasswordSite = SHA256(PasswordP laint−text||SaltSite) (4)

The main reason for using either the @@ prefix or the

F2 hotkey is to let a user explicitly inform the hashing

mechanism where to intercept the plain-text password.

This guarantees that the data in other input fields will

not be incorrectly hashed. The prefix @@ is chosen,

because it is extremely unlikely that it will appear in a

normal context. This enables PasswordAgent to scan the

keystream and interpret @@ as an indicator to activate

password protection. F2 is selected as a hotkey since it

is currently not mapped to any functionality in Firefox

[31].

3.2.4 Site Registration

To create a site password for a website, the site must first

be registered in order to have a salt associated with it. If

a user attempts to generate a site password via the pre-

fix or hotkey mechanism on a site that has not yet been

registered, an instructional dialog will appear. The dia-

log walks the user through registering the site with Pass-

wordAgent. The dialog first confirms that the user wants

to register the site with PasswordAgent, and hasn’t acci-

dentally triggered password protection. The user is then

given a list of already registered sites as shown in Fig-

ure 6. The user is asked if the target site appears in this

list. If it does, then the target site is actually a phishing

attempt because it appears to be a registered site but in

reality is from a different domain. The user is warned

and prompted to navigate away. If the target site is not

listed, the user is asked if he or she has an account with

the target site or is creating a new account. Different in-

structions are displayed based on the user’s response:

If the user has an existing account with the target site,

that account must be migrated to use PasswordAgent.

Migration is achieved by: (1) logging in with the plain-

text password, (2) navigating to the change password

page, and (3) entering the new protected password. A

salt will then be generated, encrypted, and sent to the

Salt Repository along with the updated MAC.

If the user is creating a new account on the unregis-

tered site, then the user simply has to enter a protected

password on the site registration form. The salt is gen-

erated, the new MAC for the salt list is calculated, and

98 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

(a) (b)

Figure 5: User focused password fields: (a) on a protected site, (b) on an unprotected site.

both are sent to the Repository for storage. The new salt

is then used to generate the site password.

3.2.5 Multiple Accounts on One Site

A user can have multiple accounts on a single site, for

example, someone may have two Gmail accounts. Pass-

wordAgent is compatible with this scenario, as it can

use the site’s salt to hash both passwords. In this case,

password uniqueness cannot be guaranteed because if

the user selects the same password for both accounts, the

protected password will also be the same. This is a mi-

nor issue, given that it is a relatively rare scenario. This

issue also exists in PwdHash and Password Multiplier.

Password protection is provided in that a compromised

password on the site with multiple accounts will only ef-

fect that particular site - all other sites are guaranteed to

have unique passwords.

3.2.6 Changing Site Password

The site password can be changed by one of two mech-

anisms. The first is to change the plain-text password as

one would do with a normal password (i.e., “@@pass-

word” to “@@newpassword”). The Salt Repository does

not need to be notified in this case, since the salt remains

unchanged. The new password is protected in the same

manner as the old password. This has the advantage of

not requiring the user to learn any new paradigms about

changing passwords. The second is to keep the plain-text

password intact but to change the site salt.

3.2.7 Password Format

Every site has different requirements for passwords.

Some sites require at least one non-alphanumeric char-

acter, while others prohibit them entirely. To allow for

these different formats, the user’s plain-text password is

examined for clues as to the makeup of a valid site pass-

word. If the user does not include a non-alphanumeric

character in the plain-text password, the site password

would not contain one and the site would notify the

Figure 6: Information dialog that assists users in recog-

nizing phishing sites.

user of the incorrect composition of the password. Any

changes in the plain-text password will be reflected in the

site password, enabling PasswordAgent to generate valid

passwords for all sites without any specific prior knowl-

edge. Such a design was first presented in [31]. While

this technique does leak information about the plain-text

password, it is of little concern because no information

about the salt is revealed. This technique avoids the need

to constantly update a list of composition rules for com-

mon sites on the Internet. This also addresses an impor-

tant usability issue of users being dissatisfied with site

passwords. Users become concerned when sites, like

Hotmail, offer a password strength meter and the site

passwords are rated as medium instead of strong [14]. By

inspecting plain-text passwords for clues, the indicated

strength of a password is directly related to the strength

of the plain-text password. It should be noted that the

actual strength of the site password is greater, even if the

password meter indicates they are the same. A user pro-

vided character string has less entropy than a salted and

hashed version of that string.

3.2.8 Roaming

Roaming can be achieved in one of two ways. A roam-

ing user can either install the Agent as outlined before,

or site passwords can be generated via a web interface

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 99

provided by the Repository. The web interface allows

the user to log in and generate passwords for a specific

site, which can be copied and pasted into the login form.

This enables users without the ability to install the Agent

to still access their accounts. PwdHash implements a

similar web based mechanism for roaming users, how-

ever it is located at a URL that is complex and difficult

to memorize [14]. Because the Repository is located at

passwordagent.domain, it is simple to provide the web

interface at that address. Doing this reduces the mem-

ory burden as users already know the domain of their

Repository as part of their logins, all they have to do is

remember to prepend passwordagent to it.

4 Security and Usability Analysis

4.1 Security Analysis

The primary goal of PasswordAgent, like other password

hashing schemes, is to improve user security. Here we

compare the security of PasswordAgent with those of

LPWA, PwdHash, Password Multiplier, and Passpet

in ten different aspects. The comparison results are

summarized in Table 2. A detailed discussion is as

follows, outlining the major security concerns with the

existing password hashing mechanisms.

Unique Passwords: Each password hashing solu-

tion generates a unique password for each site, even if

the plain-text password is the same.

Offline Attacks: PasswordAgent is less vulnerable

to offline attacks. Because the salt list is not stored

locally, launching an offline attack to retrieve the salt list

is difficult. Moreover, the Salt Repository can defend

against online attacks by limiting the number of login

attempts allowed per minute. Password Multiplier and

Passpet are also resistant to offline attacks as long as the

local machine remains uncompromised. However, if an

attacker breaches the computer and retrieves the cached

master password, a relatively inexpensive offline attack

can be launched to expose every site password. With

PasswordAgent, even if the Agent password is stolen,

only the salt list is revealed. The attacker would still

need to launch an online attack against the target site to

determine the site password.

Compromised Plain-text Password: In the sce-

nario where the plain-text password is compromised,

only PasswordAgent still provides user protection.

An attacker would be unable to use the compromised

password, because the random site salt is not known.

PwdHash does not have this advantage, as the salt is

the site’s domain name, allowing an attacker to utilize

the compromised password to access the site. Even

worse, Password Multiplier and Passpet both use one

plain-text password as a master password to generate all

of the site passwords. Should the master password be

compromised, every password protected by Password

Multiplier and Passpet will also be compromised.

Compromised Site Password: All password hash-

ing schemes claim to protect users when a site password

is compromised. However, because PwdHash uses

MD5 and a known salt, the domain name, it is possible

to launch a brute force attack on the compromised

password. A phisher impersonating a single site could

launch a time-space trade-off attack and feasibly retrieve

the plain-text password. In contrast, PasswordAgent

defends against offline attacks with a large random salt.

Assuming that it takes 1ms to calculate a hash with a

256-bit salt, it would take roughly 1066 years on average

to find the plain-text password. Furthermore, even if

attackers are able to recover the plain-text password,

they still have to launch an online brute force attack in

order to discover the salt for any other site that uses the

same plain-text password.

Basic Phishing Protection: The nature of hash-based

password generation allows all schemes to provide

a basic level of phishing protection. Because each

site password is unique, using any of these password

generation tools on a phishing site will not immediately

expose the login of the target site. As previously noted

though, the site password can be used in offline attacks

to reveal the plain-text password. LPWA, PwdHash,

Password Multiplier, and Passpet all suffer from this

problem. However, PasswordAgent offers the additional

security with random salts, so even a stolen plain-text

password will not give an attacker access to a login.

Advanced Phishing Protection: PasswordAgent

provides early warning against phishing sites. If a

user attempts to enter a protected password on an

unregistered site, an information dialog notifies the user.

This dialog, as shown in Figure 6, warns the user that

the current site is not registered and displays a list of

registered sites. This allows users to check if they are

on a phishing site. Displaying security information in

the browser chrome, PasswordAgent prevents its user

interface from being spoofed by web pages. Because

web pages do not have access to the browser chrome,

it is difficult to place a fake login button or security

indicator.

Shoulder Surfing Protection: PasswordAgent makes

shoulder surfing—watching a user type in a password—

much more difficult to succeed, because it requires the

100 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

LPWA PwdHash Password Multiplier Passpet PasswordAgent

Security

1 Unique Password for Each Site yes yes yes yes yes

2 Resist Offline Attacks - - no no yes

3 Protect Compromised Plain-text Password no no no no yes

4 Protect Compromised Site Password yes yes yes yes yes

5 Basic Phishing Protection yes yes yes yes yes

6 Advanced Phishing Protection no no no yes yes

7 Enhance Shoulder Surfing Protection no no no no yes

8 Secured Remote Storage - - - no yes

9 Adaptation to Faster Computers no no yes yes yes

10 Provide Data Anonymity yes no no no no

Usability

1 Allow Easy Site Password Update yes yes no yes yes

2 Notify if Site is Protected no no no yes yes

3 Support all Site Specific Password Requirements no yes no no yes

4 Minimal Change to Browsing Paradigm yes yes no no yes

5 Requires 3rd Party Server no no no yes yes

Table 2: Comparison of PasswordAgent with four other tools.

observation of two separate events, the typing of the

Agent password and the typing of the site password.

Since the Agent password is entered only when the user

begins a session, an attacker is forced to hover around

the victim for longer periods of time, increasing the

chance of detection. Other schemes, however, only

require one password, making the attacker easier to

succeed.

Secured Remote Storage: The Salt Repository of

PasswordAgent is cryptographically secure, and does

not leak any useful information to attackers. By contrast,

Passpet leaks not only whether a username exists

(through the list command) but also how large k1 is

[38], where k1 is the number of iterations of a hash

function used for generating the site password. The

smaller the k1, the weaker the password. Armed with

this knowledge, an attacker can target a user with a

small k1 value and launch a brute force attack on the

weakest master password. Both PasswordAgent and

Passpet store only encrypted data and guarantee the

integrity of the data with a MAC. Even in a situation

in which a Salt Repository is compromised, the leaked

information would not be useful because the attacker

would have to brute force the salt list and then launch

an online attack against the site specific passwords. It is

technically possible to launch a brute force against the

salt list, however it would take a prohibitively long time.

This in combination with the required online attack

against individual sites mitigates the possibility of a

malicious Salt Repository compromising the security of

PasswordAgent.

Adaptation to Faster Computers: PasswordA-

gent can adapt to faster computers and the associated

greater power of attackers in launching dictionary/brute

force attacks, by increasing the salt size. This is a minor

change to the Agent implementation. The user simply

regenerates a longer salt while keeping the plain-text

password intact. The newly-generated site password is

stronger, and no extra memory burden is placed on the

user. In contrast, it is not easy for PwdHash to adapt to

adversaries with more computing power. Both Passpet

and Password Multiplier can increase the number of

iterations to make it harder for an attacker to compute

the site password.

Data Anonymity: Only LPWA has data anonymity as

its goal. The other solutions, including PasswordAgent,

focus solely on password protection. LPWA enables a

user to browse, hold accounts, and email without ever

revealing personal identification information.

4.2 Additional Usability Benefits

Usability is a key factor in any software system. A

simple usability flaw might render a cryptographically

secure system useless. Care is taken in the development

of PasswordAgent to address usability concerns that

exist in previous password hashing solutions. The

specific usability benefits of PasswordAgent are detailed

as follows.

Ease of Site Password Updating: PasswordAgent

allows users to change their site passwords exactly like

they normally do, via the change password page of the

website. By changing it to a new protected password,

users maintain all the benefits of PasswordAgent without

any complicated or confusing processes. PwdHash has

the same functionality. In contrast, Password Multiplier

forces users to append information to the domain name

being hashed. Not only is this confusing, but it also

forces users to remember what additional information

they are using for their logins [14]. Passpet uses a similar

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 101

mechanism, in which users can change the label of a

site to change the password. Unlike Password Multiplier

though, it remembers the change and does not require

additional memorization.

Notification of Protected Sites: Only PasswordA-

gent and Passpet notify users when a site requires

protected passwords. PasswordAgent displays a “noti-

fication bubble”, which informs the user of the status

of the site and how to login, as shown in Figures 5(a)

and 5(b). In addition to notification bubble, PasswordA-

gent allows the user to view a list of all the registered

sites. Both PwdHash and Password Multiplier fail

to indicate whether a site is expecting a protected or

plain-text password. Users who enter an incorrect

password will often proceed to enter many of their other

passwords, including plain-text passwords [14]. This

leads to multiple passwords being exposed, a situation

that is even worse than if no password protection is used.

Changing Master Password: The user can change the

master password for the Salt Repository at any point

without changing the password on any individual site.

By entering the old and new Agent Password, the salt

list can be decrypted and then re-encrypted with the new

password. Because the same salts are used to generate

the password, the site password remains the same.

This is more convenient than in Passpet and Password

Multiplier, where a change to the master password

requires the user to login into each individual site and

manually change the password.

Site Specific Password Requirements: Many sites

have different password requirements, including size

and acceptable characters. Only PasswordAgent and

PwdHash examine the user’s plain-text password for

clues to the expected composition of a password.

Any errors with the plain-text password are mirrored

in the site password, so the user receives useful feedback.

Minimal Changes to Browsing Paradigm: Simi-

lar to PwdHash, PasswordAgent makes only minimal

changes to the normal interaction between a user and

a web browser. The only two changes include: (1) the

user must log into the Agent when beginning a session,

and (2) the protected password must start with @@ (or

the user must activate PasswordAgent via the F2 key).

These minimal changes should make the adoption of

PasswordAgent easy. Password Multiplier and Passpet

both require obvious deviations from the normal user

login.

Ease of Switching Storage Servers: PasswordA-

gent is completely repository agnostic, and can easily

<?xml version=’1.0’ encoding=’utf-8’?>

<response>

<status>statusInfo</status>

<message>messageBody</message>

......

<data>dataSection</data>

</response>

Figure 7: XML Response Format.

transfer the salt list from one repository to another. In

contrast, Passpet uses the storage server address as part

of the master password generation, thus any change in

the storage server address forces users to create a new

master password and update all their site passwords.

5 Implementation and Evaluation

5.1 Implementation

We build a prototype of PasswordAgent, in which the

Salt Repository is implemented as a Java servlet and the

Agent is implemented as a Firefox extension.

5.1.1 Salt Repository Interface

The Salt Repository Interface is a simple XML-based

REST-style protocol, which allows the creation of user

accounts, the updating of site salts, and the retrieval of

the salt list. These methods fulfill the minimum re-

quirements to maintain a salt list. The Interface is de-

signed for ease of use with JavaScript’s XMLHTTPRe-

quest object. Because the XMLHTTPRequest object al-

lows synchronous HTTPS requests and can translate an

XML response into a DOM document, it takes minimal

additional code for the Agent to communicate with the

Repository. The Salt Repository is written as a Java

servlet, which eases its deployment across different plat-

forms. Any web server supporting HTTPS can serve as a

Repository, as long as it implements the Salt Repository

Interface and is located at passwordagent.domain.

Here the Salt Repository is maintained by a publicly

accessible HTTPS server that implements the REST [20]

methods as listed in Table 3. These methods allow users

to maintain their salt lists.

The Interface is designed to be as simple as possible

for implementation, and uses a simple XML response

format that is easy to parse. The response format is il-

lustrated in Figure 7. Each response contains at least

a <status> element that is either “success” or “error”

and a <message> element that includes a natural lan-

guage description of the response. Some methods return

102 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Method Description Parameters Data Section Format

CreateUser Creates a new user

account.

user - the desired username.

password - the desired repository password.

hmac - the HMAC code to store for the current (empty) salt list

N/A

GetSites Retrieves the salt

list for a user.

user - the username of the user.

password - the repository password of the user

<data hmac=“SaltListHMAC”>

<site domain=“domain.com” salt=“salt” />
<site domain=“domain2.com” salt=“salt2” />
</data>

SetSite Stores a salt for a

specified domain.

user - the username.

password - the repository password.

site - the domain

salt - the new salt

hmac - the HMAC code to store for the current (including this updated

entry) salt list

N/A

UpdateUser Updates a user’s

repository pass-

word.

user - the username.

password - the repository password.

newpassword - the desired new authentication password.

N/A

Table 3: Salt Repository methods.

a <data> section that includes more information, allow-

ing further data to be passed to the caller.

5.1.2 Agent

The Agent is a Firefox extension written in JavaScript

and XML User Interface Language (XUL) [10], with-

out using native components. It is a modified version

of the open source PwdHash. While the basic password

protection activation code remains the same, additional

functionality is provided in the form of a GUI, a more

secure hash function, and a module to communicate with

the Salt Repository. PwdHash has no visible GUI, Pass-

wordAgent, by contrast, includes status indicators and

warning dialogs to assist users in protecting their pass-

words. PwdHash uses the MD5 hash function, but recent

collision attacks have rendered MD5 insecure [35]. Pass-

wordAgent uses SHA256 for all hashing functions and

AES [4, 15] for salt encryption. Although PasswordA-

gent uses a more complex hash algorithm and hashes

larger values, it is still reasonably efficient as it takes

only about 45ms to generate a password using SHA256,

benchmarked on a 2.26Ghz Intel machine running SuSE

Linux 10.2 with 512MB RAM.

5.2 Evaluation

We focus our evaluation on the usability of PasswordA-

gent, which is a key measure determining whether a pass-

word manager is really useful or even secure [14]. We

choose user studies, i.e., laboratory user tests [32, 36],

to assess the usability of PasswordAgent. We select

PwdHash for a direct comparison with PasswordAgent.

This is because both use the same activation method, and

PwdHash scores higher than Password Multiplier on per-

ceived security and usability [14]. In the design our us-

ability tests, we follow a similar approach to the usability

study on PwdHash and Password Multiplier [14].

Question People Responding “Yes”

Do you sometimes reuse passwords on

different sites?

96.4% (27)

Are you concerned about the security of

passwords?

28.6% (8)

Criteria for choosing passwords:

Easy to remember 75.0% (21)

Difficult for others to guess 42.9% (12)

Suggested by the system 0% (0)

Same as another password 57.1% (16)

Other 10.7% (3)

Participation in online activities requiring personal or financial details:

Online purchases 75% (21)

Online banking 75% (21)

Online bill payments 28.6% (8)

Other activities 42.9% (12)

Do you use:

A password manager? 3.6% (1)

A password generation tool? 0% (0)

Table 4: Participants’ initial attitude towards password

security.

5.2.1 Participants

There are 28 individuals ranging in age from 17 to 63

years old participated in the user study. Only one of

the participants is a computer science major. None of

the participants has any particular experience with com-

puter security. A pre-task questionnaire, similar to the

one in [14], is used to survey participants’ initial attitude

towards password security. The questions and responses

are summarized in Table 4. We can see that only 42.9%

of participants choose “difficult for others to guess” pass-

words, only 4% of participants do not reuse passwords

across different websites, and only one participant has

ever used software to manage passwords. A useful pass-

word generation tool would resolve the security issues

caused by these poor password practices.

5.2.2 Tasks

Each participant is asked to complete a set of tasks us-

ing two password generation plugins: PasswordAgent

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 103

and PwdHash. The tasks are completed on two personal

computers, designated A and B. Both computers run

SUSE Linux and Mozilla Firefox. Computer A serves

as the participants’ primary computer, while Computer

B is used to let participants install and use plugins from

a computer other than their primary machine. Five tasks

are carefully selected to reflect the realistic daily usage

of a password generation plugin:

• Migrate Login : From computer A, logging on to

a website W (Yahoo) with an account that has not

yet been protected, migrating the account, and get-

ting the password protected by the plugin. This task

simulates taking an existing account and protecting

it with the plugin.

• Log Into Site : From computer A, logging on to

a website W (Google) with an account that has al-

ready been protected by the plugin. This task sim-

ulates a user’s regular login process using protected

accounts.

• Update Password : From computer A, logging on

to the website W (Hotmail) with a protected ac-

count, and changing its password. This task simu-

lates the process of changing the password of a pro-

tected account.

• Second Login : From computer A, logging on to

a website W (Hotmail) with the protected account

whose password has just been updated in “Update

Password”. This task simulates the process of log-

ging in with updated passwords.

• Remote Login : From computer B, logging on to

the website W (Amazon) with a protected account.

This task simulates when users log in from remote

machines that do not have the plugin installed.

Each task is performed with PwdHash and Pass-

wordAgent. Participants are given a simple instruction

sheet, which instructs them on how to use PwdHash and

Password Agent. They are allowed to refer to the instruc-

tions whenever necessary. Accounts are created for the

purpose of the usability tests, instead of having the par-

ticipants use their personal accounts.

5.2.3 Results

Results are collected through both observation and ques-

tionnaires. An experimenter observes the test session

of each participant and records the results. The exper-

imenter does not provide additional instructions to a par-

ticipant during the test session. The observed outcome

of each task is classified into one of five groups: suc-

cessful, i.e., the participant completes the task without

Figure 8: Mean questionnaire responses for each ques-

tion group on scale of 1 to 5 (1 very negative, 3 neutral,

5 very positive).

a problem; dangerous success, i.e., the participant com-

pletes the task after an attempt that may lead to a security

exposure; failed, i.e., the participant cannot complete the

task and gives up; false completion, i.e., the participant

erroneously thinks that the task has been correctly com-

pleted, when it has not; and failed due to previous, i.e.,

the participant does not complete this task due to the fail-

ure of previous task(s). Table 5 lists the task completion

results for PasswordAgent and PwdHash. We can see

that PasswordAgent achieves an over 90% success ratio

for four tasks, and meanwhile it outperforms PwdHash

in all the five tasks.

After completing the tasks for a plugin, each user an-

swers a questionnaire for that plugin. The questionnaire

consists of eight Likert scale statements [28]. The par-

ticipants are asked to indicate their degree of agreement

with each statement after they finish the tasks. We use a

five-point Likert scale: strongly disagree, disagree, neu-

tral, agree, and strongly agree. Table 6 lists the ques-

tionnaire statements, which are very similar to the ones

in [14]. A summary of the results are shown in Figure 8.

The questionnaire focuses on four different categories:

Perceived Security, Perceived Comfort, Perceived Ease

of Use, and Perceived Necessity and Acceptance. While

PasswordAgent scores higher than PwdHash in all four

measurements, we further use t-test to determine the sta-

tistical significance of the differences in scores and ob-

serve that these differences do not have statistical signif-

icance.

6 Limitations

In this section, we discuss three limitations in Pass-

wordAgent: vulnerability to keyloggers [21], the re-

liance on Salt Repository, and the usability limitations.

PasswordAgent is designed to protect against web based

attacks and cannot thwart compromises outside of the

browser. Should a system have malicious software in-

104 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Task PasswordAgent PwdHash

Success Dangerous

Success

Failures Success Dangerous

Success

Failures

Failure False

Com-

pletion

Failed Pre-

vious

Failure False

Com-

pletion

Failed Pre-

vious

Migrate Login 92.9% (26) 0% (0) 7.1% (2) 0% (0) 0% (0) 75% (21) 14.3% (4) 10.7% (3) 0% (0) 0% (0)

Log Into Site 96.4% (27) 0% (0) 3.6% (1) 0% (0) 0% (0) 89.3% (25) 10.7% (3) 0% (0) 0% (0) 0% (0)

Update Password 96.4% (27) 0% (0) 3.6% (1) 0% (0) 0% (0) 67.8% (19) 14.3% (4) 17.9% (5) 0% (0) 0% (0)

Second Login 96.4% (27) 0% (0) 0% (0) 0% (0) 3.6% (1) 75% (21) 7.1% (2) 0% (0) 0% (0) 17.9% (5)

Remote Login 82.1% (23) 0% (0) 17.9% (5) 0% (0) 0% (0) 46.4% (13) 28.6% (8) 25% (7) 0% (0) 0% (0)

Table 5: Task completion results for PasswordAgent and PwdHash.

Perceived Security

My passwords are secure when using PasswordAgent.

I do not trust PasswordAgent to protect my passwords from cyber criminals.

Comfort Level with Giving Control of Passwords to a Program

I am uncomfortable with not knowing my actual passwords for a website.

Passwords are safer when users do not know their actual passwords.

Perceived Ease of Use

PasswordAgent is difficult to use.

I could easily log on to web sites and manage my passwords with PasswordAgent.

Perceived Necessity and Acceptance

I need to use PasswordAgent on my computer to protect my passwords.

My passwords are safe even without PasswordAgent.

Table 6: Post-task Questionnaire (for PasswordAgent, the questionnaire for PwdHash was identical other than the

name of the software).

stalled such as spyware or a keylogger, both the Agent

password and the individual site passwords can be com-

promised.

The Salt Repository is an important part of the Pass-

wordAgent solution. Should it become unavailable (be-

cause of server issues, network problems, or DOS at-

tacks), the user would be unable to log into any protected

site. However, it is possible to use the Salt Repository as

a backup, if the user’s primary computer stores the salt

list and then mirrors any changes to the Repository. This

can achieve high reliability, but would come at a security

cost. If the primary computer is compromised, the salt

list has a higher chance of being exposed than before.

A potential area for improvement would be the support

of multiple synchronized repositories to prevent a single

point of failure. Building such a mechanism is beyond

the scope of this paper.

A user must activate the password protection by us-

ing @@ (the F2 key, or some other means). This is the

main usability limitation that is common to PwdHash,

Password Multiplier, and PasswordAgent. This extra ac-

tivation step may make some users feel inconvenienced.

Moreover, if a user forgets to invoke the protection, this

limitation may lead to security exposures because the

user’s plain-text password might be sent to a phishing

site [14]. Although the inconvenience still exists, the

security risks caused by this limitation is eliminated in

PasswordAgent. A phisher cannot obtain the correct site

password since the salt is not accessible to the phisher.

Another usability limitation is that if a user forgets

the Agent password, then there is no mechanism to re-

trieve the users salts. The user has to manually reset their

passwords on each site, using a forgotten password fea-

ture. While inconvenient, most websites today provide a

mechanism to reset forgotten passwords so serious harm

is avoided.

7 Conclusion

We have developed PasswordAgent, an automatic pass-

word management system with enhanced hashing. Pass-

wordAgent includes a Salt Repository and a browser

plug-in Agent, and it provides a convenient and secure

password protection service in an automatic manner.

Without altering the normal interaction between a user

and a login form, PasswordAgent automatically secures

the user’s plain-text password by rendering a unique site

password for each website visited. Under the stronger

security guarantee, a user’s site password is robustly de-

fended against password cracking and theft. We have im-

plemented a prototype of PasswordAgent and conducted

usability experiments. The evaluation results clearly in-

dicate the usability benefits of PasswordAgent.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 105

Acknowledgment

We would like to thank the anonymous reviewers and our

shepherd Travis Campbell for their insightful comments.

This work was partially supported by NSF grants CNS-

0627339 and CNS-0627340.

References

[1] Anti-Phishing Working Group.

http://www.antiphishing.org/index.html.

[2] Consumer sentinel network data book.

Federal Trade Commission, February 2009.

[3] FIPS Publication 180-2. NIST, August 2002.

[4] FIPS Publication 197. NIST, November 2001.

[5] KeePass Password Safe. http://keepass.info/.

[6] Password strength.

http://www.passwordmeter.com.

[7] Petname Tool. http://petname.mozdev.org/.

[8] RoboForm: Password Manager, Form Filler,

Password Generator, Fill&Save Forms.

http://www.roboform.com/.

[9] Windows Live ID.

https://accountservices.passport.net/.

[10] XML User Interface Language (XUL) Project.

http://www.mozilla.org/projects/xul/.

[11] ADAMS, A., AND SASSE, M. A. Users are not the

enemy. Commun. ACM 42, 12 (1999), 40–46.

[12] BELLARE, M., CANETTI, R., AND KRAWCZYK,

H. Keying hash functions for message authentica-

tion. In Proceedings of Crypto’96 (1996), pp. 1–15.

[13] BELLARE, M., KILIAN, J., AND ROGAWAY, P.

The security of the cipher block chaining message

authentication code. In Proceedings of Crypto’94

(1994), pp. 341–358.

[14] CHIASSON, S., VAN OORSCHOT, P., AND BID-

DLE, R. A usability study and critique of two

password managers. In Proceedings of the 15th

USENIX Security Symposium (2006), pp. 1–16.

[15] DAEMEN, J., AND RIJMEN, V. The design of

rijndael: Aes - the advanced encryption standard.

Springer-Verlag (2002).

[16] DAVIS, D., MONROSE, F., AND REITER, M. K.

On user choice in graphical password schemes. In

Proceedings of the 13th USENIX Security Sympo-

sium (2004), pp. 151–164.

[17] DHAMIJA, R., AND PERRIG, A. Dejà vu: A

user study using images for authentication. In Pro-

ceedings of the 9th USENIX Security Symposium

(2000), pp. 45–58.

[18] DHAMIJA, R., TYGAR, J. D., AND HEARST,

M. Why phishing works. In Proceedings of the

SIGCHI conference on Human Factors in comput-

ing systems (2006), pp. 581–590.

[19] FELDMEIER, D. C., AND KARN, P. R. Unix pass-

word security - ten years later. In Proceedings of

Crypto’89 (1989), pp. 44–63.

[20] FIELDING, R. T., AND TAYLOR, R. N. Principled

design of the modern web architecture. ACM Trans-

actions on Internet Technology (TOIT) 2, 2 (2002),

115–150.

[21] FLORENCIO, D., AND HERLEY, C. Klassp: Enter-

ing passwords on a spyware infected machine us-

ing a shared-secret proxy. In Proceedings of the

22nd Annual Computer Security Applications Con-

ference (ACSAC’06) (2006), pp. 67–76.

[22] FLORÊNCIO, D. A. F., AND HERLEY, C. A large-

scale study of web password habits. In Proceedings

of the 16th International Conference on World Wide

Web (2007), pp. 657–666.

[23] GABBER, E., GIBBONS, P. B., KRISTOL, D. M.,

MATIAS, Y., AND MAYER, A. Consistent, yet

anonymous, Web access with LPWA. Commun.

ACM 42, 2 (1999), 42–47.

[24] HALDERMAN, J. A., WATERS, B., AND FELTEN,

E. W. A convenient method for securely managing

passwords. In Proceedings of the 14th international

conference on World Wide Web (2005), pp. 471–

479.

[25] HERLEY, C., VAN OORSCHOT, P., AND PATRICK,

A. S. Passwords: If we’re so smart, why are we still

using them? In Proceedings of the Financial Cryp-

tography and Data Security Conference (2009).

[26] JERMYN, I., MAYER, A., MONROSE, F., REITER,

M. K., AND RUBIN, A. D. The design and analysis

of graphical passwords. In Proceedings of the 8th

USENIX Security Symposium (1999), pp. 1–14.

[27] KORMANN, D. P., AND RUBIN, A. D. Risks of the

passport single signon protocol. Comput. Networks

33, 1-6 (2000), 51–58.

106 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

[28] LIKERT, R. A technique for the measurement of

attitudes. Archives of Psychology 140 (1932), 1–

55.

[29] MORRIS, R., AND THOMPSON, K. Password

security: a case history. Commun. ACM 22, 11

(1979), 594–597.

[30] RIVEST, R. L. The md5 message-digest algorithm.

In RFC 1320 (April 1992).

[31] ROSS, B., JACKSON, C., MIYAKE, N., BONEH,

D., AND MITCHELL, J. C. Stronger password

authentication using browser extensions. In Pro-

ceedings of the 14th USENIX Security Symposium

(2005), pp. 17–32.

[32] RUBIN, J., AND CHISNELL, D. Handbook of Us-

ability Testing: How to Plan, Design, and Conduct

Effective Tests. John Wiley & Sons, Inc., 1994.

[33] TARI, F., OZOK, A. A., AND HOLDEN, S. H. A

comparison of perceived and real shoulder-surfing

risks between alphanumeric and graphical pass-

words. In Proceedings of the second symposium on

Usable privacy and security (SOUPS ’06) (2006),

pp. 56–66.

[34] THORPE, J., AND VAN OORSCHOT, P. Human-

seeded attacks and exploiting hot-spots in graphi-

cal passwords. In Proceedings of the 16th USENIX

Security Symposium (2007), pp. 103–118.

[35] WANG, X., AND YU, H. How to break md5 and

other hash functions. In Proceedings of EURO-

CRYPT 2005 (2005), pp. 19–35.

[36] WHITTEN, A., AND TYGAR, J. D. Why johnny

can’t encrypt: a usability evaluation of pgp 5.0. In

Proceedings of the 8th USENIX Security Sympo-

sium (1999), pp. 169–184.

[37] YAN, J., BLACKWELL, A., ANDERSON, R., AND

GRANT, A. Password memorability and security:

Empirical results. IEEE Security and Privacy 2, 5

(2004), 25–31.

[38] YEE, K.-P., AND SITAKER, K. Passpet: conve-

nient password management and phishing protec-

tion. In Proceedings of the second symposium on

Usable privacy and security (SOUPS’06) (2006),

pp. 32–43.

[39] YUE, C., AND WANG, H. Anti-phishing in offense

and defense. In Proceedings of the 24th Annual

Computer Security Applications Conference (AC-

SAC’08) (2008), pp. 345–354.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 107

SEEdit: SELinux Security Policy Configuration System with Higher Level

Language

Yuichi Nakamura

Hitachi Software Engineering Co., Ltd.

ynakam@hitachisoft.jp

Yoshiki Sameshima

Hitachi Software Engineering Co., Ltd.

same@hitachisoft.jp

Toshihiro Tabata

Okayama University

tabata@cs.okayama-u.ac.jp

Abstract

Security policy for SELinux is usually created by cus-

tomizing a sample policy called refpolicy. However,

describing and verifying security policy configurations

is difficult because in refpolicy, there are more than

100,000 lines of configurations, thousands of elements

such as permissions, macros and labels. The memory

footprint of refpolicy which is around 5MB, is also a

problem for resource constrained devices.

We propose a security policy configuration system

SEEdit which facilitates creating security policy by a

higher level language called SPDL and SPDL tools.

SPDL reduces the number of permissions by integrated

permissions and removes label configurations. SPDL

tools generate security policy configurations from access

logs and tool user’s knowledge about applications. Ex-

perimental results on an embedded system and a PC sys-

tem show that practical security policies are created by

SEEdit, i.e., describing configurations is semiautomated,

created security policies are composed of less than 500

lines of configurations, 100 configuration elements, and

the memory footprint in the embedded system is less than

500KB.

Tags: security, security policy, configuration, SELinux

1 Introduction

Attackers can do everything in traditional Linux when

they obtain the almighty root privilege by exploiting se-

curity holes in services running as root, or by exploiting

vulnerabilities leading to privilege escalation[3][4]. To

restrict such behavior of root, Security-Enhanced Linux

(SELinux)[1][2] has mandatory access control feature;

all processes including root processes can access re-

sources only when a security policy permits the access.

The mandatory access control model is called TE (Type-

Enforcement)[5]. In TE, processes are assigned domain

labels, and resources such as files and ports are assigned

type labels, and what kind of domain can access what

kind of type is described in a security policy. If the

security policy is properly configured, all processes in-

cluding root, attackers processes and viruses have only

limited access rights. As a result, the damage by at-

tackers and viruses is confined. Because of this con-

finement feature, SELinux is included in major Linux

distributions[6], and is used for servers that require high

level security. SELinux is also useful for network con-

nected embedded devices such as cell phones and TVs.

Actually, some Linux distributions for embedded system

include SELinux[7].

To deploy SELinux to a system, a security policy must

be created. The security policy is usually created by

customizing a sample policy called refpolicy (Reference

Policy)[8][9]. Refpolicy can be applied with almost no

customization when configurations for applications in a

target system are included in refpolicy. For example, ref-

policy is almost perfectly configured for default appli-

cations included in Fedora and CentOS. However, cus-

tomizing refpolicy is required for systems where refpol-

icy is not configured enough, such as embedded sys-

tems and systems where commercial applications are de-

ployed.

There are three problems in the customization. First,

it is difficult to describe configurations because there are

more than 700 permissions and 1,000 macros. In addi-

tion, type labels must be associated with file names and

network resources. Second, it is difficult to verify refpol-

icy. Since refpolicy is intended for multiple use cases,

many configurations, more than 100,000 lines, are in-

cluded. When engineers verify refpolicy before reuse,

they have to review such a lot of configurations. Third is

a problem of resource consumption. When SELinux is

applied to resource constrained systems such as embed-

ded systems, the files used and memory consumed by the

security policy are a problem because refpolicy is large.

This paper proposes a security policy configuration

system SELinux Policy Editor (SEEdit) that facilitates

108 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

creating security policy by a higher level language called

Simplified Policy Description Language (SPDL) and

SPDL tools.

• SPDL

Instead of complicated macros, we propose a higher

level language called SPDL. SPDL simplifies de-

scribing and verifying SELinux security policy con-

figurations with two features. Firstly, integrated

permissions in SPDL reduce the number of per-

missions by grouping related SELinux permissions.

Secondly, it removes type configurations by identi-

fying resources with names such as path name and

port number.

• SPDL tools

To solve the verification and size problems of ref-

policy, the security policy is created by writing only

the necessary configurations in SPDL without ref-

policy. SPDL tools help the writing process by gen-

erating configurations using access logs and knowl-

edge of users about applications.

The remaining of this paper is organized as follows.

Problems in creating security policy (section 2), ap-

proaches of SEEdit to facilitate creating security policy

(section 3) are explained. The detail of SEEdit (section

4), experimental results (section 5) are shown. Finally,

related works (section 6), summary (section 7) and fu-

ture works (section 8) are described.

2 Problems in creating security policy

In this section, problems in creating a security policy for

a target system based on refpolicy are described after an

overview of SELinux policy language and refpolicy.

2.1 SELinux policy language

The security policy is loaded to SELinux kernel in binary

representation. However, it is hard to handle the binary

security policy because it is unreadable for humans. To

represent the security policy in text, SELinux has a basic

policy language[10], which is mainly composed of the

following four syntax elements.

(1) Assigning types

In SELinux, type labels must be assigned to re-

sources to identify them. For example, the follow-

ing statement is written to assign types to files.

<file name> system u:object r:<type>

Similar statements are used to assign types to net-

work resources such as port numbers and NICs.

(2) Label declaration

Domains and types must be declared by type state-

ments as shown below.

type <type or domain>, <attribute>;

<attribute> is used to inherit configurations which
are described for <attribute>. For example, in the
following statements, admin t can read both http-
content t and ftpcontent t.

type httpcontent_t, content;

type ftpcontent_t, content;

allow admin_t content:file read;

(3) Allowing access

The allow statement permits a domain to access a

type as in the following syntax.

allow <domain> <type> <permission>;

<permission> is composed of object classes and

access vector permissions. Object class means clas-

sification of resources such as file (normal file), dir

(directory) and tcp socket (TCP socket). For each

object class, access vector permissions such as read

and write are defined. For example, permission file

read means reading normal files, dir read means

reading directories.

(4) Conditional policy expression

To support multiple use cases in one security policy,

SELinux policy language has conditional policy ex-

pressions as follows.

if(<parameter>){<statement>}

When <parameter> is true, then <statement> is

enabled. For example, when CGI is necessary, the

parameter httpd enable cgi is set true, and then ac-

cesses related to using CGI are permitted. Change

of such parameters are applied without reloading se-

curity policy, because <statement> is embedded in

the security policy.

2.2 Overview of refpolicy

To grant enough permissions for applications to work

correctly, a lot of access rules should be described. In

fact, the total number of access rules in a system of-

ten becomes more than 10,000, and sometimes exceeds

100,000. Therefore, it is not realistic to create security

policy by writing configurations in SELinux policy lan-

guage from nothing. To facilitate creating security pol-

icy, a sample policy called refpolicy is developed and

2

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 109

maintained by the SELinux community. Refpolicy is

composed of macros and configurations for typical ap-

plications.

(1) Macros
M4[11] macros are defined to describe frequently
used phrases in short words. Below is an example.

allow httpd_t contents_t r_file_perms;

define(‘r_file_perms’,‘file { read

getattr lock ioctl }’)

r file perms is a macro, which is expanded to per-

missions related to reading regular files.

(2) Configurations for typical applications

Configurations for applications shipped with Linux

distributions are prepared by the SELinux commu-

nity and Linux distributors, and they are included in

refpolicy. Figure 1 is part of the configuration for

the http daemon. There are many macros, such as

init daemon domain, apache content template and

so on. In the figure, conditional expressions are

omitted, but in fact, many conditional expressions

are also included because refpolicy is intended to

support as many use cases as possible, such as CGI,

PHP and DB connection.

2.3 Problems in creating security policy us-

ing refpolicy

Customizing refpolicy is necessary when the use case of

the system or its installed applications are beyond the ex-

pectations of refpolicy. For example, embedded systems

and commercial applications are not within the scope

of refpolicy. However, there are three problems in cus-

tomizing refpolicy. One is the difficulty in describing

configurations, second is the difficulty of verifying ref-

policy and third is resource consumption.

2.3.1 Difficulty in describing configurations

The major difficulty in describing configurations is com-

plicated configuration elements such as permissions,

macros and types. The main reason of difficulty is the

number of configuration elements. For example, there

are more than 700 permissions and more than 1,000

macros and 1,000 types. In addition, nested macro defi-

nitions make understanding macros harder.

There are two more difficulties in types. First, en-

gineers have to get used to types because in traditional

Linux, they have been identifying files by file names not

types. Secondly, there is also a problem of dependency in

assigning new types. This problem is explained with an

example. When the foo t type is assigned under /foo di-

rectory and the bar t domain is allowed to read the foo t

Assign httpd_t domain to http daemon

1 type httpd_t;

2 type httpd_exec_t;

3 role system_r types httpd_t;

4 init_daemon_domain(httpd_t,httpd_exec_t)

5 /usr/sbin/httpd -- gen_context(system_u

:object_r:httpd_exec_t,s0)

Permit httpd_t to read /var/www

6 apache_content_template(sys)

7 /var/www(/.*)? gen_context(system_u

:object_r:httpd_sys_content_t,s0)

8 allow httpd_t httpd_sys_content_t:dir

list_dir_perms;

9 read_files_pattern(httpd_t,httpd_sys_

content_t,httpd_sys_content_t)

10 read_lnk_files_pattern(httpd_t,httpd_

sys_content_t,httpd_sys_content_t)

Permit httpd_t to wait connection on

tcp port 80

11 corenet_all_recvfrom_unlabeled(httpd_t)

12 corenet_all_recvfrom_netlabel(httpd_t)

13 corenet_tcp_sendrecv_all_if(httpd_t)

14 corenet_udp_sendrecv_all_if(httpd_t)

15 corenet_tcp_sendrecv_all_nodes(httpd_t)

16 corenet_udp_sendrecv_all_nodes(httpd_t)

17 corenet_tcp_sendrecv_all_ports(httpd_t)

18 corenet_udp_sendrecv_all_ports(httpd_t)

19 corenet_tcp_bind_all_nodes(httpd_t)

20 corenet_tcp_bind_http_port(httpd_t)

21 gen_context(system_u:object_r:http_port

_t,s0)

Figure 1: Part of the configuration for the http daemon in

refpolicy

type, the bar t domain can read all files under the /foo

directory. Next, if the foo2 t type is newly created, and

assigned to the file /foo/foo2. the bar t domain can not

access /foo/foo2 because the bar t domain is not allowed

to access foo2 t. In this way, the bar t domain was able

to read /foo/foo2 before assigning the new type foo2 t,

but bar t can not access /foo/foo2 after the new type is

assigned to /foo/foo2.

2.3.2 Difficulty in verifying refpolicy

For the purpose of Quality Assurance for a security pol-

icy which is created based on refpolicy, refpolicy should

be verified. In this context, verify means understand what

is configured, then find misconfigurations and modify

them. However, it is difficult to verify because of the

complexity of the configuration elements as stated be-

fore. In addition, the following points make verification

more difficult.

• Amount of configurations

3

110 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

The size of refpolicy makes verification more dif-

ficult. For example, refpolicy included in Fe-

dora 9 has configurations for almost all applica-

tions shipped with Fedora 9 and is composed of

more than 2,000 types and more than 150,000 ac-

cess rules.

• Conditional expressions

Many conditional expressions are embedded in ref-

policy, and they are sometimes included in macro

definitions . Thus, it is difficult to figure out which

configurations are enabled.

• Attributes

Attributes are often used for types and they increase

the time necessary to understand what configura-

tions mean, as shown in the next example. The line

allow httpd t httpdcontent:file read; is included in

refpolicy. httpd t is a domain for the apache dae-

mon, and httpdcontent is an attribute. To understand

what kind of files httpd t can access from the line,

types that have the httpdcontent attribute have to be

found by searching for type declaration statements,

which are sometimes embedded in macro defini-

tions.

2.3.3 Resource consumption

A security policy is saved as files in storage, then it is

loaded to RAM at system boot. Therefore, the secu-

rity policy consumes storage and RAM. Since refpolicy

is intended for multiple use cases, many conditional ex-

pressions and configurations for many applications are

included. As a result, the size of refpolicy becomes large.

For example the refpolicy included in Fedora Core 6

consumes 1.4MB storage and 5.4MB RAM. In resource

constrained systems such as embedded systems, this is a

problem because they often have less than 64MB RAM

and storage.

3 Approach to creating security policy

We propose a security policy configuration system

SEEdit, which facilitates describing configurations, veri-

fying a created security policy and creating a small secu-

rity policy. The idea of the proposed system is explained

in this section.

3.1 Higher level language: SPDL

The difficulty in describing configurations is caused by

the large number of permissions, complicated macros

and type configurations. Sophisticated macros can partly

solve such problems, i.e., creating a small number of

1 {

Assign httpd_t domain to http daemon

2 domain httpd_t;

3 program /usr/sbin/httpd;

Permit httpd_t to read /var/www

4 allow /var/www/** s,r;

Permit httpd_t to wait connection on

tcp port 80

5 allowcom -protocol tcp -port 80 server;

6 }

Figure 2: A configuration example of SPDL for http dae-

mon.

macros and removing nested macro definitions. How-

ever, type configurations are still necessary in such

macros. Instead of macros, we propose a higher level

language SPDL on top of SELinux policy language.

SPDL aims to reduce the number of configuration ele-

ments by integrated permissions where related SELinux

permissions are grouped. In addition, SPDL removes

type configurations by identifying resources with their

names. An example of configuration by SPDL is shown

in Figure 2. The configured access rules are almost the

same as Figure 1, but SPDL is simpler. Permissions re-

lated to reading files and directories are merged to inte-

grated permission r and permissions to wait for connec-

tion on ports are merged to server. Additionally, names

such as /var/www and port 80 are used to identify re-

sources and assigning types to resources is not neces-

sary. To apply SPDL configurations, the SPDL converter

translates these configurations to SELinux policy lan-

guage, i.e. SPDL converter generates the necessary type

configurations, and expands integrated permissions to re-

lated SELinux permissions.

The difficulty in verifying refpolicy is caused by two

factors. First is the complicated configuration elements

such as macros, permissions, attributes and conditional

expressions. This complexity is solved by SPDL. Second

is that many lines of configurations for access rules for

applications not installed in the system and for rules dis-

abled by conditional expressions are included. Our ap-

proach to solve the problem of many configuration lines

is to describe only necessary configurations by SPDL

without refpolicy, i.e. write configurations only for ap-

plications installed in the target system. Since neither

conditional configurations nor configurations for unused

applications are included, the number of configuration

lines are expected to be reduced. This also contributes to

reducing resource usage by the security policy.

4

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 111

Figure 3: Typical process of creating a security policy

3.2 SPDL tools

In order to support writing configurations by SPDL with-

out refpolicy, we propose SPDL tools composed of tem-

plate generator and allow generator. SPDL tools aim

to reduce the number of configurations written by hand

during the process of creating a security policy.

Figure 3 shows a typical process of creating a security

policy and this process is iterated for each target applica-

tions. (1) Configurations to assign a domain to a target

application are described as in Figure 2 lines 2 and 3. (2)

In order to figure out what kind of access rules should be

described, access logs are obtained by running the target

application. (3) Access rules are described using the ac-

cess logs. For example, when an access log entry shows

foo t domain read accessed filename bar then an access

rule that allows foo t to read bar is described. (4) Run

the application again and see whether it works correctly.

If the application does not work correctly, run the ap-

plication again and add configuration elements until the

application works correctly.

Allow generator supports writing configurations al-

lowing access in Figure 3 step (3). We adopt an ap-

proach of audit2allow[12] to automate describing config-

urations, i.e. generate configurations that allow accesses

appearing in access logs.

Template generator outputs configurations in figure 3

step (1) by using configurations typical to application

categories. For example, most daemon programs require

access rights to create temporary files under /var/run and

communicate with syslog. To produce more configura-

Figure 4: The architecture of SEEdit

tions, template generator uses the knowledge of the tool

user about the target application, such as what kind of

files and network resources the application accesses.

4 Design and implementation of SEEdit

We designed and implemented SEEdit following the ap-

proaches discussed in the previous section. SEEdit is

composed of SPDL tools and SPDL converter as shown

in Figure 4. The security policy written in SPDL, called

simplified policy, is created by a text editor or SPDL

tools composed of allow generator and template gener-

ator. SPDL converter generates the security policy writ-

ten in SELinux policy language from simplified policy.

The design of SPDL and the implementation of SPDL

converter and SPDL tools are described in the following

subsections.

4.1 Design of SPDL

The main features of SPDL are integrated permissions to

reduce the number of permissions, and configurations us-

ing resource names to remove type configurations. SPDL

also has an include statement to reduce the number of

lines. The detail is explained in this section.

4.1.1 Integrated permissions

While integrated permissions reduce the number of per-

missions by grouping permissions, permissions impor-

tant for security should be kept. In order to include

such important permissions, integrated permissions are

designed from the viewpoint of protectiong the confiden-

tiality, integrity and availability of a target system. Com-

promising confidentiality happens when an unexpected

information goes out, and compromising integrity hap-

pens when an unexpected information comes into the

5

112 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

system. Thus, permissions related to input and out-

put to files, network resources and IPCs have to be in-

cluded in integrated permissions. The other permissions

are privileges which can be abused to compromise avail-

ability and to facilitate attacks. For example, setrlimit

permission that controls the resource usage limit of pro-

cesses can lead to compromised availability. cap insmod

permission can result in installation of malicious kernel

modules. Therefore, privileges have to be included in

integrated permissions. The detail of integrated permis-

sions are shown as follows.

(1) Integrated permissions for files

Integrated permissions for files are taken from pre-

vious research by Yamaguchi et.al[13] because they

are designed to control input and output to files

and directories. The integrated permissions are, r

(read), x (execute), s (list directory), o (overwrite),

t (change attribute), a (append), c (create), e (erase)

and w (= o+t+a+c+e).

(2) Integrated permissions for network

Two integrated permissions related to input and out-

put are designed for port numbers, NIC, IP address

and RAW socket. For example, integrated permis-

sions for port numbers are server (wait for a connec-

tion from outside) and client (begin a connection to

outside).

(3) Integrated permissions for IPC

Integrated permissions for Sysv IPCs are send and

recv to control input and output to processes. Inte-

grated permissions for signals are designed to con-

trol sending each signal because SELinux can only

control sending signals. For example, integrated

permission k allows sending sigkill.

(4) Integrated permissions for other privileges

46 integrated permissions for other privileges are

designed. Almost all permissions about privileges

are included to prevent attackers from compromis-

ing availability and facilitating attacks. However,

overlapped permissions are merged as an excep-

tion. For example, SELinux permission capabil-

ity net admin and netlink route socket nlmsg write

overlap each other because they are related to

change kernel configuration of network. Thus, they

are merged to the integrated permission net admin.

4.1.2 Configurations using resource names

To remove type configurations, SPDL enables configura-

tions using resource names. SPDL statements allow and

allownet are designed as shown in Table 1 to enable name

based configurations for files and network resources such

as port number, NIC and IP address. To configure IPCs

domain httpd_t;

allow /var/www/** r;

Figure 5: Simplified Policy to be converted by SPDL

converter

Declare and assign type

1 type var_www_t;

2 /var/www(|/.*)

system_u:object_r:var_www_t

#Allows permissions related to integrated

permission r

3 allow httpd_t var_www_t:lnk_file { iotcl

lock read };

4 allow httpd_t var_www_t:file { iotcl

lock read };

5 allow httpd_t var_www_t:fifo_file {

iotcl lock read };

6 allow httpd_t var_www_t:sock_file {

iotcl lock read };

Figure 6: Output of SPDL converter

and other privileges, allowcom and allowpriv are also

designed. Assigning types for IPCs and privileges is not

required in SELinux, but they are shown for reference in

Table 1.

4.1.3 Include statement

In order to reduce the number of configuration lines, the

include statement imports configuration from a file.

#include filename;

For example, when the file daemon.te includes access

rules commonly used for daemon applications, describ-

ing #include daemon.te; imports those access rules.

4.2 Implementation of SPDL converter

SPDL converter translates SPDL to SELinux policy lan-

guage. The translation process is shown with an example

of converting Simplified Policy in Figure 5 to configura-

tions in Figure 6.

The httpd t domain is allowed to read files and direc-

tories under /var/www in Figure 5. SPDL converter gen-

erates types from resource names. For example, it gener-

ates var www t type from filename /var/www, then out-

puts configuration to assign var www t under /var/www

in the first two lines in Figure 6. Next, it generates con-

figuration to allow access to the generated type as line

3-6 in Figure 6.

When different types are generated for files or direc-

tories under /var/www, accesses to such types are al-

lowed. For example, when some domains are configured

6

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 113

Statement Meaning Example

allow filename integrated permission; Allows access to filename using inte-

grated permission.

allow /foo/bar/** r; permits to read

files under /foo/bar directory.

allownet resourcename integrated per-

mission;

Allows access to resourcename using

integrated permission.

allownet -protocol tcp -port 80 server;

permits to wait connection on tcp port

80.

allowcom IPCname domain integrat-

edpermission;

Allows access to domain using IPC

IPCname and communicate using inte-

grated permission.

allowcom -unix foo t r; permits to read

data from process running as foo t do-

main via unix domain socket.

allowpriv integrated permission; Allows usage of privilege integrated

permission

allowpriv cap sys chroot; permits to

use chroot system call.

Table 1: Statements in SPDL to allow access to resources

allow /var/www/cgi/** r;, then configuration that assigns

var www cgi t to /var/www/cgi is generated. SPDL con-

verter also generates configuration for httpd t that allows

reading var www cgi t.

However, configurations using resource names do not

work well for files dynamically created by processes.

Dynamically created files mean files that are removed

and created again. In SELinux, when a file is removed

and created again, the type of the file is the same

as the directory where it belongs. This behavior is

sometimes a problem. For example, allow /tmp/foo

r; is configured in foo t domain. At first, /tmp/foo is

assigned tmp foo t type, but when /tmp/foo is removed

and created again, then the type is tmp t. Therefore, the

foo t domain can no longer access /tmp/foo. To handle

such cases, SPDL has allowtmp to configure assign-

ing types correctly. The syntax of allowtmp is as follows.

allowtmp -dir directory -name type integrated per-

mission;

This means files created under directory are assigned

type. When type is auto, type is named automatically.

For example, when foo t domain creates temporary files

under /tmp, we have to describe allowtmp -dir /tmp

-name auto r; in foo t domain, then type foo tmp t is

generated and assigned to temporary files.

4.3 Implementation of SPDL tools

4.3.1 Allow generator

Allow generator outputs configurations that permit ac-

cesses recorded in the access log. The process is ex-

plained by an example below. First, allow generator

reads SELinux access log, then extracts domain, resource

name and permission from an access log entry. When a

log entry is recorded that says httpd t domain process

accessed filename /foo/bar whose type is foo bar t with

permission file read, httpd t, /foo/bar/ and file read is

#Integrated permission

<macro value="allow_file_r"/>

#Corresponding SELinux permissions

<secclass value="file" />

<secclass value="lnk_file" />

<secclass value="dir" />

<permission value="read" />

...<snip>..

Figure 7: An example of permission mapping file

extracted. The extracted information is not enough to

create SPDL based configuration, because the permis-

sion is not an integrated permission. In order to ob-

tain an integrated permission, allow generator converts

SELinux permissions to integrated permissions by per-

mission mapping, which contains mapping of integrated

permission to SELinux permissions as illustrated in Fig-

ure 7. In the example, recorded SELinux permission is

file read, then permission mappping is loooked up and

corresponding integrated permission allow file r mean-

ing integrated permission r for file is found. As a result,

allow generator is able to output SPDL based configura-

tions allow /foo/bar/ r;, from obtained domain, resource

name and integrated permission.

4.3.2 Template generator

Template generator is implemented as a GUI. Figure 8 is

a GUI to generate typical configurations. Users choose

the profile of applications, and configurations are gener-

ated based on the profile. Figure 9 is a GUI to gener-

ate configurations from the user’s knowledge. They can

input their knowledge to the template generator without

typing SPDL manually.

7

114 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 8: Template generator GUI to generate typical

configurations

Figure 9: Template generator GUI to generate using

knowledge of users

5 Evaluation

5.1 Experimental setup

In order to make sure whether SEEdit works, we used

two typical systems for experiment. One is an embedded

system configured for a small server, the other is a PC

system configured for PC server as shown below.

(1) Embedded system

• CPU: SH7751R(SH4) 240MHz

• RAM: 64MB

• Storage: Flash ROM 64MB

• Linux distribution: not used

• SELinux: Linux 2.6.22

• Running services: httpd, vsftpd, syslogd,

klogd, portmap

(2) PC system

Virtual machine (VMware 5.5) is used.

• Linux distribution: Cent OS 5 used for PC

servers

• Running services: auditd, avahi daemon,

crond, cupsd, dhclient, gdm, httpd, klogd, mc-

stransd, named, ntpd, portmap, samba, send-

mail, sshd, syslogd

Five domains are configured for services running on the

embedded system, 16 domains are configured for ser-

vices on the PC system. Access rules are written for

these services to work properly. Memory usage of the se-

curity policy on the embedded system was also measured

to evaluate whether SELinux is applicable to embedded

systems. The memory consumption by SELinux was

defined as the difference between memory usage when

SELinux enabled and that when SELinux is disabled.

5.2 Result and consideration

In the experiment, we have successfully created security

policies for both the embedded and the PC system. The

process of describing configurations, verifying configu-

rations and resource consumption are reviewed and con-

sidered. At last, trade-offs in SEEdit are also discussed.

5.2.1 Describing configurations

The first step to describe configuration is using template

generator. To evaluate template generator, the assump-

tion of knowledge on the part of the tool user is nec-

essary because generated configurations depend on the

user’s knowledge. For evaluation, it is assumed that users

know how to manage applications, i.e: they know file

path of configuration files for applications, names of log

files, names of content files which applications deliver

and port numbers for applications. Assuming this, tem-

plate generator produced 52% of the lines of configura-

tion for the evaluation systems. For example, total 24

lines of configurations were described for http service in

the PC system, and 12 lines were generated by template

generator.

Next step is to produce configurations from access

logs by allow generator. Most of the configurations gen-

erated by allow generator were able to be used without

modification except for the following two cases. First

is allow statements generated for dynamically created

files. These allow statements have to be replaced with

allowtmp statements. For example, foo t domain dy-

namically creates and removes /tmp/foo, then log entry

foo t domain write /tmp/foo is recorded. Allow genera-

tor outputs allow /tmp/foo w; from the log entry. How-

ever, it should be replaced with allowtmp -dir /tmp -

name auto w; as shown in section 4.2. Second is con-

figurations generated from log entries which record ac-

cess to normal files. Allow generator outputs allow

/var/www/index.html r; for httpd t from log entry httpd t

read /var/www/index.html. When the user knows http t

domain accesses /var/www directory, it is better to per-

mit access to directory like allow /var/www/** r;. For the

above two cases, the generated integrated permissions

still can be used without modification.

8

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 115

refpolicy SPDL

File 130 9

Network 453 14

IPC 45 7

Privilege 80 46

Total 708 76

Table 2: Number of permissions in refpolicy and SPDL

As shown above, SPDL tools generate most parts of

the configurations. In addition, to modify a generated

SPDL configuration is easier than modifying refpolicy

because the number of permissions are reduced as shown

in Figure 2, complicated macros are not necessary, and

type configurations are removed.

5.2.2 Verifying configurations

To verify created security policy, the difficulty depends

on the number of configuration lines. The number of

configuration lines in refpolicy is more than 100,000

with complicated permissions, macros and types, thus

verification of refpolicy based security policy is difficult.

On the other hand, in the experiment, the total lines of

configuration are 174 for the embedded system, 401 for

the PC system, and they are described with SPDL. There-

fore, it is easier to verify configurations in SPDL than

configurations in refpolicy.

Note that verifying configurations written in SPDL is

meaningful as long as the output of SPDL converter is

correct. Another work is necessary to ensure the result

of SPDL converter. One possible way is a test tool. The

tool inputs configurations in SPDL and is run for each

domain defined in the configurations. Next the tool tries

all access patterns to see if only accesses configured in

the policy are permitted.

5.2.3 Resource consumption

The file size of the security policy in the embedded sys-

tem is 71KB and RAM usage is 465 KB. In the system

used in the experiment, storage is 64MB, RAM is 64MB.

The consumption of storage and RAM is less than 1%.

Thus, the created security policy is usable for the re-

source constrained embedded devices.

5.2.4 Trade-offs

There are two usability-security trade-offs in SEEdit.

The first trade-off is integrated permissions used in

SPDL because integrated permissions reduce granular-

ity. For example, integrated permission for file r means

read permissions for file, symlink and socket file. There-

fore, allowing read access to symlink but not to file and

directory can not be configured by r permission. This

can be a problem in the embedded systems used in eval-

uation. In the embedded system, busybox[14] was used

for system commands. In a system where busybox is

installed, commands are executed via symbolic links to

/bin/busybox(busybox executable). When /bin/ls is sym-

bolic link to /bin/busybox and /bin/ls is executed, ls func-

tions in /bin/busybox are called. If a domain foo t needs

access to busybox commands and is configured allow

/bin/** r;, foo t domain can access symbolic links under

/bin, and foo t can use busybox commands. However, if

a confidential command file /bin/secret exists, foo t can

also access /bin/secret. If access to symbolic links were

configured separately, foo t would not be able to access

/bin/secret. To solve this problem, the security policy

generated by SPDL converter has to be edited. Another

solution is to create a new statement in SPDL that en-

ables configuring SELinux permissions directly.

The second trade-off is the audit2allow approach in

allow generator. If there is a bug or malicious code in a

program, and the program accesses files unnecessary for

the program to work correctly, allow generator outputs

configurations to permit access to such files. For exam-

ple, if code that accesses confidential data is embedded

in a CGI program by an evil programmer, then a con-

figuration that permits access to the confidential data is

outputted by allow generator after running the CGI. To

prevent such a dangerous configuration to be included in

the security policy, generated configurations should be

checked by the SEEdit user. To help the check process,

a tool that evaluates generated configurations would be

useful.

6 Related work

Linux distribution Fedora includes security policy con-

figuration tools called setroubleshoot [15], SLIDE [16]

and system-config-selinux [17]. Setroubleshoot analyzes

access logs and presents configurations when an applica-

tion does not work due to SELinux access denial. SLIDE

is an Integrated Development Environment (IDE) to con-

figure refpolicy. It has features to aid describing configu-

rations such as input completion. system-config-selinux

is a tool to generate templates of configurations for new

applications. It can generate templates using a wizard.

The above tools are intended to aid configurations using

refpolicy. The purpose is different from SEEdit because

SEEdit does not use refpolicy.

polgen[18] is a security policy generator with a higher

level language. Users of polgen first describe template

configurations for the target applications using the lan-

guage, then run the application. Next, polgen gener-

ates recommended security policy from access logs. The

purpose of the higher level language of polgen is to de-

9

116 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

scribe template configurations, and users have to handle

types and SELinux permissions after writing a template.

The purpose is different from SEEdit because SPDL in

SEEdit is intended to describe whole configurations.

SENG [19] is a higher level language for SELinux se-

curity policy. It is intended to replace m4 macros, not

to reduce the number of configurations and remove type

configurations.

Sellers et al.[20] also implemented a higher level lan-

guage and IDE called CDS Framework[21]. It is also

used in the FMAC[22] project in OpenSolaris. It en-

ables configuration from the viewpoint of information

flow control, but is not intended to simplify configura-

tions.

There is also work related to the verification of secu-

rity policy. Apol included in setools[23] has features

to query security policy, such as querying what kind

of types a domain can access. SLAT[24][25] is a sys-

tem to analyze the security policy based on informa-

tion flow goals. Analyzers describe an information goal,

then SLAT finds violations of the information flow goal.

Gokyo[26] analyzes the security policy based on Access

Control Spaces, then suggests configurations which vio-

late constraints. These tools are for SELinux policy lan-

guage, but they can be applied to configurations which

are converted from SPDL.

7 Summary

Security policy for SELinux is usually created by cus-

tomizing a sample policy called refpolicy. However, cre-

ating security policy based on refpolicy has problems in

describing and verifying configurations, and in resource

consumption.

We have proposed a security policy configuration sys-

tem SEEdit which makes creating security policy eas-

ier with a higher level language called SPDL and SPDL

tools. SPDL reduces the number of permissions by inte-

grated permissions, and removes type configurations by

name based configurations. SPDL tools help in writing

configuration by generating configurations based on ac-

cess logs and the knowledge of tool users about applica-

tions. Experimental results on an embedded system and a

PC system have shown that SEEdit resolves the problems

creating security policy and practical security policy can

be created with SEEdit.

8 Future work

There are remaining issues in ensuring the results of

SPDL converter (section 5.2.2) and trade-offs in SEEdit

(section 5.2.4). Another issue is co-existing with ref-

policy. Currently SEEdit can not be used with refpol-

icy because type configurations generated by SPDL con-

verter conflict with existing type configurations in refpol-

icy. SPDL converter has to be improved to resolve such

conflicts.

9 Availability

SEEdit is available from sourceforge[27]. It is licensed

under the GPL.

References

[1] Security-Enhanced Linux, http://www.nsa.gov/

research/selinux/

[2] Loscocco, P. and Smalley, S.: Integrating Flexible

Support for Security Policies into the Linux Oper-

ating System: Proc. FREENIX Track of the 2001

USENIX Annual Technical Conference, pp. 29 - 42

(2001)

[3] CVE-2008-0600: Common Vulnerabilities and

Exposures (2008), http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2008-0600

[4] CVE-2007-5964: Common Vulnerabilities and

Exposures (2007), http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2007-5964

[5] Boebert, W. E. and Kain, R. Y.: A Practical Alter-

native to Hierarchical Integrity Policies. Proc. the

Eighth National Computer Security Conference,

pp. 225-237 (1985)

[6] Coker, F., Coker,R.: Taking advantage of SELinux

in Red Hat Enterprise Linux:Redhat magazine

Issue 6 April 2005 (2005) ,

http://www.redhat.com/magazine/006apr05/

features/selinux/

[7] Linuxdevices.com:MontaVista readies new Linux

mobile phone OS (2007), http://www.linuxdevices.

com/news/NS4364061392.html

[8] SELinux Reference Policy, http://oss.tresys.com/

projects/refpolicy/

[9] PeBenito,C., Mayer,F., and MacMillan,

K.:Reference Policy for Security Enhanced

Linux.Proc. 2006 Security Enhanced Linux Sym-

posium (2006), http://selinux-symposium.org/

2006/papers/05-refpol.pdf

[10] Smalley,S. : Configuring the SELinux policy,

NAI Labs Report #02-007, http://www.nsa.gov/

research/selinux/docs.shtml

10

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 117

[11] GNU m4, http://www.gnu.org/software/m4/m4.

html

[12] Linux man pages for audit2allow(1), http://

linuxcommand.org/man pages/audit2allow1.html

[13] Yamaguchi, T., Nakamura, Y. and Tabata, T: In-

tegrated Access Permission: Secure and Simple

Policy Description by Integration of File Access

Vector Permission: Proc. The 2nd International

Conference on Information Security and Assur-

ance(ISA2008), pp. 40-45 (2008)

[14] Wells, N.: BusyBox: A Swiss Army Knife for

Linux, Linux Journal, vol.2000, n.78es (2000)

[15] Denis, J.: Setroubleshoot: A User Friendly

Tool to Diagnose AVC Denials: Proc. 2007

Security Enhanced Linux Symposium (2007),

http://selinux-symposium.org/2007/papers/

09-setroubleshoot.pdf

[16] SLIDE: http://oss.tresys.com/projects/slide

[17] Walsh, D.: A step-by-step guide to building a new

SELinux policy module: Redhat magazine(2007),

http://magazine.redhat.com/2007/08/21/

[18] Sniffen, B., Ramsdell, J. and Harris, D.:

Guided Policy Generation for Application Au-

thors:Proc 2006 Security Enhanced Linux Sympo-

sium (2006), http://selinux-symposium.org/2006/

papers/14-guided-polgen.pdf

[19] Kuliniewicz, P.: SENG: An Enhanced Pol-

icy Language for SELinux: Proc 2006 Se-

curity Enhanced Linux Symposium (2006),

http://selinux-symposium.org/2006/papers/

09-SENG.pdf

[20] Sellers,C., Athey, J., Shimko, S. , Mayer, F.

and MacMillan, K.: Experiences Implementing

a Higher-Level Policy Language for SELinux:

Proc 2006 Security Enhanced Linux Symposium

(2006), http://selinux-symposium.org/2006/papers/

08-higher-level-experience.pdf

[21] CDS Framework IDE, http://oss.tresys.com/

projects/cdsframework

[22] OpenSolaris Project: Flexible Mandatory Access

Control, http://www.opensolaris.org/os/project/

fmac/

[23] SETools, http://oss.tresys.com/projects/setools

[24] Guttman, J., Herzog, A., Ramsdell, J. and Sko-

rupka, C.: Verifying information goals in security-

enhanced linux: Journal of Computer Security.,

13(1), pp 115-134 (2005)

[25] MITRE Security-Enhanced Linux, http://www.

mitre.org/tech/selinux/

[26] Jaeger, T., Edwards, A. and Zhang, X.: Managing

access control policies using access control spaces:

Proc the seventh ACM symposium on Access con-

trol models and technologies (SACMAT 02), pp. 3-

12 (2002)

[27] SELinux Policy Editor Website, http://seedit.

sourceforge.net/

11

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 119

An SSH-based toolkit for User-based Network Services

Joyita Sikder
Univ. of Illinois at Chicago

Manigandan Radhakrishnan
VMware

Jon A. Solworth
Univ. of Illinois at Chicago

Abstract
Network authentication, even when using libraries in-
tended to simplify the task, is inordinately difficult. Sep-
arate libraries are used for cryptography, network authen-
tication protocols, accessing stored authentication infor-
mation, and verifying the identity of remote entities. In
addition, service used must be authorized. Finally, priv-
ilege separation is needed to separate security sensitive,
highly privileged operations from the remainder of the
application.

These tasks consume thousands of lines of application
source code (not counting the security libraries on which
they rely), and require much specialized security knowl-
edge from the application programmer and system ad-
ministrator.

In this paper we present a simple toolkit called
sshUbns which encapsulates all these tasks in an easy-
to-use tool. We modified SSH to add in sshUbns
(in addition to SSH’s other modes) and implemented a
new super-server called unetd. It reduces to a neg-
ligible level the amount of application server security
code needed. This toolkit makes it easier to create se-
cure networking code, reduces security specific knowl-
edge needed by application programmers, and makes it
easier for system administrators to protect and analyze
their systems.

1 Introduction

Network service user authentication seems to be a simple
procedure: The user provides either a password or some
cryptographic proof of her identity to the remote service.
The service verifies the user’s identity, and authentication
is complete.

In practice, however the task is far more complex:

• Passwords, if used, must be of sufficient diversity
to prevent dictionary attacks. Since attackers today

have access to large botnets, password attacks con-
sisting of millions of guesses are easily possible,
even if a host is blacklisted after a few tries. On
the other hand, if cryptography is used it must be
implemented correctly to prevent side channel at-
tacks (thus exposing secret keys) and to ensure suf-
ficient randomness of keys (preventing brute force
attacks).

• Authentication must be mutual so that the user
knows that she is talking to the legitimate service.
This is typically done cryptographically, for exam-
ple with RSA [20].

• To maintain authentication after the initial authenti-
cation protocol, cryptography is used to prevent un-
detected packet modification (and prevent viewing)
in transit. Symmetric cryptography, such as AES
[12], is used to provide these protections.

• If the service is not anonymous, it is necessary to
authorize users. The user must be allowed to per-
form the service and the service’s permissions must
be tailored to those of the user.

The complexity is not limited to cryptographic algo-
rithms and network protocols. In addition, a complex
software stack is used. For example, Generic Security
Services (GSS-API) transmits authentication tokens be-
tween client and server [17]; Network Services Switch
(NSS) accesses the stored authentication information;
and Pluggable Authentication Modules (PAM) actually
authenticates the user [22]. Failures in the use and con-
figuration of this software can violate authentication and
authorization requirements. Ensuring that these tasks are
properly done in traditional schemes requires examining
each service’s code and verifying that security services
are properly used.

Finally, traditional mechanisms are implemented with
libraries which share the address space of the applica-
tion. When application logic and authentication sit in the

120 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

same address space, there is a danger that failures in ap-
plication logic (e.g., buffer overflow) can cause authenti-
cation to fail—for example, by bypassing authentication
all together. Moreover, these applications often need su-
peruser privileges to bind to restricted ports or to change
the user ID on whose behalf the service runs. Without
careful partitioning, there is substantial code which runs
with excess privileges. If this code is successfully at-
tacked, these excess privileges increase the damage that
the attacker can do.

To prevent these authentication failures, privilege sep-
aration is used [18, 7]. Privilege separation partitions
logic over multiple processes so that most code runs with
reduced privileges. Security sensitive code is isolated in
a separate process with administrative privileges; the re-
maining parts of the application can then be run without
administrative privileges. Using privilege separation, a
highly privileged isolated process performs operations as
a proxy for the application. This requires partitioning of
the application and inter-process communication.

We consider here the most demanding of these prob-
lems, User-Based Network Services (UBNS) in which
the service process operates with user-specific privileges,
thus using the Operating System (OS) to restrict service
accesses. UBNS services use OS access controls to limit
the accesses that a service is allowed to do (by run-
ning user-specific parts of that service under the user’s
ID), and thus to isolate users from one another. Ser-
vices such as mail, calendaring, distributed file systems,
ftp, and source code revision control systems can be im-
plemented as UBNS. Examples of UBNS services in-
clude dovecot for IMAP/POP3 mail delivery [1] and
zimbra for calendaring [2]. Although such services
can and have been built without UBNS, they require in-
creased application-level authorization and pose greater
dangers due to more application-level vulnerabilities [7].

UBNS is so demanding to implement, that often less
secure mechanisms are used instead. For example, using
traditional techniques dovecot requires 24,628 lines to
support IMAP. Of that, over 9,307 lines of code are used
for user authentication alone, some 37% of the total code
base. In addition, to support privilege separation 4 differ-
ent process types are used. Using new OS mechanisms,
netAuth implemented UBNS functionality with only
5 lines (vs. 9,307 in the original dovecot) of appli-
cation code [19]! In addition, the application code was
simplified using a single process type (vs. 4 in the origi-
nal), since privilege separation was provided by the im-
plementation of the authentication. However, netAuth
required OS kernel modifications and IPSec, and hence
the code produced is not widely used.

Here, we describe a toolkit, sshUbns which provides
almost the same functionality without OS kernel mod-
ifications. The sshUbns toolkit is built on top of Se-

cure Shell (SSH) [26]. Unlike library-based approaches,
sshUbns is implemented in two separate services, a
modified SSH and unetd. It uses SSH’s strong cryp-
tographic authentication and cryptographic protection of
communications over the network; it adds end-to-end
security for networked applications. It provides strong
protections needed for UBNS and yet is very simple to
use. This simplicity is in three separate forms: (a) it is
easier for system administrators to set and analyze pro-
tections; (b) there is less code for application program-
mers to write; and (c) higher level abstractions require
less security expertise from the application programmer.
Hence, the programmer and system administrator’s task
is simplified since the tool implements authentication,
encryption and authorization.

Moreover, sshUbns is implemented using privilege
separation. Like the kernel-based netAuth, sshUbns
provides strong protections with a minimalistic program-
ming interface. It allows system administrators to easily
control who can use a service and to easily launch ser-
vices, since these protections are provided in a service-
independent way by the toolkit. Because it provides a
simple toolkit for these important services, a system ad-
ministrator’s job of securing their system is vastly simpli-
fied. The sshUbns toolkit also supports the easier-to-
implement class of services that are restricted to certain
users but do not differentiate between authorized users,
and hence may run as a pseudo user. However, we’ll fo-
cus here on the support for UBNS.

The remainder of the paper is organized as follows.
Section 2 describes related work. Section 3 describes
SSH’s port forwarding mechanism, which is the starting
point for constructing sshUbns. Section 4 describes
the sshUbns architecture. Section 5 measures the ef-
fectiveness of the implementation. Section 6 describes
implementation alternatives and finally we conclude.

2 Related work

UBNS and privilege separation are two complementary
ways to partition a service into multiple processes. Priv-
ilege separation is used to split an application into root
and non-root processes. Both UBNS and privilege sepa-
ration are design strategies to maximize the value of least
privilege [21]. Retrofitting privilege separation is not dif-
ficult since root privileges are a super set of ordinary user
privileges, and there exists both libraries [15] and com-
piler techniques [9] to do it. UBNS is more invasive as
the privileges of different users overlap, and hence the
protection of files and users which own processes must
be carefully considered at the start of design.

SSH is a widely used UBNS service [26, 18], but is ill-
suited to implement UBNS-based network services be-
cause of the way network services are built. In the net-

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 121

work case, the listening process exists before the con-
nection is made and must know at connect time which
user is associated with the service. SSH’s port forward-
ing performs user authentication at the service host—but
not at the service—and hence, to the service, the users of
a host are undifferentiated. As a result, traditional UBNS
services use authentication mechanisms such as SSL or
passwords and OS mechanisms such as setuid which
are awkward to program and may not be secure.

Alternatively, SSH allows a remote executable to be
invoked, but that remote executable is not connected to a
network service. Similarly, hg-login [3], as used in Mer-
curial, performs remote authentication using SSH, but
execs a new program rather than connect to a running
network service.

In contrast, sshUbns both authenticates and autho-
rizes the user, so that the service runs only with the
permission of the user. Unlike SSH, sshUbns pro-
vides end-to-end security from client to service. The
stunnel tool could have been used as an alternative to
an SSH-based implementation—it provides similar pro-
tections to SSH port forwarding; the primary reason we
chose SSH is because it uses a fixed port which is already
allowed by our firewall rules.

The OKWS web server [16], built on top of the As-
bestos OS [11] does a per-user demultiplex, so that each
web server process is owned by a single user—it is an-
other example of a UBNS. However, this facility is pro-
vided at the HTTP level via cookies, while the technique
presented here is application (and application protocol)
independent.

Kerberos [23] performs encryption using private key
cryptography. Microsoft Windows’ primary authentica-
tion mechanism is Kerberos. Kerberos works well in
the enterprise, when the user it authenticates is part of
the enterprise, but works less well in widely distributed
systems. The problem in this setting is that the clients
must be “kerberized versions”. Kerberos does not di-
rectly support UBNS. Moreover, implementing Kerberos
for an application is more complex, and less modular
than sshUbns. Kerberos does have an advantage over
our scheme in that it has a key distribution mechanism
while SSH does not.

Distributed authentication consist of two components:
a mechanism to authenticate the remote user and a means
to change the ownership of a process. Traditionally,
UNIX performs user authentication in a (user space)
process and then sets the User ID by calling setuid.
The process doing setuid needs to run as the supe-
ruser (administrative mode in Windows) [24]. To reduce
the dangers of exploits using such highly privileged pro-
cesses, Compartmented Mode Workstations divided root
privileges into about 30 separate capabilities [6], includ-
ing a SETUID capability. These capabilities were also

adopted by the POSIX 1e draft standard [5], which was
widely implemented, including in Linux.

Plan9’s OS kernel uses a fine grained one-time-use ca-
pability [10], which allows a process owned by user U to
change its owner to U . It works with factotum, a user
space process which actually performs the cryptography
for the application. The sshUbns toolkit unlike Plan9
uses only generic POSIX mechanisms, and thus does not
require kernel modifications.

Distributed Firewalls [14] (based on Keynote [8]) in
contrast to SSH, implements per user authorization for
services by adding it to the OS kernel implementation of
connect and accept APIs. While Distributed Fire-
walls sit in front of the service, and thus are not inte-
grated with the service, Virtual Private Services are in-
tegrated and thus can provide UBNS services [13], but
unlike sshUbns, this relies upon kernel modifications.

3 SSH port forwarding

The closest service to sshUbns is SSH port forward-
ing. Using SSH, a command, executed by the user on the
client

ssh -L 3000:localhost:25 example.com

results in the local port (3000) being tunneled to host
example.com at port 25. The command is success-
ful if sshd is running on example.com; the user has
an account there; and port 25 is bound.

Now a process on the client can reach the service
at port 25 at example.com by accessing port 3000
on the client. The connection between hosts is authen-
ticated and cryptographically protected. The protec-
tion is coarse grained, since any user on the client may
connect to port 3000—even those without accounts on
example.com. Moreover, the service at port 25 (smtp)
does not know which user is sending to it, although fire-
wall rules can ensure that the port is only reachable from
within example.com.

The above example assumes that the user name on the
client is the same as on the server. If instead, the user’s
name at example.com is say, dave, then the SSH
command would be:

ssh -L 3000:localhost:25 \
dave@example.com

Although we shall assume the names match in the fol-
lowing text neither SSH nor sshUbns require this.

Figure 1 shows the traditional SSH port forwarding.
(For simplicity, we leave out the server-based root-owned
SSH processes which are used to establish the SSH con-
nection). SSH authenticates and encrypts the traffic be-
tween client and server hosts. SSH ensures that the end-
points of the SSH tunnel are owned by the same user (U2

122 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

client

U1

ssh

U2

sshd

U2

service

U3

tunnel

CLIENT SERVER

Figure 1: Client host to Service path using traditional SSH tunneling. Processes are indicated by circles or rounded
edge rectangles. Above the interior line is the name of the executable, below the line is the user who owns the process.

in the Figure). However, because it is based on network
ports—which don’t perform any authentication—neither
client to ssh network connection nor the sshd to
server connection is authenticated. Thus traditional
SSH is coarse grained, it is insufficient for UBNS such
as mail, calendaring, etc. Moreover, since the ultimate
user is unknown, logging effectiveness is very limited.
Thus we turn to the architecture of sshUbns.

4 Architecture

In contrast to traditional SSH port forwarding, shown in
Figure 1, sshUbns maintains the same user from client
application to service, as shown in Figure 2. (Although
the user is the same, the user name and user ID may be
different on client and server, as per the previous sec-
tion). It is this end-to-end property which ensures that
the user is the same along the entire path which distin-
guishes sshUbns from SSH port forwarding.

The architecture we have implemented consists of
three components:

SSH modifications which adds a UBNS mode to client
and server sides,

unetd is a simple super-server which supports UBNS,
and

server modifications which provide UBNS code to ap-
plications.

Of these, by design the server modifications are by far the
smallest, since it minimizes the cost of porting servers to
sshUbns. All the other code is independent of specific
services.

4.1 SSH modifications
We have modified SSH to create a UBNS tunnel. This
was done by modifying the port forwarding mode of

SSH. The first step is to invoke SSH in UBNS mode from
the client:

ssh -u -L 3000:localhost:25 \
example.com

It is the “-u” which invokes sshUbns. (Alternatively,
autossh—which automatically restarts SSH if there is
a connection failure—can be used to make the connec-
tion robust even when the IP address changes).

We modified both the client side (ssh) and the server
side (sshd) of SSH. On the client side, the ssh pro-
cess which connects to the local port must be running
and must be owned by the same user as the client pro-
cess. This prevents other users on the client system (who
don’t have accounts on the server) from piggybacking on
a legitimate user’s port forwarding to the server system.
Thus sshUbns is significantly safer than vanilla SSH
port forwarding.

On the server side, we have written a sshUbns mode
for sshd (based on its port forwarding mode) which in-
terfaces with the service and runs on behalf of the remote
user. It gets the port number of the user service process
using a per service directory which is part of unetd (de-
tails are given in the next section).

For simplicity, we describe sshd as a process which
runs on behalf of a user. Actually, to provide privilege
separation sshd consists of two types of processes; one
type which runs as root and the other as the user. How-
ever, only the user-owned process communicates with
unetd and the UBNS.

TCP/IP are used everywhere except for a Unix domain
socket between sshUbns components on the server
side. Since the Unix domain socket is created in the
file system, permissions can be (and in sshUbns are)
set to ensure that the same user who creates the socket
opens the existing socket. Unix domain sockets are not
available on Windows computers, and in such a case it
is possible to use TCP/IP sockets. However, where Unix
domain sockets are available they are preferred.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 123

client

U
ssh

U
sshd

U
service

U

tunnel

CLIENT SERVER

Figure 2: Client to host service path using sshUbns. The client, ssh, sshd, and service all run under the
same user.

root

unetd/FTP

unetd/POP3

unetd/tenet

root

root

root

forkunetd

Figure 3: unetd and the service processes it spawns

For TCP/IP connections there is no standard method
for user authentication and hence application-level pro-
tocols such as SSL are often used. However, when both
ends of a TCP/IP connection are on the same host, it
is possible to use OS calls to authenticate unmodified
TCP/IP traffic. Although the method is non-standard
across OSs, each of the major operating systems (Win-
dows, Linux, Mac OSX) can determine the process and
owner of the process which is at the other end of a
local TCP/IP connection. For example, this informa-
tion is available using lsof in UNIX-based systems or
openports in Windows-based systems.

4.2 Unetd

We have written a daemon, unetd (for user-based
network daemon) that launches UBNSs and authorizes
users. Unetd is modeled after other super-servers such as
inetd and tcpd. The configuration for unetd stored
in /etc/unetd/unetd.conf contains lines of the
form:

port group * args

The port (or service) specifies the desired service; the
group specifies those users who are authorized for that
service. The “*” is optional and means concurrent server,
in which one process is spawned for each user connec-
tion. Without the “*” the server process for each user is
sequential, meaning at any time there is at most one pro-
cess per user. The args are the arguments with which
unetd/service starts up (that is, execs) the service.
Thus, our mechanism is sufficiently expressive to imple-
ment the primary different server types. We could also
implement preforked servers, but believe unetd is suf-
ficiently flexible without it.

Unetd runs as root, and creates a process per service.
As a running example, we’ll use POP3 as a service. For
POP3, the created per-service unetd process is called
unetd/POP3 which listens to the port specified on its
service configuration line. The service unetd/POP3
does not contain any POP3-specific code, its purpose is
to authenticate the user and direct the connection to the
appropriate user-owned POP3 server.

It also checks that the user is authorized to use the ser-
vice. When a POP3 sshUbns request arrives, sshd
connects to the unetd/POP3 and requests the port
number of the POP3 process which is specific to that
user. Finally, the POP3 process performs the user spe-
cific request, relying on the OS’s access controls to en-
sure the accesses are appropriately authorized.

Figure 3 shows a unetd process which creates three
different service processes, including unetd/POP3.
All of the processes here are generic; the actual service
(and the vast bulk of the code) is performed by user-
based services that do not run with administrative per-
missions. Each service process is created to listen to a
single inquiry port from sshd and launch the appropri-
ate user based service.

Figure 4 shows the complete tree of processes cre-
ated by unetd, including the service specific compo-
nent. Each arrow indicates a process was forked. As can
be clearly seen unetd is a UBNS and all server specific

124 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

unetd
root

POP3

U1

POP3
U2

POP3

U2

POP3

Un

unetd/FTP unetd/POP3 unetd/telnet

rootrootroot

Figure 4: Three levels of processes created by unetd.
For each process, a process identifier is shown on top,
and the user ID on behalf of which the process runs (ei-
ther root or ordinary users U1, U2, or Un are shown).

fork()
exec(...)

root
U

U

sshd unetd/POP3

POP3

Figure 5: Creating the user-based service

code runs without root privileges.

4.3 Service support

It is trivial to modify a service for UBNS support. The
port is opened by the parent process, so the only thing
for the service to do is to check that the user of the user-
based network service is the same as that of the process
at the other end of the TCP/IP or Unix domain socket
connection.

This checking is done by replacing the accept call
with the acceptUBNS library call which does both ac-
cept and user ID checking. We note that this is the
only security-specific call done by the service, the ser-
vice has no need to deal with cryptography, authentica-
tion, user authorization, or privilege separation which are
all generic services provided by sshUBNS.

The flow of service invocation on the server is shown
in Figure 5. The sshd process sends to unetd/POP3
its TCP port (having previously done a bind) and re-
quests it to send it the port for user U ’s POP3 service. If
none exists, or if POP3 is set up as a concurrent service,
then a user-based service is created. Then unetd/POP3
returns the port number. The sshd process then di-
rectly connects with POP3 server forU ; U ’s POP3 server

then does an acceptUBNS which ensures that sshd is
owned by U thus completing the authentication.

4.4 End-to-end invocation of a user-based
service

There is no change to client application code. The
client configuration must specify the local port and
local host to connect to ssh rather than directly to the
service.

We consider the overall flow of a connection. Be-
fore this flow begins, we assume that (a) ssh in UBNS
mode has been invoked on the client (and sshd has
been started on the server) and (b) the server has in-
voked unetd which has started each UBNS, such as
unetd/POP3. The overall flow from beginning to end
of connection establishment is diagrammed in Figure 6.
The trace of a connection is as follows:

1. the client application connects to ssh on the client,

2. ssh on the client connects to sshd on the server,

3. sshd

(a) binds to a TCP/IP port p

(b) sends p to unetd/POP3 and asks for U ’s
port address for POP3,

4. If the user is not in the group of users who are autho-
rized to use that service, then unetd/POP3 sends
a failure message to sshd. Otherwise

5. If “*” has been specified in the configuration
file or if there is no service for that user, then
unetd/POP3 does the following

(a) a TCP/IP listening socket is created for the
process to be forked,

(b) a service process is forked and execed,

(c) the UID of the resulting process is changed,
and

(d) the service executable is execed.

6. The unetd/POP3 process replies back to sshd
with the port number of the user’s service process,
and

7. sshd connects to the user’s service process. which
tests that it is coming from port p. Since sshd has
been bound to port p, the connection must be from
the specified user.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 125

Client
U

ssh
U

sshd
U

unetd/FTP
root

FTP
U

tunnel

1 7

2

3

4,6

5

CLIENT SERVER

Figure 6: Overall flow

measure time
real 0.004
user 0.000
sys 0.003

Figure 7: Time for a client response in seconds

5 Experimental results

We have performed some initial testing of the perfor-
mance of sshUbns. The testing was done on an
AMID 4600+ 64x2 Dual Core in 64-bit mode. The
software base is OpenSSH 5.1 (patch 1) and we ported
dovecot’s POP3 server. Testing was done on a gigabit
LAN. We used RSA keys.

In Figure 7 the client response time is shown for a
remote use of POP3. The client side is much easier to
measure than the server side, since we can simply mea-
sure the time for a trivial POP3 session, in which the only
command is “bye”. Total CPU elapse time is .004 sec-
onds on the client side; we expect the server time to be
slightly longer as it has an extra connection (to find the
port of the UBNS). The first time sshUbns runs for a
user it must also do a fork-exec of the user-owned ser-
vice.

We have done some primitive tests to measure band-
width using 10 users each doing 100 connections, the
numbers are shown in Figure 8. The results show 295
connections per second on a dual core, or 147.5 connec-
tions per core per second. We have not had yet an oppor-
tunity to do any tuning which we expect will significantly
increase performance.

We intend to do a number of ports to sshUbns, for
example of web servers and calendaring systems.

measure 10 users
real time 3.390
user time 1.636
sys time 3.488

connections/second 295

Figure 8: Bandwidth measure (connections/second) and
time for 10 users to each performed 100 POP3 connec-
tions

6 Alternatives and future work

We would have liked to use UNIX Sockets through-
out. This would have removed the need to do an
acceptUBNS instead of an accept and authorization
to connect to the UNIX socket could be done by the
UNIX socket mechanism. Unix domain sockets are also
considerably faster than using lsof. This performance
advantage is far more important on the server side, and
hence we have assumed it for our server experiments.

Using UNIX Sockets is considerably less attractive on
the client side, since (1) client software many not be un-
der the control of the server organization, (2) client soft-
ware may be proprietary and hence not easily modified,
and (3) there may be many different implementations of
client software (e.g., many different mail user agents)
thus increasing the difficulty of modifying them. The
performance issues for the client are small, since each
client is expected to use only a relatively small number
of sshUbns connections.

SSH can be set up to be based on public key only, or
to allow a combination of public key and password. Pub-
lic key authentication is more secure, but requires some
method for installing the public keys on the servers.

We could have used the ability to transfer a file de-
scriptor over a UNIX socket to make unetd/POP3 send
the connection transparently to POP3 service for that
user. This would allow local (i.e., non-networked) clients

126 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

to connect transparently to a UBNS. We will implement
this in the next version of our software.

The current implementation requires patching sshd
and possibly to the application (if we choose to use
UNIX sockets for communication). A less invasive ap-
proach would be to make these changes as part of some
library or wrappers (like TCP Wrapper [25]) that are
linked with the program. This imposes difficulties for
two reasons: (1) the communication between sshd and
unetd/POP3 and between POP3 and unetd/POP3
has to be done in the library or wrapper and as part of
accept or connect and (2) both sshd and the ap-
plication (POP3) may be required to perform security
critical operations before and/or the establishment of a
connection that may not be securely performed without
patching the application.

It would be interesting to extend this mechanism to
applications which don’t easily support port redirection
(e.g., some web servers). Since the ports are not known
in advance, some mechanism would be needed to exam-
ine packets without redirection; we are considering us-
ing TUN/TAP for this interface [4]. The TUN interface
would also make invoking sshUbns transparent on the
client.

The design of sshUbns is intended to be able to run
on Windows as well as Unix-based hosts. We have used
Unix domain sockets in only one single place, on the
server side. To port this code to a Window’s server,
it would be necessary to use some other form of IPC,
for example TCP/IP and to use openports for authen-
tication between sshd and unetd/POP3. Similarly,
openports could be used on the client side for con-
nection between the application and ssh.

We have not made any attempt to make sshUbns fast.
For large configurations, the cost of doing these opera-
tions may be significant, and performance optimization
important. This is left for future work.

7 Conclusion

Often, it is assumed that security must be traded off
against other properties such as usability or code com-
plexity. Sometimes, however, we pay a far higher price
for security than is necessary, largely because of the his-
tory of incrementally adding security. Comprehensive
toolkits—which manage a set of related security issues—
can have significantly lower overall complexity than a
piecemeal approach while attaining strong security.

We built this tool because we wanted a better way
of using and constructing authenticated services. The
toolkit, sshUbns, is painless to use as it requires only
a single line of code in an application to provide au-
thentication, authorization, encryption. It is privilege
separated, thus isolating security sensitive operations

from the application. Issues of key size, authentication
method, and many other issues become irrelevant for the
application programmer. However, porting code is more
involved because of the large number of lines of code
which must be removed from legacy code. We plan to do
several more ports.

The sshUbns toolkit is particularly attractive for
system administrators. First, system administrators are
adept at configuring solutions from tools. Second,
sshUbns is general purpose and thus applicable to a
whole range of networked applications. Third, it builds
on well known tools and concepts, notably SSH and
super-servers. Fourth, it avoids much of the need to indi-
vidually examine application code and configurations to
determine setting, a time consuming and unfortunately
error prone process. Fifth, it is consistent across applica-
tions, reducing user education and system documentation
issues.

Acknowledgements The program committee review-
ers provided detailed, extensive, and useful comments.
Two of the reviewers served as shepherds for the paper.
David Plonka did an amazing and energetic job of pro-
viding many notes, giving us suggestions, and keeping
us on schedule. William LeFebvre provided useful com-
ments and kept us centered on the most important issues.
Thanks to Wenyuan Fei, Prasad Patil, and Michelle Zhou
for proofreading.

References
[1] http://www.dovecot.org/.

[2] http://www.zimbra.com/.

[3] http://www.selenic.com/mercurial/wiki/index.cgi/SharedSSH.

[4] vtun.sourceforge.net/tun/.

[5] IEEE/ANSI Draft Std. 1003.1e. Draft Standard for Information
Technology–POSIX Part 1: System API: Protection, Audit and
Control Interface, 1997.

[6] Jeffrey L. Berger, Jeffrey Picciotto, John P. L. Woodward, and
Paul T. Cummings. Compartmented mode workstation: Proto-
type highlights. IEEE Transactions on Software Engineering,
16(6):608–618, 1990. Special Section on Security and Privacy.

[7] Daniel J. Bernstein. Some thoughts on security after ten years
of qmail 1.0. In First Computer Security Architecture Workshop,
page 1. ACM, 2007. Invited paper.

[8] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
RFC 2704: The KeyNote Trust-Management System Version 2,
September 1999.

[9] David Brumley and Dawn Xiaodong Song. Privtrans: Automat-
ically partitioning programs for privilege separation. In USENIX
Security Symposium, pages 57–72, 2004.

[10] Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean Quin-
lan. Security in Plan 9. In Proc. of the USENIX Security Sympo-
sium, pages 3–16, 2002.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 127

[11] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart,
Cliff Frey, David Ziegler, Eddie Kohler, David Mazières, Frans
Kaashoek, and Robert Morris. Labels and event processes in the
asbestos operating system. SIGOPS Oper. Syst. Rev., 39(5):17–
30, 2005.

[12] FIPS. Advanced Encryption Standard (AES). National Institute
for Standards and Technology, pub-NIST:adr, November 2001.

[13] Sotiris Ioannidis, Steven M. Bellovin, John Ioannidis, Angelos D.
Keromytis, and Jonathan M. Smith. Virtual private services: Co-
ordinated policy enforcement for distributed applications. IJNS,
4(1), January 2007. http://www1.cs.columbia.edu/

˜angelos/Papers/2006/ijns.pdf.

[14] Sotiris Ioannidis, Angelos D. Keromytis, Steve M. Bellovin, and
Jonathan M. Smith. Implementing a distributed firewall. In Pro-
ceedings of the 7th ACM conference on Computer and Commu-
nications Security, pages 190–199. ACM Press, 2000.

[15] Douglas Kilpatrick. Privman: A library for partitioning appli-
cations. In USENIX Annual Technical Conference, FREENIX
Track, pages 273–284. USENIX, 2003.

[16] Maxwell N. Krohn. Building secure high-performance web ser-
vices with OKWS. In USENIX Annual Technical Conference,
General Track, pages 185–198, 2004.

[17] John Linn. Generic interface to security services. Computer Com-
munications, 17(7):476–482, July 1994.

[18] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing
privilege escalation. In Proceedings of the 12th USENIX Security
Symposium, pages 231–242. USENIX, August 2003.

[19] Manigandan Radhakrishnan and Jon A. Solworth. NetAuth: Sup-
porting user-based network services. In Usenix Security, pages
227–242, 2008.

[20] Ronald Rivest, Adi Shamir, and L. Adleman. On digital signa-
tures and public key cryptosystems. Communications of the ACM
(CACM), 21:120–126, 1978.

[21] J. H. Saltzer and M. D. Schroeder. The protection of information
in computer system. Proceedings of the IEEE, 63(9):1278–1308,
1975.

[22] Vipin Samar. Unified login with Pluggable Authentication Mod-
ules (PAM). In Clifford Neuman, editor, Proc. ACM Conference
on Computer and Communications Security (CCS), pages 1–10.
ACM Press, 1996.

[23] Jennifer G. Steiner, B. Clifford Neuman, and J. I. Schiller. Ker-
beros: An authentication service for open network systems. In
Winter 1988 USENIX Conference, pages 191–201, Dallas, TX,
1988.

[24] W. Richard Stevens. Advanced Programming in the UNIX Envi-
ronment. Addison-Wesley, 1992.

[25] Wietse Venema. TCP WRAPPER: Network monitoring, access
control and booby traps. In Proceedings of the UNIX Security
III Symposium, pages 85–92, Baltimore, MY, USA, September
1992. USENIX Association.

[26] Tatu Ylonen. SSH—secure login connections over the Internet.
In Proc. of the USENIX Security Symposium, pages 37–42, San
Jose, California, 1996.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 129

Federated Access Control and Workflow Enforcement

in Systems Configuration

Bart Vanbrabant, Thomas Delaet and Wouter Joosen

{bart.vanbrabant, thomas.delaet, wouter.joosen}@cs.kuleuven.be

DistriNet, Dept. of Computer Science,

K.U.Leuven, Belgium

Abstract

Every organization with more than a few system administrators has policies in place. These policies define who is

allowed to change what aspects of the configuration of a computer infrastructure. Althoughmany system configuration

tools are available for automating configuration changes in an infrastructure, very little work has been done to enforce

the policies dealing with access control and workflow of configuration changes. In this paper, we present ACHEL.

ACHEL makes it possible to integrate fine-grained access control into existing configuration tools and to enforce an

organization’s configuration changes workflow. In addition, we prototype ACHEL on a popular configuration tool and

demonstrate its capabilities in two case studies.

1 Introduction

Because the scale of modern computer infrastructure

keeps increasing, so automation has become a crucial

part of system configuration. Tools are important in sys-

tem configuration for increasing the automation and au-

tonomy of computer infrastructures. These tools have

contributed to successfully scaling infrastructures with-

out a linear growth in manual system administration [11].

A typical system configuration tool [9] translates a

configuration specification to a per-system profile. Such

a profile describes the desired state of a managed sys-

tem. A local component of the system configuration

tool checks whether the current state of the target sys-

tem matches the intended profile and makes adjustments

if necessary [10, 14, 19, 25, 32]. This local component

is called the deployment engine of a system configura-

tion tool. The configuration specification for the con-

figuration tool is often retrieved from a central version-

controlled repository [9, 21, 22, 33] such as CVS or Sub-

version. Such a repository provides a full history of the

infrastructure’s configuration. All configuration changes

are directly checked into this central configuration spec-

ification repository.

Managing an infrastructure based on a centrally avail-

able configuration specification comes at a price. Be-

cause the central specification controls all aspects of all

managed systems, control over the specification means

Figure 1: Conceptual overview of systems configuration

without and with ACHEL.

130 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

control over all managed systems in the infrastructure.

From a security perspective, the configuration specifica-

tion repository requires very strict access control. Unfor-

tunately, most existing tools do not provide any access

control mechanisms, but rather reuse the access control

available in the revision control repository [10, 14, 17,

19, 25, 32]. The access control systems of these revision

control repositories default to allowing or denying full

access based on the credentials of the user.

Although the hardware and the software in all infras-

tructures is quite comparable, the organization of sys-

tem administration varies between different infrastruc-

tures [9, 22]. These differences can be attributed to sys-

tem administration being organized either in a central or

in a federated manner, as well as to the existence of dif-

ferent policies: certain infrastructures integrate changes

directly into the configuration specification, others re-

quire changes to be approved by management, and yet

others require rigorous quality control before a change

is deployed. It is very hard to support these workflows

in existing systems because of the limited workflow en-

forcement supportthat these systems provide [6, 16, 28].

In this paper we present ACHEL, a framework that en-

ables the integration of fine-grained access control into

existing configuration tools and enforces configuration

change workflows in federated infrastructures. Figure 1

shows a conceptual overview of the process of updat-

ing a configuration specification, both with and with-

out ACHEL. To improve the expressiveness of the ac-

cess control rules, these rules are defined at the same ab-

straction level as the configuration specification language

supported by the system configuration tool. ACHEL

achieves this by taking the structure and the mean-

ing of the configuration specification into account when

generating semantically meaningful changes, instead of

identifying changes line by line, such as the common

diff-algorithm used in source code management does.

ACHEL uses these semantically meaningful changes and

the author history of each configuration statement to de-

fine fine-grained per user access control rules. Because a

large portion of ACHEL is language agnostic, support for

new configuration specification languages can be added

with limited effort, as we did in our prototype.

ACHEL’s second contribution is that it enforces work-

flow on configuration specification changes between

repositories. We define a workflow as a set of rules that

defines what steps a change should go through before it

can be deployed on the managed infrastructure. ACHEL

provides flexible workflows for centralized and federated

infrastructures by building on a distributed version con-

trol system [2] and combining it with our fine-grained ac-

cess control rules. A service or user signals its approval

of a change by digitally signing the globally unique re-

vision identifier that each distributed version control sys-

tem provides. Access control rules are extended to en-

able them to require a signature before changes are al-

lowed for inclusion. For example, ACHEL can enforce

a company policy that requires changes to be signed off

by a manager or an automated validation service before

they are deployed.

The remainder of the paper is structured as follows:

First, we discuss related work in section 2. Next, we

discuss our design and how access control and workflow

enforcement is applied. In section 4 we discuss the pro-

totype we have developed, and in section 5 we evaluate

our prototype.

2 Related Work

In the state of the art of system configuration tools, vari-

ous levels of integrationwith version control systems and

granularity of access control are available [10,14,18,19,

24,32]. But only very limited work on workflow enforce-

ment of changes seems to be available [14, 25]. Using

version control in configuration specification repositories

is an idea that is used or recommended by most existing

tools. Access control on these repositories is usually en-

forced by authenticating users, and it allows either full

access or limited access to directories per user in a man-

ner similar to that of a file system in an operating system.

Some tools [16,18,24] are able to do a more fine-grained

access control on a higher abstraction level, but none of

them include any provisions for enforcing a workflow on

configuration specification updates.

• BCFG2 [19] includes basic integration with ver-

sion control repositories through a plug-in that gets

the configuration specification from a SVN or Git

[3] repository. BCFG2 uses the revision from the

repository in reports about the configuration pro-

cess, but does not provide any access control and

relies fully on what the repository provides. Direct-

ing Change Using BCFG2 [21] details an approach

to deploy complex configuration changes. These

changes are split into steps, each of which needs

to be deployed before the next can be executed. A

script checks the BCFG2 reports for successful de-

ployments before the next step is deployed.

• LCFG [10] does not integrate with version control

systems, but the LCFG guide [8] does refer to using

a CVS repository as the configuration database.

• Cfengine [13, 14] also recommends using version

control systems as a configuration repository. [28]

suggests using branches or tags to create different

staging environments, for example for testing, pro-

duction, and development, but no tools seem to be

2

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 131

available to enforce a workflow between these envi-

ronments.

• Like most other tools, Puppet [25] suggests using

version control repositories as a best practice on

their wiki. It also contains examples for adding

syntax validation before a change is accepted in the

version controlled repository [4]. Additionally, the

Puppet wiki suggests different branches for differ-

ent environments, such as testing and production

[5, 6].

• DACS [32] includes tight integration with CVS or

subversion. It hooks into the version control system

to do basic checks such as syntax validation before

a change is accepted.

• DevolvedManagement of Distributed Infrastructure

with Quattor [16] describes how several European

grid infrastructures manage large distributed infras-

tructures with sites under different administrative

domains. They all use Quattor, a system configu-

ration tool that uses the Pan configuration language

[17]. In their workflow they include Subversion

as version control repository. One of the problems

with their current implementation is the inability to

enforce fine-grained authorization. They handle this

problem by modularizing the configuration specifi-

cation using namespaces that the compiler enforces

in the file name. This allows Subversion to enforce

access control on file names, but the specification in

one namespace can still access other namespaces,

thus bypassing the Subversion access control.

• Machination [24] provides fine-grained access con-

trol based on manipulation primitives of the XML

input language. Although at a higher level than

providing access based on the file names, there is

still an abstraction gap between the configuration

specification and the access control. The manipula-

tion primitives express what can be changed in the

XML input and do not directly express what can be

changed in the input specification, thus causing an

abstraction gap between the access control rules and

the input specification.

• PoDIM [18] includes rules to filter statements be-

fore they are applied to the network. These rules are

specified at the same abstraction level as the source

and apply directly to the statements in the source

specification. However, there are no facilities to en-

force a workflow: the specification becomes invalid

and cannot be deployed if a change is added that

depends on a change that is not approved.

Most tools rely on the coarse-grained access control

available in version control repositories. Some tools,

such as Machination [24], provide very fine-grained ac-

cess control based on the configuration specification, but

at a lower abstraction level than the specification a sysad-

min writes. PoDIM [18] offers filtering of statements at

the same abstraction level as the specification but lacks

integration with workflow enforcement, thus making it

hard to use. Cfengine [14] and Puppet [25] do include

provisions to use different branches of version control

repository for different stages in deployment in the same

configuration server, but cannot enforce workflows be-

tween these stages. ACHEL solves these problems by

performing access control based on semantically mean-

ingful changes and it adds flexible workflow enforce-

ment.

3 Design of ACHEL

ACHEL provides fine-grained access control which is

applied on the semantics of configuration specification

changes, as well as version tracking and workflow en-

forcement. Figure 2 shows a possible workflow and the

access rules that can be enforced with ACHEL. This fig-

ure also provides an architectural overview of the dis-

tributed components of ACHEL. Each agent involved

in the configuration of an infrastructure has his own

ACHEL repository that is based on a distributed version

control repository. The agents are not only system ad-

ministrators or the system configuration tool, but can also

be automated review or other validation services that are

required by the company policy for deploying configura-

tion updates. Section 3.1 explains the concepts and the

operation of distributed version control systems.

Access control is applied on each of the repositories in

Figure 2. Section 3.2 describes how this fine-grained se-

mantic access control is implemented by analyzing the

changes between versions at the language level. Fi-

nally, section 3.3 details how flexible workflows between

the DVCS repositories in Figure 2 are enforced through

combining features of distributed version control sys-

tems, digital signatures and fine-grained access control.

3.1 Distributed version control

ACHEL builds on a distributed version control system

to provide flexible workflows [2] for updating a config-

uration specification. In contrast with traditional version

control systems, where a central repository keeps track of

all history, distributed version control systems (DVCS)

use a different architecture. Instead of having to interact

with a central repository to examine the history, com-

mit changes or use branches, each user has his own lo-

cal repository. This local repository not only contains a

copy of the version he is working on, but also a complete

3

132 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 2: A possible workflow that ACHEL can enforce for the purpose of including a change in the configuration

specification repository.

project history, branches, etc. All familiar version con-

trol operations such as examining the history, switching

to other branches and even committing changes are local

operations in a DVCS.

A DVCS enables flexible workflows because it can

easily share information such as committed changes or

new branches between individual repositories. Informa-

tion is exchanged via push and pull operations. A push

transfers local information to a remote repository, and

a pull copies remote information to the local repository.

When distributed repositories are used, there is no cen-

tral repository, so a repository is only authoritative by

convention. Another consequence of having distributed

repositories is that a DVCS cannot use sequential revi-

sion identifiers as traditional version control systems do.

Instead, DVCSs use a different mechanism to ensure that

revision identifiers are globally unique. However, if two

revisions in different repositories have the same history

and introduce the same change, then the identifier needs

to be equal. For example, Git [3] andMercurial [27] both

use SHA-1 hashes to identify revisions in the repository.

The hash is based on the data in the files, on revision

metadata and on the parent revisions. One useful conse-

quence of this fact is that a revision identifier identifies

and proves the integrity of a revision and all previous re-

visions. This hash is called the revision identifier.

ACHEL provides a sysadmin with flexible develop-

ment workflows. ACHEL inherits these workflows from

the DVCS it is built on. For example, a sysadmin can

commit without interfering with changes from others.

With authentication and authorization in the mix, flex-

ible workflows become even more important: a user

can commit changes that require authorization, without

blocking the deployment of other consecutive changes

that have already been approved. A DVCS can also be

used in a more traditional manner whereby each sysad-

min synchronizes his repository with a central authori-

tative repository, which in ACHEL is the repository the

system configuration tool uses. In larger federated infras-

tructures a hierarchy of repositories can be used. Using a

DVCS also enables sysadmins to share work with others

directly. For example, two sysadmins who are preparing

a new configuration for some service, share a common

branch and share changes independently of the author-

itative repository. Once their work is ready, it can be

pushed to the authoritative repository for deployment.

3.2 Access Control

ACHEL enables fine-grained access control based on the

semantics of the changes in the configuration specifica-

tion. In contrast, most existing tools rely on the access

control provided by the operating system or version con-

trol system. Access rules can be expressed as a function

of three things: 1. the contents of a change, using seman-

tically meaningful changes; 2. the owner of the configu-

4

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 133

ration statement that has been changed; 3. the author of

the change. To perform access control based on semanti-

cally meaningful changes, the access control component

of ACHEL needs to understand what the statements in a

configuration specification are. The changes to which the

access control rules are applied are generated by analyz-

ing the differences between two statements and generat-

ing meaningful changes from these differences. In this

section the access control approach used is explained;

the next section elaborates on the workflow enforcement.

The application of access control rules is split up into

several steps, as shown in Figure 3.

Figure 3: Architecture of the access control component

that checks whether a new revision violates any access

rules.

All version control systems use diff-like algorithms

[30] that operate on flat files to generate changes between

two versions of a file. These algorithms create what is

called an edit script, which transforms the previous ver-

sion of a file into the current version. Diff algorithms

detect changed lines and create an edit script contain-

ing insert and remove line operations. Although this edit

script is easy to generate and reapply again, it is impossi-

ble to define reasonable access control rules on the insert

and remove operations. The abstraction level of these

changes is too low because they are expressed in terms

of adding and removing lines in a file, while the configu-

ration specification is expressed in configuration related

terms. In Listing 3, a diff generated edit script is dis-

played. The script transforms version 1 of the program

in Listing 1 into version 2, which is listed in Listing 2.

Listing 1: Code example: version 1

1 var1 = 6

2 var2 = 6

3 prnt(var1 * var2)

Listing 2: Code example: version 2

1 var1 = 6

2 print(var1 * 7)

Listing 3: Edit script between version 1 and 2 generated

the diff algorithm

1 @@ -1,3 +1,2 @@

2 var1 = 6

3 -var2 = 6

4 -prnt(var1 * var2)

5 +print(var1 * 7)

To generate semantically meaningful changes from the

configuration specification, ACHEL uses an algorithm

that analyses the abstract syntax tree of the configuration

specification. System configuration tools build an ab-

stract syntax tree of the configuration specification dur-

ing compilation. An abstract syntax tree is a tree repre-

sentation of the abstract syntax [29] of a file. The ab-

stract syntax separates the syntax from the semantics of

the specification.

An example of the abstract syntax trees of the program in

Listings 1 and 2 is shown in Figure 4. The differences be-

tween two versions of a tree are used to generate changes

at the right abstraction level, because the abstract syn-

tax tree contains the structure and meaning of each state-

ment, and the composing parts out of which the state-

ment is built. Meaningful Change Detection in Struc-

tured Data [15] proposes an algorithm to generate these

semantically meaningful changes. Several systems have

been developed based on similar algorithms that calcu-

late an edit script from unordered trees. For example,

these algorithms analyze changes in source code [23],

XML [7, 34], UML [31, 35], and HTML [26].

Figure 4: Matching the nodes in the abstract syntax tree

of the two versions in Listing 1 and 2.

5

134 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Listing 4: The edit script for transforming the first tree

into the second tree in Figure 4.

add = {node(text="7",parent=205)}

delete = {node(id=102),node(id=106),

node(id=107),node(id=110)}

update = {node(id=103,text="print")}

ACHELmatches the nodes in two abstract syntax trees

and generates a tree edit script to transform one tree into

the other. It does this by parsing each revision of a con-

figuration specification and generating an abstract syntax

tree from it. Each revision of a tree is matched with its

previous revision. Figure 4 shows the set (matches) of

matched nodes obtained by applying algorithm [23] on

these two trees. From these matched trees, an edit script

is generated that contains a list of add, update and delete

node instructions to transform the tree of revision X into

the tree of revision X + 1. In Listing 4 the edit script

of the abstract syntax trees in Figure 4 is shown. The al-

gorithms used to generate an edit script from an abstract

syntax tree are language agnostic, as shown in Figure 3.

The approach ACHEL takes until the generation of

the edit script is similar to Machination [24]. ACHEL’s

edit script is comparable to the XML edit instructions of

Machination, except that ACHEL can generate an edit

script for any arbitrarily complex language. In contrast

to Machination, ACHEL translates the edit script into se-

mantically meaningful changes performed on the config-

uration specification. ACHEL then applies access con-

trol on these semantic changes instead of applying them

on the edit script, which is of a lower abstraction level.

An edit script is expressed in terms of operations on

nodes in a tree, while a configuration specification is ex-

pressed in configuration related terms. Although an edit

script can be generated for any tree, generation of the

semantic changes is specific for each language. In sec-

tion 4 we apply ACHEL’s access control on a configu-

ration specification language. The same access control

system was used during prototyping to enforce access

control on simple configuration files with parameters and

sections, sometimes called .ini files.

ACHEL allows rules to be specified depending on the

current owner of a statement in the configuration specifi-

cation. Because all operations in an edit script are made

by the same user, and this user is known to ACHEL

through the DVCS repository, the owner of each state-

ment can be determined. ACHEL determines the owner

of each statement by starting at the tree of the first revi-

sion and applying the user information and the edit script

until the last revision. Every time a node is added or

modified, the user that made the change is used as the

new owner of that node in the tree. For example, user A

creates the first revision of the left tree in Figure 4, so A

owns all nodes in that tree. User B makes the changes

that result in the right tree in that figure. He removes

nodes 102, 106, 107 and 110, updates node 103, and adds

node 207. The algorithm will mark B as the owner of the

new node and of the updated node 202.

The per node owner information in the abstract syntax

tree is not very useful when access control rules are ap-

plied on semantic changes. The user information in the

abstract syntax tree needs to be mapped onto the gen-

erated semantic meaningful changes. The owner infor-

mation for each node from which a semantic meaningful

change is built is used to determine the owner of a mean-

ingful change. For example, in the multiplication state-

ment that consists of node 205, 206 and 207, node 207

is owned by user B in Figure 4, but nodes 205 and 206

are still owned by user A. Depending on the meaning of

the statement, ACHEL determines who the owner of the

full statement is. In the multiplication from the example,

the result of the multiplication will be different because

of the change user B made, so he will be the owner of

the statement. Because the author of a changeset is used

to determine all ownership information, and the owner-

ship and author are used in the access rules, the author

information needs to be secure. ACHEL uses digital sig-

natures and a PKI to ensure that all user information in

the repository is authenticated.

An important step in developing an access control rule

language is identifying the possible statements and their

syntax in the configuration language input. Statements

include for example assigning a value to a variable, call-

ing a function or creating a new instance of a class or

structure. On the statements, access control will be ap-

plied. To keep the structure of the needed patterns in the

access control language simple, it is important to unify as

many statements as possible in order to keep the gram-

mar of the access control language limited. For exam-

ple, the assign and multiplication statement in Listing 1

and in the abstract syntax tree in Figure 4 can be unified

with a <lhs> <op> <rhs> structure. In this struc-

ture an operation (op) is performed on the left-hand side

(lhs) using the argument on the right-hand side (rhs).

Changes to a statement are split up into attributes. These

attributes are the action performed (add, remove, modify,

. . .) on the statement, the type of unified statement that

it is, and possibly additional attributes of a statement. In

our prototype we developed an access control language

for the configuration specification language we added to

ACHEL.

3.3 Workflow

Each infrastructure has its own policy that defines work-

flows for deploying changes in the production configu-

ration. For example, changes need to be tested in a test

infrastructure before they are deployed in the production

6

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 135

configuration. Current configuration management tools

cannot enforce these policies. ACHEL achieves this with

a combination of the proposed access control system and

the flexible workflows that DVCS’s provide. To integrate

the two, we extend the access control rules with a clause

that requires authorization before a change is allowed.

This new clause specifies the number of authorizations

required and a list of users that can authorize a change to

be allowed in an ACHEL repository. A change is autho-

rized by digitally signing its unique revision identifier.

The identifier is signed with the user’s private key. This

key is also used by the author to sign information relat-

ing to a change. A signature on a revision signifies that

a revision is approved by the person or service that is as-

sociated with the key used. The reader may recall from

section 3.1 that the identifier in a DVCS is a hash that is

based on the content and the parent revisions, so a signa-

ture also authorizes the full history of the specification.

Authorizing a revision is as simple as adding a sig-

nature to the repository metadata and committing the

change. This approach generates a new revision in the

repository for each new signature. This new revision

can be fetched and merged by the user who requested

the authorization. When the requesting user has the re-

quired number of signatures, he merges his change and

the signature revisions into a new revision and pushes it

to the repository of the system configuration tool. We

rely on existing communication channels such as email

or instant messaging for ACHEL notifications. These no-

tifications are required when requests are sent out to au-

thorize changes or to notify other users that a review is

finished and a signature is available.

Workflows in ACHEL are based on exchanging

changes between the local DVCS repositories that each

user controls. ACHEL needs to enforce access control

rules on each repository, even though all repositories

could possibly have the same changes, because each user

has full control over his own repository. This has two im-

portant advantages: First, each repository can determine

who needs to approve changes before they are accepted.

Second, authorization clauses can be set to only warn a

user instead of denying access, because a repository re-

vision is required to get a change authorized, and this re-

vision is only available after a change has been included

in a repository.

Figure 2 shows an example of a possible workflow.

This workflow is similar to the one enforced in the ac-

cess control rules in Listing 5. In this figure, the manager

is a user named Alice, who is a member of the admin

group in Listing 5. Whenever the sysadmin named Bob

makes a change not related to variables named dhcp ∗,

he needs the authorization of a user in the admin group.

The system only warns about the authorization because

Bob needs to be able to commit his change, although he

does not yet have the authorization. After the change is

committed to Bob’s local repository, ACHEL enforces

the following workflow to include his change in the au-

thoritative repository:

• Bob cannot push his change to the system config-

uration tool repository, so he emails the users in

the admin group that he needs authorization for the

change with revision identifier 3d996986778d in

his repository at http://bugatti:8000.

• Alice, a user in the admin group, pulls change

3d996986778d from Bob’s repository into her

own repository at location http://ferrari:

8000.

• Alice reviews the change and signs

3d996986778d, thus creating a new revision

ce5b84ef04a7 in her repository.

• Bob pulls ce5b84ef04a7 from Alice’s reposi-

tory at http://ferrari:8000 into his own

repository.

• Bob creates a newmerge revisionacdd701f412c

that now satisfies all access rules.

• Bob pushes acdd701f412c to the system config-

uration tool repository for the purpose of scheduling

it for deployment onto the infrastructure.

Whenever a user pushes his specification changesets

to another repository, other changesets that possibly con-

flict could have been included. When this occurs, these

changesets need to be merged. During merging, two sce-

narios can occur. These scenarios are illustrated in Fig-

ure 5. If the changesets do not conflict with each other,

a merge changeset can be created that does not intro-

duce any additional changes. If all changesets prior to

the merge satisfy all access rules, then the merge change-

set can be accepted by ACHEL. Whether this changeset

should be accepted is highly dependent on the configura-

tion specification language to which ACHEL is applied.

If the configuration language is fully declarative, then

the order of configuration statements does not matter and

changes can be applied in any order, as long as they do

not conflict. If the order in which changes are applied

does matter, then a special merge permission should be

introduced so that only users with this permission can

merge changesets.

In a second scenario some changesets can conflict, so

the merge changeset needs to include additional changes

to resolve the conflicting changesets. If this occurs, then

these new changes need to satisfy all access control rules,

just like any other normal change. Such a merge change-

set can also include non-conflicting changesets, in which

case the same restrictions apply as in the other scenario.

7

136 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 5: Merging branches of a configuration specifi-

cation repository. Left: a branch is merged without any

conflicts. Right: two changesets conflict and the merge

changeset contains additional changes to resolve the con-

flict.

Conflicting changesets should not occur very often in a

real infrastructure. Because responsibilities are mostly

non-overlapping,modularizing the configuration specifi-

cation in files that do not contain overlapping responsi-

bilities will prevent conflicting changes, insofar as this is

possible.

4 Prototype

This section describes a prototype configuration lan-

guage and compiler: Westmalle. Westmalle is a simple

configuration language that we extended with ACHEL

support.

The Westmalle configuration language design is in-

spired by the functionality provided by LCFG2. The

Westmalle configuration language is a declarative lan-

guage with only three operations. It can import configu-

ration directives from libraries, it can add values to lists

and it can assign values to a variable name. Because

of its declarative nature, variables can only be assigned

once. Various values can be assigned to these variables,

including string literals, functions that can interface with

other systems such as template systems, and structures

with named attributes.

Structures are an important part of Westmalle. Each

structure has a list of named attributes. Structures are not

declared and are created in the same way as classes are

instantiated in languages such as Python. Attributes are

added every time a value is assigned to an unknown at-

tribute. Westmalle does not type check these structures,

but therein lies its strength. Because classes are easily

created, a user can create specifications that match what,

for example, LCFG2 or BCFG2 require. When the com-

piler finishes resolving all variables in the specification,

then these structures and their attributes are used to gen-

erate the output. The compiler can be used in two ways:

1. As a BCFG2 plug-in that exposes the return values

of the BCFG2 client probes [20] as variables in the

configuration language. These probes are used in

BCFG2 to find information about the managed sys-

tem.

2. Generating XML output that conforms to the struc-

ture proposed in Configuration tools: Working to-

gether [12].

We added support for ACHEL to Westmalle. The ar-

chitecture of our prototype is shown in Figure 6. The

right box is the Westmalle compiler, the left box is the

ACHEL support infrastructure. The ACHEL support in-

frastructure contains a distributed version control reposi-

tory at the bottom and a set of allow/deny access control

rules. If a user wants to push a change to the repository,

that change has to pass the access control rules before

it is committed to the repository. Once the change is

committed, the Westmalle compiler generates XML or

BCFG2 specifications, which in turn can be used by a

deployment engine to enforce the specification.

Figure 6: An architectural overview of our ACHEL pro-

totype.

The access control rule enforcement is implement as

show in Figure 4. The access control language defines

pattern matching rules that match the attributes generated

from the semantic changes in the configuration specifi-

cation. Each rule contains an action that is taken if the

patterns from the rule match the attributes of a change.

Access control rules are evaluated in the order they are

declared in the source file. When a rule matches, evalua-

tion stops and the action of that rule is taken.

8

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 137

The rules in the access control language consist of two

different parts. The first is a generic part that specifies

the author, the owner, the required signatures and the

action taken when a rule matches. The second part is

language-specific and contains the structure the semanti-

cally meaningful edit instruction needs to match before

an action will be executed. In the access control lan-

guage, user groups can be defined and each user can be

included in multiple groups.

Listing 5: Access control rules and group definitions

1 # list of senior admins

2 define admins as

admin1@cs.kuleuven.be,

admin2@cs.kuleuven.be

3

4 # allow everyone to create dhcp

5 # configuration

6 allow to:

7 add import dhcp.*
8 * assign * to dhcp_*
9

10 # senior admins can do anything

11 allow admins to:

12 * *
13

14 # others can do anything if

15 # approved by a senior admin

16 allow to:

17 * *
18 authorised by 1 admins

Listing 5 shows an example of possible access control

rules.

• Line 2 defines a group of users. This group can be

used in the access control rules.

• Line 6 starts a new rule with two language spe-

cific rules on the next two lines. The rule allows

all changes that match one of the language specific

sub-rules on the next lines. The first sub-rule on

line 7 matches all changes that add an import state-

ment. This import statement is constrained to li-

braries matching the wildcard string dhcp.*. The

second sub-rule on line 8 matches changes that as-

sign any value (hence the second wildcard) to a vari-

able that matches the wildcard string dhcp *. The

first wildcard of this sub-rule signifies that these

changes can be added, modified or removed.

• The rule on line 11 allows changes that match any

of the sub-rules, if the author of the change is a

user from the admin group. The sub-rule on line 12

matches every change.

• The rule on line 16 allows any change (the two wild-

cards on line 17) by any author, if it is authorized

by one or more users from the administrator group

(line 18).

A set of rules such as in Listing 5 starts with a

generic header that expresses the action taken when a

rule matches and lists the possible authors of the change.

In the prototype, actions are limited to deny or allow the

change. The action of the first matching rule is used and

no other access control rules are checked. After the ac-

tion, an optional list of authors of a changeset can be

given, followed by the to keyword, a colon and a new-

line. The list of users is a comma separated list of email

addresses or group names to allow role based access con-

trol.

The body of the rule can contain multiple directives

that are divided into generic and language specific lines.

The generic lines start with the owned by and authorized

by keywords. The owned by clause specifies a list of

owners of the original statement required for this rule to

match. This list is identical to the author list described

in the previous paragraph. The authorized by clause is

followed by an optional number and a list of users. The

number indicates how many signatures are required for a

rule to match. If no number is provided, the number one

is assumed.

The other rules in the body are language specific rules.

These rules start with add, modify or remove, followed

by a pattern to match a meaningful change. The first key-

word specifies the changemade in the changeset required

for this rule to match. If multiple language specific rules

are present in the body of a rule, they are treated as sep-

arate rules with a common generic part. For example, in

Listing 5 for the rule on line 6, two rules with the same

header are created because of the two language specific

rules on the next lines. For each different structure in

the configuration language, a different language specific

rule syntax is required. The number of structures in a lan-

guage depends on how similar statements in the configu-

ration language are. Each rule syntax consists of match-

ing patterns that are applied to the matching attributes

of a semantic change. Each attribute is matched with a

literal value, a string that may contain wildcards, or a

regular expression.

For the simple configuration language we developed, we

are able to unify all statements within the same structure.

This means that we can match all statements in the con-

figuration specification with the same rule syntax. Rule

syntax contains at most three patterns to match the three

attributes of each change to the configuration specifica-

tion. These attributes are: the operation, the right-hand

9

138 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

side, and the left-hand side. The most important attribute

of the configuration language is the operation of a state-

ment. In the prototype there are only three available op-

erations: import, assign and add. After the operation, a

rule can also contain an optional right-hand side, as well

as an optional left-hand side pattern.

ACHEL uses hg (short for Mercurial [27]) as the ver-

sion control system in our prototype. It is a lightweight

DVCS written in Python. It has been adopted by very big

software projects such as OpenJDK and Mozilla. Like

other well known DVCS control systems such as Git [3]

and BitKeeper [1], hg uses content hashes as identifiers.

Mercurial was selected for our ACHEL prototype be-

cause it is open source, it is written in Python and it has

extensions for signing revisions.

ACHEL can merge changesets. A merge is handled

differently depending on the scenario:

• If changesets have beenmergedwithout conflict and

the merged branches introduce changes in different

files, no additional permissions are required.

• If changes are introduced in the same file, a user

that commits the merge changeset needs merge per-

missions. Merge permissions can be dependant on

authorization, so they can be forced to go through a

review process.

• If changesets conflict, then the new changes that

solve the conflict need to satisfy the access control

rules. The two previous rules apply to any non-

conflicting changes that are also merged.

Digital signatures are used to verify the users in the au-

thor, owner, and authorization constructions in the access

control rules. In the prototype, GPG is used to generate

these digital signatures. The email addresses linked with

the private key that is used to create digital signatures are

used in the access control rules to identify users. GPG

was chosen over x509 certificates for two reasons: First,

because Mercurial already has support for signing revi-

sions with GPG signatures. Second, because it is very

lightweight and works well in a federated environment.

To establish trust, GPG can be configured to only trust

signatures from keys within a certain trust level.

ACHEL can support other DVCS and infrastructures

for digital signatures. It uses the version control repos-

itory to report the email addresses of the users that cre-

ated or signed a changeset and it relies on the ability of

the repository to verify the user information on the basis

of digital signatures. This way there is no direct coupling

between the PKI used and ACHEL. Because the interface

between ACHEL and the DVCS is small, new distributed

version control systems are easy to add.

5 Evaluation

In this section we evaluate ACHEL in two case stud-

ies. The first case validates the improvements achieved

in ACHEL for environments where several administra-

tors manage the same infrastructure but are responsible

for different aspects of the infrastructure. This case fo-

cuses mainly on the access control features with limited

workflow enforcement. The second case validates the

use of ACHEL in federated infrastructures with a focus

on workflow, such as used in grid computing.

5.1 Case 1

This first case validates the prototype in an infrastructure

managed by several system administrators with varying

levels of seniority, each of whom has his own responsi-

bilities. The update policy of this infrastructure is:

• Sysadmins can only make changes to the aspects of

the infrastructure they are responsible for.

• Everyone can make any change if it is authorized by

a senior sysadmin.

• Senior sysadmins can change anything.

The access control rules use group names to identify

users, so users can be assigned according to their re-

sponsibilities. In Listing 6, an excerpt with access con-

trol rules is shown. The first rule on line 2 forces ev-

ery change to encode the type in the variable name. For

example, the variable with the configuration file for the

dhcp server should be called net file dhcpd conf.

Six rules are declared for each type that can be used with

the BCFG2 plug-in. If a variable does not match this

convention, the change will be denied. The second rule

on line 11 stipulates that every user in the senioradmin

group can do anything. Statements in a change will only

get to this rule if they conform to the previous rule. The

rule on line 15 authorizes any change from any user if it

has been approved by a user from the senioradmin group.

The next two rules are specific for users in the ne-

tadmins group. These users are only allowed to change

the network configuration related to files located in

/etc/network and services called network and

dhcpd. The rule on line 26 allows a netadmin to import

dhcp configuration libraries, to add entries to the global

list of dhcp clients and to declare variables that are pre-

fixed with net . The rule on line 20 limits this to the

files and services that are allowed. If none of the rules

above matches, the change is denied.

Listing 7 shows a possible configuration an ad-

min responsible for the network configuration

has written in our configuration language. This

code example creates a configuration file called

10

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 139

Listing 6: Case 1: Access control rules and group definitions

1 # enforce some conventions on everyone

2 deny to:

3 * assign File() to /ˆ[ˆ_]+_(?!file_)[\S]+$/

4 * assign Package() to /ˆ[ˆ_]+_(?!pkg_)[\S]+$/

5 * assign Service() to /ˆ[ˆ_]+_(?!service_)[\S]+$/

6 * assign Directory() to /ˆ[ˆ_]+_(?!dir_)[\S]+$/

7 * assign Symlink() to /ˆ[ˆ_]+_(?!ln_)[\S]+$/

8 * assign Permissions() to /ˆ[ˆ_]+_(?!perm_)[\S]+$/

9

10 # senior admins can do anything else

11 allow senioradmin to:

12 * * *
13

14 # allow admins to do everything if a senior admins approves

15 allow to:

16 * * *
17 authorised by 1 senioradmin

18

19 # network related configuration

20 deny netadmins to:

21 # deny files other then those in /etc/network

22 * assign /ˆ(?!\/etc\/network\/)\S+/ to /ˆnet_file_\w+\.name$/

23 # deny services other then dhcpd and network

24 * assign /ˆ(?!(dhcpd$|network$))\w+$/ to /ˆnet_service_\w+\.name$/

25

26 allow netadmins to:

27 * import /ˆdhcp/

28 # allow adding a list of values to the net_dhcp_clients list

29 * add /ˆ\[[ˆ\]]$/ to /ˆnet_dhcp_clients$/

30 # allow only variables prefixed with net (ignore rhs)

31 * assign * to /ˆ(?!net_)\S+$/

11

140 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

/etc/network/interfaces and enables the

network service. This is allowed by the access control

rules defined in Listing 6. The code starting from line 17

creates a /etc/hosts file. To do this, a user needs to

be either a senior admin himself or else he needs to have

the permissions of a senior admin.

A network administrator named Kris, who is not a

senior administrator, wants to include his configuration

specification in the main repository. To do this he needs

permission from a senior administrator named Jean. Kris

commits the change to his ACHEL repository and re-

ceives a warning that he needs permission from a mem-

ber of the senioradmin group to satisfy the access con-

trol rules enforced on the main repository. Kris emails

Jean and asks him to review the change with identifier

c8d8c7780069 in Kris’ repository, which is available

at http://alpha:8000. Jean pulls this change from

Kris’ repository and ACHEL warns Jean that the change

needs to be authorized. Jean reviews the change, signs

it and commits the signature to his repository. Jean then

emails Kris that he approves the change and that Kris can

pull the signature with identifier 3a526359364e from

his repository, which is available at http://beta:

8000.

Kris pulls Jean’s signature into his repository and

ACHEL now shows that all changes satisfy the access

control rules. Kris can now push his change and Jean’s

signature into the main repository in order to deploy it on

the infrastructure.

5.2 Case 2

Quattor is used in federated infrastructures composed

of multiple physical sites. Devolved Management of

Distributed Infrastructures [16] explains how Quattor is

used in a few different federated infrastructures. In

this case we apply ACHEL to the BEGrid infrastruc-

tures described in [16]. BEGrid uses a model of highly-

autonomous sites that loosely collaborate. Each site has

its own configuration servers, but it gets its configuration

from a central Subversion repository. In this repository,

both common and site-specific configuration specifica-

tions are stored.

In this case we will focus on the application of

ACHEL’s workflow enforcement features on a BEGrid-

like infrastructure. Each site configuration server uses its

own repository instead of getting its configuration spec-

ification from the central repository. Each site has its

own authoritative ACHEL repository fromwhich the site

configuration server gets its specification. The institu-

tion that coordinates the grid also maintains a repository

from which each site updates their common configura-

tion specification. In Figure 7 the flow of changes be-

tween repositories is shown. The workflow between the

repositories in Figure 7, is already supported by any nor-

mal DVCS.

Figure 7: BEGrid repositories using ACHEL

In this case we will enforce policy rules on this work-

flow using ACHEL:

• Every site has its own ACHEL repository that is

used by the site’s configuration server.

• System administrators commit to the site repository,

possibly with extra policy rules specific for their

own site.

• Sysadmins can only change the configuration re-

lated to their own site.

• Changes by sysadmins from other sites have to be

approved by a manager of the affected site.

• Changes to the common templates have to be ap-

proved by at least three out of five managers.

Our configuration language does not match the PAN

[17] language used by Quattor in BEGrid, but this is not

an issue for demonstrating the workflow capabilities of

ACHEL. For the access control rules in Listing 8, we

assume that the site-specific and common configuration

can be identified by the first word in the variable name:

common or site . On lines 1-5 of the listing groups

are defined containing the sysadmins of each site and all

the managers. These groups are used in the access con-

trol rules we describe next.

The rules in Listing 8 implement the policy we de-

scribed earlier in this section. The first rule on line 7

stipulates that changes to the common configuration need

authorization from at least three users from the manage-

ment group. Lines 11-16 define the access rules for the

configuration of site 1. The first rule limits access to

users in the site1 group, and the second rule stipulates

that other users have access to site 1 configuration only

if they have authorization from the site1 manager. The

12

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 141

Listing 7: Case 1: Network configuration specification

1 import base

2

3 # configure network interfaces

4 net_file_interfaces = File()

5 net_file_interfaces.name = "/etc/network/interfaces"

6 net_file_interfaces.owner = "root"

7 net_file_interfaces.group = "root"

8 net_file_interfaces.perms = "0644"

9 net_file_interfaces.content = source("net/interfaces.$hostname")

10

11 # network service needs to be enabled

12 net_service_network = Service()

13 net_service_network.name = "network"

14 net_service_network.status = "on"

15

16 # use template for /etc/hosts with loopback and host ip

17 net_file_hosts = File()

18 net_file_hosts.name = "/etc/hosts"

19 net_file_hosts.owner = "root"

20 net_file_hosts.group = "root"

21 net_file_hosts.perms = "0644"

22 net_file_hosts.content = template("net/hosts.tmpl")

rules on lines 18-37 provide for similar rules for the other

three sites. Site 1 and site 2 are developing a new com-

mon feature defined under common new. The last rule

on line 39 allows users of both sites to work on it. This

rule stipulates that users from the groups site 1 and site 2

have access to all configurations under common new.

Each repository can have its own access control rules

in ACHEL. For example, the last rule on line 39 only

makes sense in the repositories of sites 1 and 2. This also

holds for other the site-specific rules, which only need to

exist at the site itself and at the main repository.

5.3 Limitations and Future Work

In this paper we have prototyped ACHEL on a sim-

ple configuration language. One area for future work

involves the need to add ACHEL support to existing

(more complex) configuration languages. Another area

involves the need to improve the usability of ACHEL by

adding support for processing authorization requests. A

third area involves the need to provide support for meta-

ACL’s: i.e. to provide access control rules for specifying

the access control rules.

Supporting existing configuration languagues

ACHEL itself is not a product, it is a generic framework

that can be reused in existing configuration languages.

The framework offers support for meaningful change de-

tection, and for the enforcement of access control rules

and workflow. To add support for ACHEL to an existing

configuration tool, it must:

1. either add access control constructs to its language

or use a separate access control language;

2. and provide ACHEL with an abstract syntax of its

configuration specification.

The complexity of an access control language is di-

rectly linked with the number of different semantically

meaningful change structures that need to be matched.

The reader will recall that in our prototype we were able

to unify all three language constructs within a single

structure, but this will no longer be possible for more

complex configuration languages. The expressions in

Listing 6 are very powerful because they use regular ex-

pressions, but they are complex to use. If ACHEL were

to be applied to more complex configuration languages

such as Cfengine [14] or Puppet [25], the current access

control language and matching model would probably

become needlessly complex. These languages are more

expressive and containmore than one structure that needs

to be matched.

To support more complex languages and make the ac-

cess control language easier, some enhancements are re-

quired. The first enhancement would be to use the type

system of the configuration language to enforce rules, so

that types and namespaces do not need to be encoded

in the names of the variables as in the first case. An-

other required enhancement of the access control lan-

13

142 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Listing 8: Case 2: BEGrid example access control rules

1 define management as

director@begrid.be,

manager@site1.begrid.be,

manager@site2.begrid.be,

manager@site3.begrid.be,

manager@site4.begrid.be

2 define site1 as ...

3 define site2 as ...

4 define site3 as ...

5 define site4 as ...

6

7 allow to:

8 authorised by 3 management

9 * * * to /ˆcommon_/

10

11 allow site1 to:

12 * * * to /ˆsite1_/

13

14 allow to:

15 authorised by

manager@site1.begrid.be

16 * * * to /ˆsite1_/

17

18 allow site2 to:

19 * * * to /ˆsite2_/

20

21 allow to:

22 authorised by

manager@site2.begrid.be

23 * * * to /ˆsite2_/

24

25 allow site3 to:

26 * * * to /ˆsite3_/

27

28 allow to:

29 authorised by

manager@site3.begrid.be

30 * * * to /ˆsite3_/

31

32 allow site4 to:

33 * * * to /ˆsite4_/

34

35 allow to:

36 authorised by

manager@site4.begrid.be

37 * * * to /ˆsite4_/

38

39 allow site1, site2 to:

40 * * * to /ˆcommon_new_/

guage would be to include a mechanism for abstracting

certain details: for example, a mechanism for using tem-

plates to match certain structures and to hide the com-

plexity of the regular expressions used. A final enhance-

ment would make it possible to combine rules using dif-

ferent operators.

The second requirement for ACHEL integration is that

ACHEL should be provided with an abstract syntax tree.

If a configuration tool includes a formal grammar defi-

nition of its language, this grammar can be reused. An-

other option is to dump the internal abstract syntax tree

structures of a system configuration tool.

Supporting authorization request processing

Currently, ACHEL relies on existing communication for

notifications related to authorization requests and signa-

tures. To improve the usability of ACHEL in real in-

frastructures, a plug-in or tool is needed for automat-

ically processing authorization requests by pulling the

change, requesting a signature from the user, commit-

ting the signature and notifying the author of the signed

change. ACHEL should also support multiple DVCS’s

and digital signatures for real world deployment in order

to match existing practices and tools in an infrastructure.

Bugtracker tools could also be useful in real world ap-

plications, because some bugtrackers include DVCS in-

tegration.

Meta-ACL’s

Our prototype does not contain support to enforce access

control on the access control language itself. The ac-

cess control available in the underlying distributed ver-

sion control system can in most cases be reused, because

typically only a few users in an infrastructure are allowed

to define policy related rules. Technically it is possible to

apply the same change detection approach to the access

control language itself and provide a meta access control

language. This would also make it possible to implement

a mechanism for delegating permissions.

6 Conclusion

ACHEL provides integration of fine-grained access con-

trol with existing configuration tools and it can enforce

configuration change workflows in federated infrastruc-

tures. Moreover, ACHEL combines these capabilities

with distributed version tracking and cryptographic se-

cure authentication. It also makes access control rules

easier to write because they are defined at the same

abstraction level as the configuration specification lan-

guage. And finally, because large parts of ACHEL are

14

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 143

language agnostic, support for new configuration lan-

guages can be added with minimal effort.

7 Acknowledgments

We would like to thank Wouter De Borger and Stefan

Walraven for proofreading this paper. We also thank

Mark D. Roth for his work on shepherding this paper

this paper and the anonymous reviewers for their valu-

able feedback.

References

[1] BitKeeper Website. http://www.bitkeeper.com, 2007.

[2] Bazaar version control: Workflows. http://bazaar-vcs.

org/Workflows, 2008.

[3] Git Website. http://git-scm.com/, 2009.

[4] Keep your Puppet manifests under version control.

http://reductivelabs.com/trac/puppet/wiki/

VersionControlPuppet, 2009.

[5] Puppet Change Management. http://reductivelabs.

com/trac/puppet/wiki/ChangeManagement, 2009.

[6] Using Multiple Environments in Puppet. http:

//reductivelabs.com/trac/puppet/wiki/

UsingMultipleEnvironments, 2009.

[7] AL-EKRAM, R., ADMA, A., AND BAYSAL, O. diffX: an al-

gorithm to detect changes in multi-version XML documents. In

CASCON 05: Proceedings of the 2005 Conference of the Cen-

tre for Advanced Studies on Collaborative Research (2005), IBM

Press, pp. 1–11.

[8] ANDERSON, P. The Complete Guide to LCFG, 2003.

[9] ANDERSON, P. Short Topics in System Administration 14: Sys-

tem Configuration. Berkeley, CA, 2006.

[10] ANDERSON, P. LCFG: A large scale UNIX configuration sys-

tem. http://www.lcfg.org, 2008.

[11] ANDERSON, P., AND COUCH, A. What is this thing called Sys-

tem Configuration? LISA Invited Talk (November 2004).

[12] ANDERSON, P., AND SMITH, E. Configuration tools: Working

together. In Proceedings of the 19th Large Installations Systems

Administration (LISA) Conference (Berkeley, CA, USA, 2005),

USENIX Association, pp. 31–38.

[13] BURGESS, M. Cfengine: a site configuration engine. USENIX

Computing Systems 8, 3 (1995), 309–402.

[14] BURGESS, M. Cfengine Website. http://www.cfengine.

org, 2009.

[15] CHAWATHE, S. S., AND GARCIA-MOLINA, H. Meaning-

ful change detection in structured data. In Proceedings of the

1997 ACM SIGMOD International Conference on Management

of Data - SIGMOD 97 SIGMOD 97 (New York, NY, USA, 1997),

ACM, pp. 26–37.

[16] CHILDS, S., POLEGGI, M. E., LOOMIS, C., MEJAS, L. F. M.,

JOUVIN, M., STARINK, R., DE WEIRDT, S., AND MELI,

G. C. Devolved Management of Distributed Infrastructures With

Quattor. In Proceedings of the 22nd Large Installation System

Administration (LISA) Conference (Berkeley, CA, USA, 2008),

USENIX Association, p. 175189.

[17] CONS, L., AND POZNANSKI, P. Pan: A high-level configuration

language. In Proceedings of the 16th USENIX Conference on Sys-

tem Administration (LISA) (Berkeley, CA, USA, 2002), USENIX

Association, pp. 83–98.

[18] DELAET, T., AND JOOSEN, W. PoDIM: A language for

high–level configuration management. In Proceedings of the

21st Large Installation System Administration (LISA) Conference

(Berkeley, CA, USA, 2007), USENIX Association, pp. 1–13.

[19] DESAI, N. Bcfg2: A Pay as You Go Approach to Configuration

Complexity.

[20] DESAI, N., BRADSHAW, R., AND HAGEDORN, J. Bcfg2 Man-

ual, July 2006.

[21] DESAI, N., BRADSHAW, R., HAGEDORN, J., AND LUEN-

INGHOENER, C. Directing change using Bcfg2. In Proceed-

ings of the 20th Large Installation System Administration (LISA)

Conference (Berkeley, CA, USA, 2006), USENIX Association,

pp. 215–220.

[22] DESAI, N., BRADSHAW, R., MATOTT, S., BITTNER, S.,

COGHLAN, S., EVARD, R., LUENINGHOENER, C., LEGGETT,

T., NAVARRO, J.-P., RACKOW, G., STACEY, C., AND STACEY,

T. A case study in configuration management tool deployment.

In Proceedings of the 19th Large Installation System Adminis-

tration (LISA) Conference (Berkeley, CA, USA, 2005), USENIX

Association, pp. 39–46.

[23] FLURI, B., WUERSCH, M., PINZGER, M., AND GALL, H.

Change Distilling: Tree Differencing for Fine-Grained Source

Code Change Extraction. IEEE Transactions on Software En-

gineering 33, 11 (2007), 725–743.

[24] HIGGS, C. Authorisation and Delegation in the Machination

Configuration System. In Proceedings of the 22nd Large Instal-

lation System Administration (LISA) Conference (Berkeley, CA,

USA, 2008), USENIX Association, pp. 191–199.

[25] KANIES, L. Puppet Website. http://reductivelabs.

com/projects/puppet/, 2008.

[26] LIM, S.-J., AND NG, Y.-K. An Automated Change-Detection

Algorithm for HTML Documents Based on Semantic Hierar-

chies. Data Engineering 0 (2001).

[27] MACKALL, M. Towards a Better SCM: Revlog and Mercurial.

[28] MATES, J. Storing CFEngine configuration in CVS. http:

//sial.org/howto/cfengine/repository/, 2009.

[29] MCCARTHY, J. Towards a mathematical science of computation.

Information Processing 62 (1962), 21–28.

[30] MYERS, E. W. An O(ND) difference algorithm and its variations.

Algorithmica 1, 1 (1986), 251–266.

[31] OHST, D., WELLE, M., AND KELTER, U. Differences between

versions of UML diagrams. In Proceedings of the 9th Euro-

pean Software Engineering Conference, held jointly with 10th

ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering - ESEC/FSE 03 ESEC/FSE 03 (New York, NY,

USA, 2003), ACM, pp. 227–236.

[32] ROUILLARD, J. Distribution and Configuration System. http:

//www.cs.umb.edu/˜rouilj/DACS/, 2009.

[33] TRAUGOTT, S., AND HUDDLESTON, J. Bootstrapping an Infras-

tructure. In Proceedings of the 12th USENIX Conference on Sys-

tem Administration (LISA) (Berkeley, CA, USA, 1998), USENIX

Association, pp. 181–196.

[34] WANG, Y. X-Diff: an effective change detection algorithm for

XML documents. In Proceedings 19th International Confer-

ence on Data Engineering (Cat No 03CH37405) ICDE-03 (Los

Alamitos, CA, USA, 2003), vol. 0, IEEE Computer Society,

p. 519.

[35] XING, Z., AND STROULIA, E. UMLDiff: an algorithm for

object-oriented design differencing. In ASE 05: Proceedings of

the 20th IEEE/ACM international Conference on Automated Soft-

ware Engineering (New York, NY, USA, 2005), ACM, pp. 54–65.

15

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 145

CIMDIFF: Advanced difference tracking tool for CIM compliant devices

Ramani Routray
IBM Almaden Research Center

routrayr@us.ibm.com

Shripad Nadgowda
IBM India Systems and Technology Lab.

shripad.nadgowda@in.ibm.com

Abstract
Total Cost of Ownership (TCO) for any enterprise

scale data center is significantly dependent upon the ef-
fectiveness of the system management solutions and pro-
cedures deployed. Complexity of managing a data cen-
ter increases as various enterprise applications demand
diverse sets of requirements, leading to a very hetero-
geneous environment often fueled by diverse emerging
technologies. Emergence of the industry standard Com-
mon Information Model (CIM) has introduced unifor-
mity and interoperability into this complex managed en-
vironment.

In this paper, we describe a tool CIMDIFF that pro-
vides syntactic and semantic difference tracking for CIM
compliant devices in both spatial and temporal flavors.
Since this problem is NP-hard, in this paper we present
an efficient technique that combines domain specific ob-
ject oriented knowledge with hierarchical structure of
CIM-XML to derive meaningful differences. We demon-
strate the value of this tool for a) tracking difference in
device characteristics b) verification of proper operation
as well as automated validation of management software
given the limited resources of testing infrastructure. An
experimental evaluation of this tool in a complex data
center is provided.

1 Introduction

Any modern day enterprise-scale data center is hetero-
geneous in nature. Varieties of Service Level Agree-
ments (SLAs) mandated by wide range of deployed ap-
plications along with acquisition of emerging technolo-
gies drive the heterogeneity . System Management so-
lution(s) deployed to manage the data center provide
the basic tuning knobs to adjust in order to meet the
SLA goals in terms of reliability, availability, perfor-
mance etc.. With the advent of virtualization, ensur-
ing the performance guarantees, security, and fault iso-
lation have become even more challenging. E.g. to

isolate an application bottleneck; configuration, perfor-
mance metrics have to be collected across server(s), net-
work element(s) and storage controller(s). These metrics
have to be investigated after correlating across physical
and virtual layers. Whether, its the internal data center
of an enterprise or the service offerings such as cloud
computing [1, 2], System Management is the key. To
enable seamless management in the complex and het-
erogeneous environments, open industry standards are
necessary. Standards like Common Information Model
(CIM) [3] from Distributed Management Task Force
(DMTF) [4], Storage Management Initiative Specifica-
tion (SMI-S) [5] from Storage Networking Industry As-
sociation (SNIA) [6], Simple Network Management Pro-
tocol (SNMP) [8], WBEM [9], SMASH [7], WMI [10]
etc.. have provided excellent base to ensure interoper-
ability between a wide array of multi-vendor data cen-
ter elements, including fiber channel and IP network-
ing components, storage components, servers, operating
systems, software infrastructure and applications. Sys-
tem management and storage management solutions like
IBM TPC [20], IBM Director [21], EMC Control Cen-
ter [13], HP Systems Insight Manager [19], Microsoft
Systems Center [22] have demonstrated the use of these
standards to bring unified interoperable open manage-
ment to complex heterogeneous managed environment.
CIM provides a common extensible base definition of

management information for systems, networks, appli-
cations and services. CIM’s common definitions enable
vendors to exchange semantically rich management in-
formation between systems over the network. Vendor
devices expose the management information through a
software module called CIM Agent. CIM agent is either
embedded in the device hardware or externally installed
and configured to point to the managed device to report
the management information. One CIM agent can re-
port management information of multiple devices based
on the configuration settings. CIM agents may be au-
tomatically discovered using Service Location Protocol

146 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

(SLP) or are explicitly specified by the system adminis-
trator. CIM agent software is a set of software modules
called CIM Providers that are plugged into the Common
Information Model Object Manager (CIMOM). CIM
Providers are like servlets, that are plugged into the
CIMOMs which are like the application servers. Open
source CIMOMs [16, 17, 18] available are commonly
used in the industry. In this paper, we refer the complete
managed device information reported by CIM Agent as
CIM Repository. This information is either cached in
an internal format in the device CIM agent or retrieved
on-demand through device instrumentation. Standard
CIM Client [15] is used to query information from the
CIM agent or to invoke configuration change operations.
Adapters are also available to map SNMP to CIM Object,
which is returned to the management applications. Infor-
mation exchanged over network conforms to CIM-XML
format. Since XML is hierarchically structured, differ-
ence tracking in such format is known to be NP-hard due
to the nesting.

In this paper, we propose a tool CIMDIFF that can
efficiently track syntactic and semantic difference across
CIM repositories in both spatial and temporal favors. Us-
ing this tool, user/administrator can get answers to ques-
tions of following nature: a)Spatial Difference: What are
the difference in characteristics between the two storage
subsystems in my data center such as capacity, avail-
able space, number of disk drives, number of fiber chan-
nel ports etc..? What are the difference in configura-
tion characteristics across two virtual machines (VMs)
? b)Temporal Difference: What are the configuration
changes to the storage subsystem from past one week
such as volumes created/deleted/modified, volumes as-
signed/unassigned etc..? What are zone configuration
changes to the fiber channel fabric in last one week ?
This tool uses an interesting hashing technique combined
with KnowledgeBase of standard recipes that helps track
differences at i) CIM construct level ii) device character-
istics level to track the device configuration changes. Se-
mantic difference provides deep insight to administrators
about the data center. Syntactic difference has proved to
be very useful in real production testing environment of
storage/system management suite. CIMDIFF can also
be used to aid conformance testing [23] by tracking ef-
fect of CIM Agent version changes when vendors update
versions of their CIM Providers.

2 Background

CIM Repository reported by a CIM agent contains the
complete management information of device(s). For ex-
ample, a storage subsystem CIM Repository would con-
tain information regarding the storage subsystem, stor-
age pools, storage volumes, storage pool to storage vol-

ume association, fiber channel ports, masking/mapping
information etc.. CIM Agent also reports the storage
volume performance and fiber channel port performance
statistics on demand. Sample CIM-XML information
stream reported for a IBM DS6000 Storage subsystem
is represented in Figure 1.

2.1 Model and Problem Definition

The CIM Repository (Cr) is a collection of CIM In-
stances (Ci) that are instances of CIM Class(es) (Cc).
The structure of a CIM Instance is shown in Figure
1. Each CIM Class (Cc) defines the structure of ei-
ther an entity class or an association class. An ex-
ample of an entity class is IBMTSDS-ExtentPool
that represents a Storage Pool in a IBM Storage
Subsystem. Following the inheritance model of
CIM, IBMTSDS-ExtentPool class extends from
standard CIM defined class CIM-StoragePool.
Similarly, entity class IBMTSDS-Volume represents
a Storage Volume that extends from CIM defined
CIM-StorageVolume. Example of an association
class is IBMTSDS-AllocatedFromExtentPool
that represents the association between Storage Pool(s)
and Storage Volume(s) extending from standard CIM
class CIM-AllocatedFromStoragePool. Single
CIM Repository can contain CIM Instances of one de-
vice or multiple devices depending upon the number of
devices attached to the CIM agent.
We denote a tree T by its nodes N . In the context

of this paper, CIM Repository (Cr) is a tree. Children
of a node are represented as n ∈ N . A CIM Instance
is composed of one CIM Objectpath and zero or more
CIM Properties. Node N can be a CIM Instance (Ci)
or a CIMObjectpath(Cop) or a CIM Property(Cp). Edit
operation e applied to original tree T1 transforms the tree
into T2 is described as T1

−→e T2. CIMDIFF computes
minimum-cost optimal edit script, a sequence of basic
edit operations that depicts the transformation T1

−→e T2.
Definitions are formally represented as:

Cr = { N+ }

N = { Ci|Cop|Cp }

Ci = { Cop, C
∗

p }

Cop = { C+
p }

Edit Operations: Three edit operations (e) that are eval-
uated for computing difference between two CIM repos-
itories are:

• Insert: Insert operation creates a new node N in the
tree T . Nodes N that are CIM Instance (Ci) qualify
as an insert in a CIM Repository (Cr).

2

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 147

Figure 1: Structure of CIMInstance

• Delete: Delete operation is the removal of a node N

in the tree T . Node N that are CIM Instance (Ci)
qualify as a delete in a CIM Repository (Cr).

• Update: Update operation is the update of a node
N in the tree T . Node N that are CIM Instance (Ci)
qualify as an update in a CIM Repository (Cr), only
if the CIMObjectpath(Cop) is unchanged across
original and modified versions. Insertion, deletion
or modification of one or more CIM Property(Cp)
that are non-key in a CIM Instance (Ci) contribute
to an update.

2.2 Types of Tracking

CIMDIFF accepts two CIM repositories as input
and tracks the differences. A CIM repository is ac-
cessible through standard CIM Client using creden-
tials (URL, User, Password, Interop Namespace).
Difference tracking provided by CIMDIFF are
across two dimensions. First dimension provides
two categories of difference tracking: i)Syntactic

ii) Semantic. Second dimension provides two cat-
egories: i)Spatial ii)Temporal.
Syntactic: CIMDIFF tracks the syntactic difference
between two CIM Repositories by exploiting the
syntax of CIM structure. This mode is helpful for
system management tool developers and testers to
perform automated testing.
Sematic: CIMDIFF tracks the semantic difference
between two CIM Repositories by using the com-
bination of CIM structure and domain knowledge.
This mode is helpful for system administrators.
Spatial: CIMDIFF tracks the spatial difference be-
tween two CIM Repositories that belong to two de-
vices that are of same or different model. For exam-
ple, spatial difference can be tracked between two
IBM DS8000 storage subsystems. Spatial differ-
ence can also be tracked between a IBM DS8000
storage subsystem and a EMC Symmetrix storage
subsystem.
Temporal: CIMDIFF tracks the temporal differ-
ence between two CIM Repositories of the same de-
vice that are captured at different point-in-time. For

3

148 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Temporal

Semantic

Spatial

Syntactic

Temporal-Syntactic Temporal-Semantic

Spatial-Syntactic Spatial-Semantic

Snapshot of Same CIM Agent(s)
CIMInstance addition/deletion/..
(e.g. CIM_StorageVolume)

Snapshot of Same CIM Agent(s)
Logical Actions : Volume Assignment
(e.g. CIM Instance creation/modification
Volume, Privilege, ProtocolControllerForUnit
Cause of Extrinsic method invocation)

Snapshot of Different CIM Agent(s)
Diff in CIM Properties
(e.g. CIM_StorageVolume
instances)

Snapshot of Different CIM Agent(s)
Diff in Logical Properties
(e.g. Size, Avaliable Space etc..)

Figure 2: CIMDIFF Dimensions

example, temporal difference for a IBM DS8000
storage subsystem can be tracked between its cur-
rent state and its state before one week.
With the combination of above two dimensions,
CIMDIFF can track difference between two CIM
repositories in four different fashion as described in
Figure 2.
In the context of this paper, we use a tool called
iSAN [26]. We have developed iSAN and open-
sourced it through Eclipse Aperi [12] that allows
to capture point-in-time snapshot of the complete
CIM Agent i.e. the CIM Repository and host it.
CIM Repositories created at different point in time
capture device configuration changes due to regu-
lar data center tasks such as capacity provisioning,
performance tuning, volume migration etc..

3 System Overview
This section provides an overview of CIMDIFF. It dis-
cusses architecture, inputs, outputs and the key compo-
nents of the tool in the following subsections. CIMD-
IFF can reside on a separate server or can be integrated
into the CIM agent to provide an integrated time-travel
feature of configuration changes similar to the idea of
ITIL’s [24] (Information Technology Infrastructure Li-
brary) CMDB (Configuration Management Database) at
the device level. CIMDIFF relies heavily on open stan-
dards and vendor extensions of open standards to derive
the differences.

3.1 Architecture
Using Eclipse Aperi SAN Simulator (iSAN snapshotting
framework) [26, 12], CIM repository can be persisted in

a flat file or in a relational database. Device CIM agent
is accessible via standard CIM Client [15] using URL,
User, Password, Interop Namespace. URL is composed
of Protocol, IP address and Port. CIMDIFF is a browser
based web application that requires two CIM agent cre-
dentials as input to compute the difference. CLI interface
of the tool is also exposed to the user. We use the ter-
minology Source CIM Agent and Target CIM Agent. If
both source and target CIM agent are pointing to differ-
ent devices, CIMDIFF computes the spatial difference.
CIMDIFF computes temporal difference, if both source
and target CIM agents are pointing to the exact same de-
vice. Each device has a live CIM agent that reports the
current information. Earlier point-in-time snapshots are
captured and hosted by iSAN.

For example: an external CIM Agent deployed
on a server reports two IBM DS8000 Storage
Subsystems. Snapshot of this CIM Agent will
be represented as one CIM Repository . CIM
Repository will be associated with several CIM
Classes such as IBMTSDS-ComputerSystem
and IBMTSDS-Volume etc.. For each of these
CIM Classes, there will be one or more CIM
Instance. Each CIM Instance will have one
CIM Objectpath. On a parallel hierarchy, there will
be two CIM Devices / CIM-ManagedElement
associated with the CIM Repository. Each CIM
Device will have associated CIM Classes. Each
CIM Class will have one or more CIM Instances
associated with respect to the CIM Device. These
two hierarchies essentially are created to answer CIM
queries:
enumerate(CIM-StorageVolume)
associate(CIM-ComputerSystem ->
CIM-StorageVolume)
Basically, CIM Repository is a XML document
with multiple hierarchy (Nodes having multiple parent)
denoted by solid and dotted arrows in Figure 3.
There has been a lot of work on difference tracking al-

gorithms for text data [27, 28], for relational data [29],
for tree or XML data [30, 31]. Our tool is built on the
base of text and XML difference tracking but different
because of the domain specific meaningful change track-
ing functionality rather than the text or XML difference
tracking. In addition, multi-parent nature of the nodes in
the XML structure and the semantic domain knowledge
of CIM Recipes that derive the difference makes our
tool unique. Figure 4 describes the functional blocks
of this tool. CIMDIFF has four main functional blocks:
i)HashMaker ii) KnowledgeBase iii) Hierarchy Resolver
iv) Difference Tracker.

Hash Maker component calculates the hash using
the popular SHA-256 or MD5 algorithm for the CIM
Repository. Hash values are created and stored

4

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 149

Figure 3: CIM Repository Structure

CIM Repository
<t0, CIMAgent-a>

CIM Repository
<t1, CIMAgent-a>

CIM Repository
<tm, CIMAgent-x>

CIM Repository
<tn, CIMAgent-y>

CIMDIFF

Hash
Maker

Knowledge
Base

Hierarchy
Resolver

Input

Output

Difference Tracker

Figure 4: CIMDIFF Components

respective to nodes. Each node can contain multiple
hash values since it can be parent of multiple nodes
(CIM Agent Hash, CIM Device Hash). Hash values
are built using bottom-up approach. Hash value of a
parent node N is calculated from the hash values of
the children nodes n. Leaf nodes that contain the hash
values are the CIM Objectpath. Hash value cal-
culation can also be integrated with the snapshot mak-
ing process. Otherwise, it can be created later for a
CIM Repository and correlated against it. Hash
Maker component makes the difference tracking pro-
cess efficient because, the hash values stored at nodes
help CIMDIFF determine the tree/subtree isomorphism
much efficiently. Tree/subtree isomorphism determina-
tion helps in the temporal-syntactic difference tracking.
This component helps CIMDIFF traverse the least num-
ber of nodes necessary to perform difference tracking.

KnowledgeBase component stores the standard recipe
invocation sequences and the changes associated with

it. For example, if a StorageVolume was created
and assigned (masked/mapped) to a server by execu-
tion of CIM Recipe(s) meaning a set of extrin-
sic methods were executed. Extrinsic method invo-
cation on a CIM Agent results in CIM Instance
creation/deletion/modification. Goal of this component
is to store the popular standard recipe formats and
their effect on CIM Instances. This component
helps track the temporal-semantic changes across CIM
Repositories of same CIM agent(s). Similarly,
any vendor-extended properties are also canned into
KnowledgeBase for spatial-semantic difference track-
ing. KnowledgeBase is populated with standard SMI-S
recipes to start with. It is updated with the latest variance
in recipe formats as well as any new recipes that are in-
troduced. KnowledgeBase can be centrally created and
then distributed across installations to reflect the updates.
Users can also edit custom recipe formats into knowl-
edge fragments and update their KnowledgeBase. An
example SMI-S recipe for storage volume creation is de-
scribed in Figure 5

HierarchyResolver component is a wrapper around
a MOF [11] parser. It traverses the CIM hierarchy
through the CIM Class hierarchy and filters out the
string mismatches. This component helps track the
spatial-semantic changes across CIM Repositories
of different CIM Agent(s) of similar type. For exam-
ple: two storage pool instances (one from IBM DS8000
and other from IBM DS4000) have different vendor-
extension CIM Class; IBMTSDS-VolumeSpace
and LSISSI-StoragePool respectively. This mod-
ule helps discard the regular string differences and
picks the relevant difference in properties such as
Total Space , Total Available Space. This
module performs this task by i) resolving hierarchy
since both these classes belong to same super class
CIM-StoragePool ii) checking the KnowledgeBase
for relevant CIM Properties

Difference Tracker component works in conjunction
with the three components described earlier. It orches-
trates the invocation of the CIMDIFF components. This
component implements the algorithm to compute the
minimum-cost optimal edit script. Outline of CIMDIFF
algorithm is explained in Figure 6.

Edit script is then grouped into clusters based on the
rules defined in KnowledgeBase to derive meaningful
changes from the device configuration perspective. CIM
Objectpath is used as the main correlation mecha-
nism in the aggregation process to avoid ambiguity. CIM
Properties are interpreted based on the rules to derive se-
mantic differences. It also presents the output to the user
and provides primitives for analysis across dimensions
described in Figure 2 via both browser and java swing
based graphical user interface. This component in con-

5

150 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 5: Recipe - Storage Volume Creation

junction with HierarchyResolver also tracks the change
of CIM model definition [11].

Figure 7 explains the input specification of CIM agent
information to the tool. Spatial difference can be tracked
between two similar types of CIM Repositories but
not necessarily of same model. Two input CIM agent can
report two storage subsystems or two servers. Spatial
difference could be either syntactic or semantic. Spa-
tial difference tracking is helpful for checking the dif-
ference in characteristics and configuration across simi-
lar devices. Spatial-syntactic difference tracking would
derive information like i) the difference in number of
CIMInstances per class between two IBM DS4000
storage subsystems or between two different servers or
between a IBM DS4000 and a IBM DS6000 storage
subsystem ii) difference in CIM Properties iii) dif-

ference in CIM Property value. Same information in
spatial-semantic formwould be presented as i) difference
in number of storage volumes, storage pools, file systems
ii) difference in total available space, difference in to-
tal consumable space, difference in server main memory
(RAM).

Temporal difference can be tracked between CIM
Repositories of same CIM Agents snapshotted
at different point in time. This kind of informa-
tion is helpful for tracking the temporal change in
the characteristics and configuration of the same de-
vice. As shown in Figure 7, point-in-time snap-
shots of CIM agent can be captured and hosted using
the open source tool iSAN. Temporal-syntactic differ-
ence would present information such as i) the differ-
ence in number of CIMInstances per class ii) dif-

6

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 151

Figure 6: Outline of minimum-cost optimal edit script
computation

ference in CIM Properties because of configuration
change of the device such as volume creation, mask-
ing/mapping for storage subsystem or file system cre-
ation on server. Large amount of change in number
of CIM Instances and/or CIM Properties due
to device configuration change and its presentation via
temporal-syntactic change tracking might be useful for
systems management solution test automation but can
be overwhelming for a system administrator. Grouping
these changes by logical actions such as storage provi-
sioning, file system provisioning is termed as temporal-
semantic change.

Figure 7: Input for CIMDIFF

4 Experimental Evaluation

Our experimental test bed is part of a production SAN
environment. It contains servers with Linux and Win-
dows operating systems. Production SAN also contains
interconnecting fiber channel switches from multiple
vendors, IBM and non-IBM storage subsystems. Each
server has its own CIM Agent hosted on the server it-

0

20

40

60

80

100

120

0 1000 2000 3000 4000

Number of Instances

T
im

e
to

 S
n

ap
sh

o
t

(i
n

 s
ec

o
n

d
s)

Snapshot Without
Hashing
Snapshot with MD5

Snapshot with SHA-256

Figure 8: Hash Creation Overhead

self. Most of the fiber channel switches have external
CIM Agents reporting the fabric information except
a very few switches that has embedded CIM Agent.
IBM and non-IBM storage subsystems have external
CIM Agents hosted on separate servers. Management
information is retrieved from CIM Agents using stan-
dard SBLIM CIM Client [15]. In this managed en-
vironment, server CIM Agent have a 1:1 mapping of
CIM Agent to managed element. For fiber channel
switches and storage subsystems, this environment has
a maximum of 1:4 mapping of CIM Agent to managed
device. CIMDIFF uses iSAN [26] to create the snap-
shots of the CIM Agents. CIM Repositories cre-
ated from the snapshot process were stored in IBM DB2
UDB relational database. CIMDIFF also uses embedded
database Derby [25] for handling data centers with very
few devices. We integrated the HashMaker module of
CIMDIFF with iSAN [26] to create the hash at relevant
nodes during the snapshot process itself. Calculating
hash did not impose a major overhead in terms of snap-
shot creation time. Calculating hash based on the stan-
dard CIM hierarchy denoted by solid arrows in Figure
3 introduced very minimal overhead during the snapshot
process. Creation of device based hash denoted by dotted
arrows took most of the time. An evaluation of hash cre-
ation overhead during a snapshot creation process for a
CIM Repository of 2887 CIM Instances is de-
scribed in Figure 8.

CIMDIFF is implemented completely in java. It is
hosted as a servlet based web application in a IBM
Websphere Application Server container. Browser based
user interface and user options are shown in Figure 9.
CIMDIFF provides user interface and primitives to man-
age the CIM agent credentials. It also provides interface
to manage and host snapshots of CIM agents. Knowl-

7

152 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Table 1: Setup (Spatial Difference)
CIMDIFF

CIM Repository Description
CIMRepository-An CIMAgent-A

Storage Subsystem
[IBM DS6000]

CIMRepository-Bm CIMAgent-B
Storage Subsystem
[IBM DS4000]

edgeBase can be easily updated by uploading knowledge
fragments. Knowledge fragments can be written by fol-
lowing a very simple XML based rule engine.
Based on the input CIM agent credentials, CIMDIFF

automatically detects whether the mode is spatial or tem-
poral. As described in Figure 9, syntactic and semantic
output are presented in tabbed format. Due to the large
and detailed nature of the output returned by CIMDIFF,
we present selective portion of it in a tabular fashion to
depict the nature of difference tracking.

Spatial Difference Tracking: Source CIM agent and
target CIM agent credentials are supplied by the user (as
shown in Figure 9). Since, both the CIM agents point
to two different IBM DS8000 storage subsystems, spa-
tial difference option is highlighted. Spatial difference
can be evaluated between two similar types of devices,
e.g. between a IBM DS4000 and a IBM DS8000 storage
subsystem. Table 1 shows the setup for spatial differ-
ence tracking and Table 2 shows the types of syntactic
differences that are tracked. Automation test suites used
by discovery engines of system management tools [20]
use the syntactic results to verify the proper operation of
the tools.

Semantic information is derived based on
the standards and(or) the KnowledgeBase.
Standard CIM class CIM-StoragePool has
CIM Properties TotalManagedSpace and
RemainingManagedSpace. By accumulating
the values across all the storage pools, TotalSpace and
FreeSpace are calculated. Similarly, by using standard
properties from CIM-StorageSetting, RAID level
is calculated. These properties are common across ven-
dor implementations(IBM storage subsystem represents
its storage pool through the class IBMTSDS-ExtentPool
or LSISSI-StoragePool based on the model. But, both
these classes extend from CIM-StoragePool). CIMDIFF
refers to rules across vendor extended properties to
derive meaningful semantic differences. Rules can be
easily added and updated by specifying new rules in
simple XML format. Sample semantic difference values
are shown in Table 3

Temporal Difference Tracking: If both source and tar-

Table 2: Spatial Syntactic Difference
CIMDIFF

CIMRepository-An CIMRepository-Bm
74 CIM Classes 78 CIM Classes
1874 CIM Instances 2436 CIM Instances
IBMTSDS-Volume LSISSI-

StorageVolume
PowerOnHours NO
CIM Property Corresponding

Property
IBMTSDS-Volume LSISSI-

StorageVolume
NO RaidLevel
Corresponding CIM Property
Property
IBMTSDS-Volume LSISSI-

StorageVolume
212 CIM Instances 120 CIM Instances
IBMTSDS-ExtentPool LSISSI-

StoragePool
7 CIM Instances 5 CIM Instances
(Extends from: (Extends from:
CIM- CIM-
StoragePool) StoragePool)
IBMTSDS-DiskDrive LSISSI-

DiskDrive
36 CIM Instances 12 CIM Instances

Table 3: Spatial Semantic Difference
CIMDIFF

CIMRepository-An CIMRepository-Bm
Remaining Managed Space Remaining Managed Space
840GB 300GB
Remaining RAID-5 Space Remaining RAID-5 Space
640GB 300GB
Remaining RAID-1 Space Remaining RAID-1 Space
140GB 0GB

8

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 153

Figure 9: CIMDIFF User Interface

Table 4: Setup (Temporal Difference)
CIMDIFF

CIM Repository Description
CIMRepository-A0 CIMAgent-A

Storage Subsystem
[IBM DS6000]
Snapshot at time t0

CIMRepository-A1 CIMAgent-A
Storage Subsystem
[IBM DS6000]
Snapshot at time t1

get CIM agent point to the same device, CIMDIFF au-
tomatically detects and derives the temporal difference.
Table 4 depicts the setup for a temporal difference sce-
nario.
Due to the configuration actions performed on the stor-

age subsystems such as volume creation/deletion, vol-
ume assignment/unassignment or zoning actions on fiber
channel switches, temporal differences are reflected in
the CIM Repositories. Table 5 shows some of

Table 5: Temporal Syntactic Difference
CIMDIFF

CIMRepository-A0 CIMRepository-A1
1874 CIM Instances 1942 CIM Instances
IBMTSDS-Volume IBMTSDS-Volume
212 CIM Instances 224 CIM Instances

[SAME]
216 CIM Instances
[DELETED]
5 CIM Instances
[NEW]
17 CIM Instances
[MODIFIED]
1 CIM Instances

9

154 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Table 6: Temporal Semantic Difference
CIMDIFF

CIMRepository-A0 CIMRepository-A1
1874 CIM Instances 1942 CIM Instances

VOLUME CREATION
VOLUME ASSIGNMENT

IBMTSDS-Volume IBMTSDS-Volume
212 CIM Instances 224 CIM Instances
IBMTSDS-Privilege IBMTSDS-Privilege
18 CIM Instances 20 CIM Instances
IBMTSDS- IBMTSDS-
ProtocolControl ProtocolControl
lerForUnit lerForUnit
48 CIM Instances 52 CIM Instances
....

the syntactic difference due to the configuration actions.
These difference are useful for automated testing valida-
tion of management software.
Modification of CIM Instance is derived because

CIMObjectpath did not change but one or more of
the other non-key CIMProperties changed across
time.
In this scenario, syntactic difference might be over-

whelming and does not provide with much meaning-
ful information for administrator. But, by tracking
the change in CIMInstances and then grouping the
changed instances based on the recipe KnowledgeBase,
we can show a potential list of extrinsic methods that
were executed. As shown in Table 6, change between
time t0 and time t1 was because of volume creation, vol-
ume assignment(masking, mapping). Correlating this in-
formation through the CIMObjectpath provides more
value in terms of configuration change activities on the
device. Sample KnowledgeBase is described in Table
??
We used this tool to capture snapshot of our data cen-

ter (small scale SAN environment) to i) track the tem-
poral configuration changes for devices ii) compare and
contrast similar type device configuration through spatial
changes. This provided the system administrators with
deep insight about change in the data center environment.
Systems Management solutions [21] or Storage Re-
source Management solutions [20, 13] also provide this
kind of feature at a much higher and better granularity
because these solutions correlate data from across CIM
Agents. CIMDIFF does not correlate data from across
CIM Agents (e.g. addition/ removal of a port-to-port
connectivity tracking by correlating the server port and
fiber channel port). CIM Agent Snapshots of multiple
CIM Agents can be aggregated together for evalua-

tion. This distinction of aggregation versus correlation
is a known limitation of CIMDIFF. We have also tested
CIMDIFF and did not encounter any scalability issues
for few hundreds of thousands of CIM Instances in
the CIM Repositories.

5 Discussion and Related Work
General problem of detecting changes from snapshots of
textual, relational or hierarchical structured (XML) data
has been studied in great details. GNU diff utility is
a popular tool in this context. Our calculation of edit
scripts with respect to CIM Classes based on CIMIn-
stance and CIMObjectpath is similar to the notion of
LCS (Longest Common Subsequence) used in the dif-
ference tracking of CVS. Meaningful change detection
algorithms [30, 31] have also a similar notion of dif-
ference tracking. Comparison of CIM standards and
the vendor reported CIM Instances have a close anal-
ogy with XML schema / DTD and well-formed XML
documents. In [33, 34, 37], change detection problems
have been addressed for ordered trees. Authors [35] have
also proved the meaningful change detection complexity
to follow quasi linear time for NP-hard scenarios. Sim-
ilarly, algorithm [30] also provides a similar approach
by transforming the change detection problem to a prob-
lem of computing a minimum-cost edge cover of a bipar-
tite graph. CIMDIFF is effectively domain specific log-
ical difference tracking that is guided by industrial stan-
dards and customizable knowledge base as compared to
the traditional text difference tracking, XML document
difference tracking or change detection. Similar to our
HashMaker approach, there has been similar work in the
XML document change detection area that deals with
constructing node signatures using exclusive-or (XOR)
[32].
In virtualized environments [36], configuration change

and movement of virtual resources are more often than
a physical environment. CIMDIFF can very easily [39]
show the difference in change in environment due to mi-
gration, provisioning [36] etc..

CIMDIFF provides an important primitive to the data
center administrator as well as a very vital test tool
for System Management solution developers and testers.
SNIA CTP [23] can also potentially use this fea-
ture to make the testing process more efficient. CIM
Agents before and after incorporating the changes to
CIM Provider during testing iteration conformance
cycle can use this tool. CIMDIFF provides valuable dif-
ference tracking powered by the knowledgebase. Cur-
rently, knowledgebase is manually populated by encod-
ing the information from standard CIM recipes. Execu-
tion patterns of standard CIM recipe and their effects can
be automatically derived by using machine learning. We

10

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 155

Figure 10: KnowledgeBase - Volume Creation

Figure 11: KnowledgeBase - Volume Assignment

are also extending a semi-autonomic interface for this
tool to let the administrator create a knowledge fragment
by grouping a discrete set of syntactic difference and as-
sociating with a particular semantic configuration change
from the output panel of this tool itself.

Without creating snapshot of CIM Agent at inter-

vals, change information also can be derived by: i) if
CIM Agent supports lifecycle indication monitoring ii)
by continuous subscription to all indications. But, such
mechanism could be costly and would not provide se-
mantic difference.

11

156 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

6 Conclusion
In this paper we presented an architecture, working of
CIMDIFF that provides an important tool to system ad-
ministrators with tracking data center configuration and
characteristic changes. CIMDIFF also demonstrates the
difference tracking based on the domain knowledge of
CIM [3] standard. It builds on the standard text differ-
ence and XML difference tracking technologies. CIMD-
IFF uses an efficient hashing and knowledgebase inter-
pretation on top of the multi-hierarchical XML data.
Demonstrated approach provides an interesting solution
to the nested structure that poses NP-hard problem.

CIMDIFF also limits itself to CIM Repositories
aggregation rather than correlation functionality pro-
vided by systems management solution. CIMDIFF defi-
nitely provides an important technology for management
solution testing as well as conformance [23] testing.
Since most of the modern day data center entities have
CIM agents, CIMDIFF offers a neat and quick tool for
administrators in the data center.

References

[1] Amazon Elastic Compute Cloud EC2. http://
aws.amazon.com/ec2/

[2] Amazon Simple Storage Service S3. http://
aws.amazon.com/s3/

[3] Common Information Model (CIM). http://
www.dmtf.org/standards/cim

[4] Distributed Management Task Force (DMTF).
http://www.dmtf.org

[5] Storage Management Initiative Specification (SMI-
S) http://www.snia.org/forums/smi/
tech_programs/smis_home/

[6] Storage Networking Industry Association (SNIA).
http://www.snia.org

[7] Systems Management Architecture for Server
Hardware (SMASH) http://www.dmtf.
org/initiatives/smash_initiative/

[8] IETF Simple Network Management Protocol
(SNMP) http://www.ietf.org/rfc/
rfc1157.txt

[9] Web-Based Enterprise Management (WBEM).
http://www.dmtf.org/standards/
wbem/

[10] Windows Management Instrumentation (WMI)
http://msdn.microsoft.com/en-us/
library/aa384642(VS.85).aspx

[11] Managed Object Format (MOF). http://www.
dmtf.org/education/mof/

[12] Eclipse Aperi Project. http://www.
eclipse.org/aperi

[13] EMC Control Center. http://www.
emc.com/products/family/
controlcenter-family.htm

[14] SNIA Interoperability Lab.. http://www.
snia.org/forums/smi/tech_programs/
lab_program/

[15] SBLIM CIM Client. http://sblim.wiki.
sourceforge.net/CimClient

[16] Pegasus CIMOM. http://www.
openpegasus.org/

[17] Sun WBEM. http://wbemservices.
sourceforge.net/

[18] SNIA CIMOM. http://www.opengroup.
org/snia-cimom/

[19] Hewlett Packard Systems Insight Manager (HP
SIM). http://h18002.www1.hp.com/
products/servers/management/hpsim/
index.html.

[20] IBM TotalStorage Productivity Center
(IBM TPC) http://www-306.ibm.
com/software/tivoli/products/
totalstorage-data/

[21] IBM Systems Director http://www-03.ibm.
com/systems/management/director/

[22] Microsoft System Center http://www.
microsoft.com/systemcenter/en/us/
default.aspx

[23] SNIA Conformance Testing Program
http://www.snia.org/forums/smi/
tech_programs/ctp/

[24] ITIL http://www.itil-officialsite.
com/home/home.asp

[25] Apache Derby http://db.apache.org/
derby/

[26] R. Routray, S. Gopisetty, P. Galgali, A. Modi and
S. Nadgowda. iSAN: Storage Area Network Man-
agement Modeling Simulation In Proceedings of
IEEE International Conference on Networking, Ar-
chitecture, and Storage (NAS), 2007

12

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 157

[27] R. Wagner, M. Fischer. The String-to-String Cor-
rection Problem In Journal of the ACM, Volume 21,
Issue 1, 1974

[28] E. Myers. An O(ND) Difference Algorithm and Its
Variations In Algorithmica, 1986

[29] W. Labio, H. Garcia-Molina. Efficient Snapshot
Differential Algorithms for Data Warehousing In
Proceedings of the 22th International Conference
on Very Large Data Bases (VLDB), 1996

[30] S. Chawathe, H. Garcia-Molina. Meaningful
Change Detection in Structured Data In Proceed-
ings of the ACM SIGMOD International Confer-
ence on Management of Data, 1997

[31] Y. Wang, D. DeWitt, J. Kai. X-Diff: an effective
change detection algorithm for XML documents In
Proceedings of 19th International Conference on
Data Engineering, 2003

[32] L. Khan, L. Wang, Y. Rao. Change Detection of
XML Documents Using Signatures In Proceedings
of Workshop on Real World RDF and Semantic Web
Applications, 2002

[33] K. Zhang, D. Shasha. Simple fast algorithms for the
editing distance between trees and related problems
In SIAM Journal on Computing , 1989

[34] D. Shasha, K. Zhang. Fast parallel algorithms for
the unit cost editing distance between trees In Pro-
ceedings of the first annual ACM symposium on
Parallel algorithms and architectures, 1989

[35] D. Shasha, K. Zhang. Detecting Changes in XML
Documents In Proceedings of International Con-
ference on Data Engineering, 2001

[36] M. Dehus, D. Grunwald. STORM: Simple Tool
for Resource Management In Proceedings of 22nd
Large Installation System Administration Confer-
ence, 2008

[37] B. Nguyen, S. Abiteboul, G. Cobena, and M.
Preda Monitoring XML data on the Web In Pro-
ceedings of ACM SIGMOD, 2001

[38] K. Begnum, M. Disney, E. Frisch, and I.
Mevg Decision Support for Virtual Machine Re-
Provisioning in Production Environments In Pro-
ceedings of 21st Large Installation System Admin-
istration Conference, 2007

[39] VMware CIM APIs. http://www.vmware.
com/support/developer/cim-sdk/

13

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 159

Transparent Mobile Storage Protection in Trusted Virtual Domains

Luigi Catuogno1, Hans Löhr1, Mark Manulis2, Ahmad-Reza Sadeghi1, Marcel Winandy1
1 Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

{luigi.catuogno, hans.loehr, ahmad.sadeghi, marcel.winandy}@trust.rub.de

2 Technische Universität Darmstadt,
Center for Advanced Security Research Darmstadt (CASED)

Germany
mark@manulis.eu

Abstract

Mobile Storage Devices, such as USB flash drives, of-
fer a flexible solution for the transport and exchange of
data. Nevertheless, in order to prevent unauthorized ac-
cess to sensitive data, many enterprises require strict se-
curity policies for the use of such devices with the effect
of rendering their advantages rather unfruitful.

Trusted Virtual Domains (TVDs) provide a secure IT
infrastructure offering a homogeneous and transparent
enforcement of access control policies on data and net-
work resources, however, the current model does not
specifically deal with Mobile Storage Devices.

In this paper, we present an extension of the TVD ar-
chitecture to incorporate the usage of Mobile Storage De-
vices. Our proposal addresses three major issues: coher-
ent extension of TVD policy enforcement by introducing
architectural components that feature identification and
management of transitory devices; transparent manda-
tory encryption of sensitive data stored on mobile de-
vices; and highly dynamic centralized key management
service. In particular we address offline scenarios allow-
ing users to access and modify data while being tem-
porarily disconnected from the domain. We also present
a prototype implementation based on the Turaya security
kernel.

Keywords: security, mobile storage devices, USB stor-
age, trusted virtual domains

1 Introduction

Trusted Virtual Domains (TVDs) [22, 9] are the forth-
coming framework for the implementation of multi-
domain/single-infrastructure computer networks like
centralized data centers, where computational resources
from different owners share the same physical infrastruc-
ture, or single organizational LANs that span over differ-
ent offices, branches or functional areas.

Amongst the strengths of TVDs is the transparent en-
forcement of access control policies — platforms and
users logically assigned to the same TVD can access
distributed data storage, network services, and remote
servers without executing any additional security proto-
cols, while the resources belonging to different TVDs are
strictly separated and, thus, remain inaccessible.

In this paper, we extend the security concept of TVDs
to capture the use of Mobile Storage Devices (MSDs)
such as portable hard drives and USB sticks, which offer
additional flexibility for the transport of data across mul-
tiple working locations and devices (e.g., work stations,
printers, cell phones, cameras, etc.). The non-triviality
of this task results from the diverse security risks with
regard to the data stored on MSDs. For example, MSDs
can be easily lost or stolen, and consequently the con-
fidentiality of data becomes an issue. Once left unat-
tended by the user, MSDs can be manipulated with the
goal to breach the integrity of the data or to dissemi-
nate corrupted data or malicious code once the device
is re-connected to the enterprise platform. Many secu-
rity solutions for MSDs adopted in practice rely on a
mixture of different techniques. In fact, the choice of
appropriate mechanisms is guided by trade-off between
their costs and offered benefits [33, 4]. Recent surveys
indicate that existing security policies vary across orga-
nizations from none to very restrictive ones disallowing
MSDs at all [16, 17, 45].

The deployment of MSDs is a challenging task for the
current TVD model. Indeed, TVD infrastructures that
want to take the major advantages of versatility of mobile
storage devices have to address two main objectives: On
the one hand, they should be efficient enough to reduce
the overhead of enforcing security policies; on the other
hand, they have to be secure enough to reduce the efforts
requested to users and consequently reducing the effects
of human errors.

160 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Our Contribution In this paper we present an en-
hanced secure management model for MSDs within the
framework of TVDs. Moreover, we present the design
and the implementation of a comprehensive solution to
enable transparent user-friendly encryption of sensitive
data within a TVD. In particular, we address the usage of
mobile storage devices to transport data within a domain
by pursuing a separation between data storing and cen-
tralized key management. This separation is necessary to
achieve offline data access, e.g., to allow a platform that
is temporarily disconnected from the domain to process
the data while preserving the desired security properties.

Paper organization We describe the problem defini-
tion in more detail in Section 2, and briefly overview
the existing TVD concept in Section 3. Section 4 in-
troduces our solution of integrating MSD management in
TVDs, whereas we discuss the details of our MSD access
control in Section 5. We describe our prototype imple-
mentation (Sec. 6), evaluate the security of our approach
(Sec. 7), and discuss related work (Sec. 8). Section 9
concludes our work.

2 Problem Description

TVDs (see Section 3 for background) introduce a homo-
geneous and transparent infrastructure that aims at the
separation between multiple domains with different se-
curity and trust policies. Enterprises and other organiza-
tions often have to deal with data of more than one se-
curity level. As a consequence, they separate their work-
flows to meet the different security requirements of their
domains, e.g., working with confidential (internal) and
public documents at the same time. The application of a
TVD infrastructure can help these organizations to trans-
parently enforce their security policies.

The incorporation and usage of mobile storage de-
vices in TVDs would increase the flexibility of users in
their workflows, but poses a challenging task in the de-
sign of the overall security architecture. MSDs are reg-
ularly employed to store copies of documents that the
user may take home or to another office, raw data to be
processed elsewhere, or on-the-fly data backups. In par-
ticular, MSDs are frequently used offline, i.e., plugged
to any platform while it is not connected to the domain
network (e.g., a laptop on the airplane).

MSD deployment raises several concerns about data
confidentiality and integrity. Adversaries could intercept
(steal) devices and try to read private data or even to
make unauthorized changes. While encryption and digi-
tal signatures can achieve confidentiality and integrity of
data stored on MSDs, the average human user is likely to
be unskilled to properly configure and use standard se-

curity solutions. This may increase the probability of
human errors and result in ineffective data protection.
Moreover, users may feel any security policy as a nui-
sance that introduces overhead in their tasks and, there-
fore, try to circumvent or ignore it.

One important issue is that MSDs are passive com-
ponents, thus enforcement of security policies relies on
the computer they are connected to. We may assume the
policy is correctly enforced as long as the MSDs are used
within the TVD boundaries. This assumption is in gen-
eral no longer true if any MSD is used outside its domain,
e.g., when is connected to an outsider computer.

Our aim is to extend the TVD model with the benefits
of using MSDs, allowing the transparent binding of an
MSD to a certain TVD so that only platforms of the same
TVD can access the stored data. Deploying MSDs within
the TVD requires some refinement to the model due to
the following concerns:

• Device identification. An MSD can move from a
workstation to another without any control by the
TVD infrastructure. Hence, whenever an MSD is
plugged in, the platform should be able to distin-
guish the device and the domain this device belongs
to.

• Dynamic Device Management. Unlike weighty
storage devices, MSDs may unpredictably appear
and disappear within the domain, according to the
users’ needs. This requires the introduction of an
MSD management infrastructure in order to handle,
e.g., creation and distribution of encryption keys.

2.1 The Offline Scenario
As mentioned above, MSDs are also used offline (i.e.,
the policy-enforcing platform is not connected to the do-
main), which introduces additional security problems.
Almost all duties related to policy enforcement (e.g., au-
thentication, key distribution, etc.) rely on interactive
protocols. But policy rules may change, platforms may
join/leave the domain (and should no longer access data),
(disclosed) encryption keys may be revoked (and new
ones should be generated and distributed). Whenever a
policy change occurs, these changes have to be promptly
propagated to all platforms in order to prevent further
disclosure or sensitive data.

Hence, allowing offline platforms to access domain
data stored on MSDs needs to fulfill the following se-
curity requirements:

• Delegation. Each domain platform should be able
to enforce a policy (this means online and offline).
For instance, each platform should store locally an
instance of the policy and any credentials needed to
enforce the policy.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 161

• Delayed revocation. The notification of revocation
of any platform, compartment, or device to offline
platforms is delayed to the time they will re-connect
to the domain network. In the meantime, data pro-
cessed by these platforms and transferred over the
domain through a mobile device may be made par-
tially (or totally) invalid because of revocation. In
order to validate data on mobile storage devices, ev-
ery platform should be able to verify whether the
data has been processed by a revoked platform.

• Authentication and data integrity. Access and data
modification should be infeasible for outsiders.

• Traceability and recovery. Domain members
should be able to track unauthorized data modifi-
cations and to reconstruct the previous data layout.

3 Background on Trusted Virtual Domains

Trusted Virtual Domains (TVDs) [22, 9] are a novel se-
curity framework for distributed multi-domain environ-
ments which leverages virtualization and trusted comput-
ing technologies. In this section we give a brief overview
of the TVD concept and its features, and briefly introduce
its main components and protocols.

In a virtualized environment, different applications
and services together with their underlying operating
systems are executed by different Virtual Machines
(VMs) that share the same physical infrastructure. Each
virtual machine runs in a logically isolated execution en-
vironment (which we call compartment), controlled by
the underlying Virtual Machine Monitor (VMM). In such
an environment, the user’s work space is now executed
by a virtual machine that is hosted by the VMM running
on the physical platform along with other architectural
components.

A TVD is a coalition of virtual machines that trust
each other, share a common security policy and enforce
it independently of the particular platform they are run-
ning on. Moreover, the TVD infrastructure contains the
VMM and the physical components on which the virtual
machines rely to enforce the policy. In particular, the
main features of TVDs and the TVD infrastructure are:

• Isolation of execution environments. The underly-
ing VMM provides containment boundaries to com-
partments from different TVDs, allowing the execu-
tion of several different TVDs on the same physical
platform.

• Trust relationships. A TVD policy defines which
platforms (including VMM) and which virtual ma-
chines are allowed to join the TVD. For example,
platforms and their virtualization layers as well as

individual virtual machines can be identified via in-
tegrity measurements taken during their start-up.

• Transparent policy enforcement. The Virtual Ma-
chine Monitor enforces the security policy indepen-
dently of the compartments.

• Secure communication channels. Virtual machines
belonging to the same TVD are connected through
a virtual network that can span over different plat-
forms and that is strictly isolated by the virtual net-
works of other TVDs.

Figure 1 shows an example of two TVDs that are dis-
tributed over different physical machines, and illustrates
main components of the TVD architecture and their rela-
tions. The TVD policy is a set of rules that state security
requirements a compartment should fit to be admitted to
the TVD (e.g., integrity measurements of the platform
and VMs) and defines both intra-TVD and inter-TVD in-
formation flow policy. A special node, namely the TVD
Master, logically acting as a central server, controls the
access to the TVD following the admission control rules
stated in the TVD policy. The TVD Proxy is a compart-
ment that locally enforces the TVD policy on the plat-
form it is running on. Several TVDProxies, belonging to
different TVDs can be instantiated on the same platform.

The process of TVD establishment in two steps,
“deploy” and “join”, is detailed in [29]: With the
TVD deploy protocol, the TVD Master verifies a plat-
form and its ability to enforce the TVD policy. Then,
in the TVD join procedure, the TVD Proxy (verified
by the TVD Master during the deploy phase) can verify
virtual machines that are executed on the platform, and
admit them to the TVD. Trusted computing technology
is used to establish trust in the reported measurement val-
ues. For example – following the TCG approach – hash
values of the software boot stack (including BIOS, boot-
loader, and virtualization layer as well as loaded virtual
machines) are stored in and signed by a Trusted Platform
Module (TPM) [43] and reported to the TVD Master dur-
ing an attestation protocol. The TVD Master can reliably
verify whether the reported values match the required
ones of the TVD policy. Based on this, the TVD Mas-
ter can implicitly rely on the enforcement mechanisms
of the local platforms.1

Techniques to isolate and manage the virtual networks
of different TVDs are given in [10]. Basically, virtual
switches on each platform implement VLAN tagging for

1The definition of the required integrity measurement values in
the TVD policy postulates knowledge about the behavior and security
properties of the corresponding software programs. In practice, this can
be achieved, e.g., through independent trusted third parties who evalu-
ate and certify products according to evaluation standards like Common
Criteria.

162 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 1: An overview of trusted virtual domains (TVDs)

Part a) shows the logical view of two TVDs, distributed over two physical platforms. Part b) shows the physical
deployment of the TVD components, including the TVD Master .

local connections, and secure VPN for remote connec-
tions.

Various applications of TVDs were already shown and
discussed in the literature. One example addresses the
idea of applying the TVD concept for secure information
sharing [26]. Other examples are virtual data centers [5],
or enterprise rights management [20]. However, none of
these works addresses the secure incorporation of mobile
storage devices as we require.

3.1 Management of TVDs

The leading approach of management of TVDs within
both centralized Virtual Data Centers and distributed
organizational networks leverages on the deployment
of advanced network management technologies (e.g.,
the Web-based Enterprise Management [14]) that pro-
vide highly integrated tools to accomplish administration
tasks.

In a TVD-enabled infrastructure, management activi-
ties span over three levels. The infrastructure level con-
cerns maintenance of physical resources, setup and con-
figuration of the overall logical infrastructure, and as-
signment of resources to the different TVDs. At domain
level, administrators take care of the TVD deployment,
virtual machine setup and management of policies, de-
vices and keys. Finally, at compartment level, running
applications and current users can be notified of some
events, coming from the underlying platform (e.g., revo-

cation). At each level, administrators have an integrated
management console that allows them to control all the
operations under their responsibility. The administration
of Virtual Data Centers with TVDs is discussed in [5].

4 Our Solution

In this section, we describe our solution to incorporate
the use of mobile storage within the TVD framework.
First, we describe how mobile storage operations are ac-
complished and, subsequently, we describe the new func-
tionalities we introduce in the existing TVD architecture.

4.1 System Operation

Figure 2 shows an example TVD-enabled infrastructure
in which two different TVDs are deployed. Each physi-
cal platform runs one or more virtual machines belong-
ing to one of the existing TVDs. Several MSDs, variedly
assigned to one of existing TVDs, are available to the
users.

Here follows a typical usage example. The user Al-
ice is working on the virtual machine V M1 and plugs in
her USB stick D1 to the platform P1 to make a backup
copy of her files. Some specific components running on
the platform P1 (see Section 4.2.2) identify the plugged
device, verify whether it has been assigned to the same
TVD of V M1 and retrieve the cryptographic keys that

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 163

are used to encrypt and decrypt data on it. If everything
succeeds, the device is made available to V M1.

At this point, a further refinement to the device ac-
cess control can be achieved on a per-VM basis. To this
end, a set of rules that defines access privileges to each
device assigned to the TVD (device access policy), has
been added to the TVD policy. For each device, these
rules state which operations and privileges (e.g., read,
write) are granted to each virtual machine in the same
TVD.

Hence, the platform P1 allows V M1 to mount the de-
vice D1 under the constraints stated by the device access
policy (read-only, read-write). Finally, if it is consistent
with access privileges of V M1, the copy of Alice’s data
can take place.

We recall that both device identification and key re-
trieval are performed automatically and transparently by
the platform when the device is plugged in. The guest
operating system of V M1 does not need any special soft-
ware to open and access the device, and no additional
operation from the user (e.g., further authentications be-
sides login, or providing keys) is required to handle data
contained on the device. Moreover, we stress that data
encryption is mandatory, thus the user cannot choose to
not encrypt data once the mobile storage device has been
assigned to a TVD.

Data stored on D1 can be accessed only by those vir-
tual machines which joined the same TVD. In particu-
lar, let D1 be plugged in to platform P3 which runs two
virtual machines, V M3 and V M4. The virtual machine
V M3, which is in the same TVD as D1, can access D1,
whereas V M4 cannot. Trying to access D1 on a virtual
machine from a different TVD leads to a failure, because
the platform is not allowed to retrieve the corresponding
encryption key.

4.2 Virtual Storage Management

The main idea of our approach is to add access rules and
the management of cryptographic keys for mobile stor-
age devices at those components which are already re-
sponsible for handling access rules and keys for the TVD
network, i.e., adding the information to the TVD policy
and performing the enforcement by the TVD Master and
the TVD Proxies. Moreover, we add additional compo-
nents to the virtualization layer of each platform to deal
with the specifics of MSDs: the MSD Manager and a
vMSD component. Hence, the trusted components of
virtual storage management in a TVD are the TVD Mas-
ter and, on each platform, TVD Proxy, MSD Manager,
vMSD, and, of course, the virtual machine monitor. We
explain the interaction of these components in the fol-
lowing subsections.

4.2.1 Device Identification

Information needed for the identification of an MSD is
contained in a special data structure named identification
record, and stored on the device along with the data pro-
vided by the user. This information includes the name of
the TVD the device belongs to, and the device-id, which
uniquely identifies the device within the TVD. The iden-
tification record is generated and stored on the device
when it is initialized.

4.2.2 Device Key Retrieval

To each MSD, our architecture associates a security
record containing some security related information (see
Section 5.2), including encryption keys. Security records
of all MSDs are indexed by the device-id and are stored
in a special database: the Domain Device Directory
(DDD), placed at the TVD Master. On every plat-
form, each TVD Proxy handles a Local Device Direc-
tory (LDD) that partially replicates the domain directory
of its domain. Physical platforms run a stand-alone com-
ponent: the MSD Manager, which waits for a device to
be plugged in. When this happens, the MSD Manager
reads the device’s identification record and extracts the
device-id and the name of the TVD it is assigned to. The
MSD Manager checks whether the TVD Proxy for that
domain is running on the platform, and if so, the MSD
Manager requests it to fetch the security record for the
plugged device from the LDD.

If the record is found, the TVD Proxy allows the MSD
Manager to open the device and releases its keys. If the
TVD Proxy cannot find the requested record, it forwards
the request to the TVD Master, which in turn searches for
the record in the Domain Device Directory and replies
either the requested record or an error message. Finally,
the TVD Proxy stores the received record in the Local
Device Directory and goes on.

The Local Device Directory fulfills two important
functions. The first one is: allowing offline platforms
to open a subset of mobile storage devices assigned
to their domain, provided the corresponding security
records have been added previously. The second one is:
avoiding that the TVD Master is queried every time an
MSD is used within its domain.

4.2.3 Accessing Devices

As stated above, neither the user, nor the virtual machine
(which runs a commodity operating system) need to per-
form any additional task to access the MSD. Indeed, in
our architecture, plugging in an MSD to a platform looks
like plugging in a plain mobile storage that stores data in
clear, from the virtual machine’s point of view.

164 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 2: Example of using MSDs in an environment with two TVDs respectively named red and blue.

Data encryption (as well as device access policy en-
forcement) is performed by a specific component run-
ning on the platform: the virtual MSD (vMSD). The
vMSD features an encryption layer through which the
VM mounts and accesses the device.

More precisely, a vMSD instance is created for each
MSD plugged in to the platform and is given the corre-
sponding keys by the TVD Proxy once the key retrieval
has been completed successfully. Hence, the vMSD an-
nounces itself to the VM as a virtual device. All data the
virtual machine reads/writes through the virtual device is
silently processed by the vMSD layer and stored on the
real MSD.

4.3 System Administration

4.3.1 Device Initialization

New mobile storage devices are assigned to a TVD
through an initialization procedure. When an unassigned
MSD is plugged in to a platform, the user is asked
whether the system may initialize it.

The initialization requires the cooperation of the TVD
Master. Indeed, the TVD Proxy running on the platform
requires the TVD Master to generate the identification
record and the security record (see Section 5.2) for the
new MSD. The former is sent back to the platform and
stored to the device via the vMSD whereas the latter is
saved in the domain device directory and propagated to
the requesting platform through the key retrieval proce-
dure.

The device access policy can be determined at differ-
ent levels. Users can explicitly provide the rules they
need for their devices, or some general rules, stated both
at platform or at domain level can be applied as default

policy. Anyway, it is the TVD Master which writes the
requested rules to the TVD policy.

When an MSD should be removed from a TVD, it can
be de-initialized by simply deleting its security record
from the Domain Device Directory (see Section 5.2).

4.3.2 Revocation

Any user, virtual machine or platform, may leave the
TVD for administrative reasons or can be revoked be-
cause any kind of corruption has been discovered. In
both cases, the administrator has to edit the TVD policy
and any other involved data structures at the TVD Master
(e.g. the Domain Device Directory).

Administrative revocations can be integrated within
the setup and configuration procedures featured by the
employed network management framework, so that,
while modifying the layout of the network, administra-
tors can consistently update the TVD policy.

The TVD architecture allows the TVD Master to real-
ize whether platforms or virtual machines have been cor-
rupted when they try to respectively deploy or join the
TVD. The consequent failure can be notified to the ad-
ministrator who can adopt the needed measures through
the management facilities.

At the moment, the architecture presented in this paper
does not feature any mechanism to automatically detect
run-time intrusions. We discuss details of revocation in
Section 5.5.

5 MSD Access Control Management

In this section we describe the realization of our MSD ac-
cess control management. First, we briefly describe the
enabling technologies, mainly cryptographic primitives

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 165

we use, followed by a description of the initialization
phase, and how the access control of MSDs is handled.
Last but not least we present the more advanced feature
of key revocation.

5.1 Building Blocks

In our architecture we apply two cryptographic primi-
tives: a symmetric encryption scheme with lazy revo-
cation for data encryption and an identity-based signa-
ture scheme for data authentication. Our solution is
intended to be independent from the employed crypto-
graphic primitive, so we base our design on a general
model like the one discussed in [2]. Therefore, we briefly
recall terminology and notation needed in the following.
For more details, we refer to [2].

5.1.1 Lazy Revocation

A group of users share some data encrypted with the
same symmetric encryption algorithm. In general, a va-
lidity time (timeslot) is assigned to each key. So, if t is
the current timeslot, all keys ki generated at times i < t,
are considered revoked. At time t, all group members
know the current key kt. Whenever a user leaves the
group, the current key is revoked and the new key kt+1
is generated and delivered to the remaining group mem-
bers. The lazy revocation concept is based on the as-
sumption that protecting old data from revoked users is
not necessary since they could have accessed the data
already and disclosed it to outsiders or other parties.
Hence, previously encrypted data are not re-encrypted,
whereas new data will be encrypted with the new key in
order to preserve confidentiality. Anyway, each user still
needs old keys, to read data encrypted at previous times-
lots.

To avoid that participants store all revoked keys, sev-
eral schemes [3, 32] provide users with a single user mas-
ter key Kt for each timeslot t. Kt can be used to extract
all keys ki (0 ≤ i ≤ t). This kind of schemes is char-
acterized by a trusted status for each timeslot t. The ini-
tialization algorithm of the lazy revocation scheme gen-
erates the initial engine state E0 related to the timeslot
t = 0. User master key K0 is derived from E0. When
a revocation occurs, the scheme updates its state taking
current state Et to the new state Et+1, hence, a new mas-
ter keyKt+1 is derived and delivered. Revoked users still
know Kt, but cannot use it to extract the new key kt+1.

5.1.2 Identity-Based Signature

Let W = {w1, . . . , wn} be a group of identities (of users
or platforms), represented as binary strings. An Identity-
Based Signature (IBS) scheme [23, 18] is initialized by

a trusted Key Generation Center (KGC) which generates
the master secret key SK and the corresponding mas-
ter public key PK. Then, using SK and an identity w,
KGC can derive the appropriate secret signing key SKw,
which it then securely transports to w. This allows w to
generate own signatures σw on any message of its choice,
which can be verified by others using the identity w and
the master public key PK.

5.2 Initialization

For each TVD, there is a TVD Master, which is assumed
to be always online in order to handle new key retrieval
requests from the various platforms. The TVD Master
creates and manages for each mobile storage device the
states Et and master keys Kt for lazy revocation, as well
as the master secret key SK and master public key PK
for the identity-based signature scheme. To allow each
platform to verify signatures made by the TVD Master,
we assume a public-key infrastructure that enables the
TVD Master to issue certificates for new master public
keys.

In particular, the initialization (“coloring”) of a new
mobile storage device D for a TVD works as follows.
Let the TVD be identified by (have the color) tvdID. As-
sume M to be the TVD Master of tvdID. Once the blank
device D is connected to a platform P, the Virtual Stor-
age Management of P formats the device and requests
the local TVD Proxy belonging to tvdID to generate an
identification record IR for the device. The TVD Proxy
contacts the TVD Master to issue the record containing
a newly generated device-id d and tvdID. Figure 3 shows
the corresponding protocol.

Beside the creation of the identification record, M
also initializes encryption and signature schemes for D.
M creates the tuple (E0, PK, SK,W,RL), where E0
is the initial state of the symmetric encryption scheme,
PK is the master public key and SK the master secret
key for the IBS scheme, W is the set of writers (it is given
as input to the initialization procedure) and RL, initially
empty, is the set of revoked writers. All these informa-
tion associated to D are stored in a newly created entry
in the Domain Device Directory (DDD) on M.
M derives its own signing key SKM

from SK. M signs the identification record
(d, tvdID) under SKM and sends the result
IR := (d, tvdID, sig[SKM](d, tvdID)) to the TVD
Proxy, which in turn stores it to the device. Now we
have D.id = d and D.owner = tvdID. The latter
indicates to which TVD the mobile storage device is
assigned, i.e., the “color” of the TVD. Note that storing
files from different TVDs on the same device is logically
equivalent to having one device for each TVD. Here, for
simplicity, we consider only the second case.

166 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 3: Device coloring protocol.

Note that neither Ei nor SK are delivered to
any platform, they are stored and processed only on
the TVD Master M. Indeed, M distributes to
each platform P the key management record r =
(d, (Kt, PK, SKP , W, RL)) where: Kt is the current
master key for encryption, and SKP is the signing key
of the platform P which was derived from SK by the
TVD Master. The record r is stored in the Local Device
Directory (LDD) of the corresponding TVD Proxy on P.

Device De-Initialization Finally, a device can be “un-
colored” by deleting its identification record (by format-
ting it) and erasing its corresponding entries in the global
(DDD) and local device directories (LDD). Entries in
both directories can have an expiration time, to avoid
that the TVD Master keeps information about devices
forever.

5.3 MSD Access Control Mechanism
When a device D assigned to the TVD is attached to the
platform P, which hosts VMs of the same domain, then
the Virtual Storage Management of P extracts the iden-
tification record IR from the device. If the device is rec-
ognized, i.e., D.owner is this TVD and the signature of
IR is valid, then the MSD Manager requests the corre-
sponding TVD Proxy to search for the record indexed by
d=D.id in its Local Device Directory in order to obtain
the device keys. If the entry is not found because the de-
vice has not been attached to this platform yet before, the
query is forwarded to the TVD Master M.

5.4 File Storage

In a naive approach, a platform, once it has obtained re-
quired keys, gets the whole file from the device, decrypts
it, verifies the attached signature and makes it available
to user applications. Eventually, it encrypts and signs the
updated file and copies it back to the device. This ap-
proach raises a problem: new data overwrite old data.

To fulfill our traceability and recovery requirement,
we store data to the MSD using a versioning filesystem.

In a versioning filesystem, each file can exist in sev-
eral versions. Usually, users can access transparently
(unlike in conventional application-level revision control
systems [41]) the latest file version as in a regular filesys-
tem, whereas a set of user-level utilities feature several
administrative tasks on file versions.

Versioning filesystems allow to record the history of
changes to files in data repositories, and are useful where
it is needed to maintain accurate logs of data flows and
possibly to reverse some operations.

The versioning policy we adopted is known as Copy-
on-write: a new file version is created each time it is
modified, e.g., by a write operation. Hence, a node which
accesses any input file fi, saves (and signs) its version to
the mobile storage device as a new file fi+1, instead of
simply overwriting the previous one. Afterwards, each
node can load the latest version of any file for which it
can successfully verify the signature.

As a consequence of this versioning policy users will
progressively consume all the available storage space
on any device. Therefore, the TVD policy also defines

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 167

a purge privilege that allows certain users to delete or
merge old versions. The purge operation is rather criti-
cal, hence, it is intended to be done only by domain ad-
ministrators and only when the device is connected to an
online platform.

We embedded both data security (encryption and dig-
ital signatures) and handling file revisions into our ar-
chitecture. The Virtual Storage Management performs
the corresponding operations transparently with respect
to user compartments.

5.5 Revocation of Cryptographic Keys

Both encryption and signing keys can be revoked in three
cases:

• Member revocation: Whenever a platform, VM, or
user is no longer member of the domain, the TVD
Master updates the encryption key (and revokes the
signing key if any).

• Key disclosure: Whenever it is known that a key
has been disclosed to unauthorized parties (e.g., due
to malicious users or compromised platforms), the
corresponding key must be revoked.

• Expiration: Creating and updating keys are bound
to a timer.

Suppose that at time t, revocation of kt is requested,
M updates the encryption engine taking it from state Et

to state Et+1, derives the new master key Kt+1. Kt+1 is
delivered to platforms that can extract the new encryption
key kt+1.

To revoke the signing key SKw, the TVD Master M
adds w to the revocation list RL. If the revoked key has
to be replaced by a new one, M generates a new writer-
id w, puts it into the set W of write-enabled nodes and
sends it to the node previously known as w. Moreover,
M sends the new revocation list RL to all other plat-
forms. All data signed with the revoked key SKw are no
longer accepted by any platform.

Key revocation may occur asynchronously with re-
spect to device access and the periodical update requests
by TVD members. Therefore we setup a key event noti-
fication system in which the TVD Master notifies a key
revocation to all platforms hosting VMs of the domain by
raising an appropriate event or alarm. Once the event no-
tification has been received, each online platform renews
its keys. Event notifications are queued, so that they can
be delivered to offline platform once they connect to the
TVD.

5.6 Offline Scenario
We briefly revisit how requirements raised in the offline
(but also online) scenario are addressed by our MSD ac-
cess control management:

• Delegation: Once the TVD deploy protocol [29]
has been carried out, the TVD Proxy locally stores
an instance of the TVD policy and a certain set of
MSD key management records. Hence, it is allowed
to enforce the policy and guarantee the access to the
subset of MSDs whose keys are stored in the Local
Device Directory LDD.

• Lazy revocation: Whenever a key revocation oc-
curs, new data, encrypted with the newly generated
key, do not overwrite the previous ones, hence, the
old data are still available for offline platforms to
which the new key has not been delivered.

• Authentication and integrity are provided by the
identity based signature scheme. Data written to a
mobile storage device is digitally signed with the
key assigned to the platform the device is attached
to. Unauthorized changes afterwards can easily be
detected by verifying the signature.

• Traceability and recovery: Employing a versioning
file service allows to keep track of all modification
made to the data, enabling offline platforms to ac-
cess to the most recent version they can decrypt.
Moreover, whenever a revocation occurs, it is possi-
ble to retrieve and delete all changes performed by
the revoked platform.

6 Implementation

In this section we briefly describe our prototype imple-
mentation of the MSD management in a TVD architec-
ture. In particular, we describe our implementation of
the virtual storage management. Figure 4 illustrates our
implementation.

Our prototype implementation is based on the Tu-
raya [15] security kernel. Turaya is composed of two
layers. The first layer is built upon an L4 microker-
nel [28], which ensures separation among logical exe-
cution environments (compartments) and runs services
that feature resource management (memory manage-
ment, I/O). On top of the L4 microkernel, compartments
can be native processes (called L4 tasks) or virtual ma-
chines (e.g., L4Linux, which is a para-virtualized Linux).
The trusted software layer provides security services in-
cluding secure storage, compartment management, and
trusted channel establishment.

In particular, a trusted channel [21, 39, 19, 1] is a
secure channel established between two compartments

168 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

Figure 4: Compartments involved in mounting and ac-
cessing to an attached MSD.

that: (a) validate each the configuration and identity of
the other, (b) negotiate each an encryption key depending
on the configuration of the other, so that data sent over
the channel by the former can be accessed only by the
latter and vice versa. In our architecture, trusted chan-
nels are used for the communication between the TVD
Master and TVD Proxies. In this way, the TVD Master
is ensured that the TVD Proxy to which it is going to send
security-critical data, is trusted, and that only that partic-
ular TVD Proxy can access data. On the other hand, the
TVD Proxy is guaranteed that it is receiving data from
the legitimate TVD Master. The storage manager is a
compartment that provides a persistent storage for other
compartments. The storage manager ensures confiden-
tiality, integrity, and freshness of stored data and bind
them to the configuration of their owner compartment.
For binding data and establishing trusted channels we use
trusted computing functionality of a TPM [43].

In addition to these services, our architecture intro-
duces two components that allow the user compartments
to access files on devices without having to deal with data
encryption themselves.

• The MSD Manager is a compartment, implemented
as an L4Linux virtual machine, which handles plug-

gable USB devices. When a USB disk device is at-
tached, the MSD Manager reads the identification
record of the device and forwards it to the TVD
Proxy for device recognition and, hence, for key re-
trieval.

• The Virtual MSD (vMSD) maps the physical en-
crypted device to a virtual (clear) one which is made
available to each user compartment of the corre-
sponding TVD. Once the TVD Proxy has retrieved
the device keys, it requests the Compartment Man-
ager to create the vMSD, which is implemented as
a native L4 task for each MSD. When the device is
detached, the vMSD is deleted.

Turaya components plus TVD Master, TVD Proxy,
MSD Manager and vMSD compose the Trusted Com-
puting Base of our architecture.

As already exposed in Section 5.4, our architecture
stores data on mobile devices through a secure version-
ing filesystem in which file content is encrypted and each
file version is signed by the user that created it. In our
early experiments, the versioning filesystem has been im-
plemented on Linux as a filesystem layer based on the
FUSE [40] module, making the system independent from
the underlying device filesystem format.

The diagram in Figure 6 summarizes the performance
measurement performed with the Bonnie benchmark
tool [8]. The first column of each group of measure-
ments (version only) shows the respective performance
achieved by the filesystem without performing neither
encryption nor signature of data. The values summarized
by the second column are obtained by running the test
enabling cryptographic features on single versioned files.
The purpose of this test is evaluating the overhead intro-
duced by the encryption scheme. In the third column we
can observe the performance measurement on files that
have eight previous versions. In this case, we aimed to
point out the overhead due to the signature verification
of the previous file versions.

We preliminarily point out that in general performance
of devices like USB sticks, memory cards and so on are
not very good if compared with the traditional hard disks
and that the use of digital signatures (usually avoided in
handling contents in secure filesystems) heavily affects
performance. On the other hand, we notice that actu-
ally mobile devices are mostly used as temporary stor-
age. That is, users prefer to copy documents lying on
the pen drive to the local hard drive, edit them there, and
then copy them back to the mobile device. Hence, in this
usage scenario filesystem performance are not a critical
issue. Nevertheless, our tests allowed us to focus on the
filesystem reliability, though we find that these results
are rather promising and some improvements could be
achieved by enhancing the file signature mechanism.

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 169

Figure 5: Performance measurement summary. The first column (versioning only) shows the throughput of the filesys-
tem without cryptographic features. The remaining columns show test results on encrypted and signed files, where in
average Vn versions are present.

7 Security Considerations

In this section we briefly focus on the main security as-
pects of our architecture, focusing on possible attacks an
adversary could launch to untrusted components of our
model: user application, devices and offline platforms.

We denote as “adversary” both an outsider entity who
is unaware of any information about the network and its
TVDs (e.g., old data and keys, namespace conventions
etc.), and revoked members with insider information who
are no longer trusted and are assumed to act as adver-
saries.

We assume that adversaries are not able to attack the
platform hardware. For example, adversaries cannot ex-
amine the content of the memory and possibly extract
any information by rebooting the platform and analyzing
its memory [24].

Moreover, our scheme aims at preventing disclosure of
sensitive data through the misuse of mobile storage de-
vices, whereas it is possible, for example, that insider at-
tackers could make an illegal copy of a confidential doc-
ument by taking a picture of the screen with a camera,
or simply printing it. However, in this work, we do not
cope with this kind of threats.

• Attacks to user applications. An adversary who ex-
ploits a user application running in any user com-
partment (or the compartment’s OS itself), enjoys
his victim’s access privileges to the plugged MSD.
The adversary can obtain and modify data through
the application environment. However, the attacker
can neither obtain the MSD keys he is using nor

can he force the platform to change the keys cur-
rently used, as keys and encryption algorithms are
not present in the application environment. This
threat could be mitigated by letting the TVD Proxy
periodically verify the integrity of the user compart-
ment (e.g., each time check if records in the LDD
are up-to-date). If the verification fails, the TVD
Proxy asks the Compartment Manager to kill the hi-
jacked compartment and requests the TVD Master
for revocation of the key of the MSD it was using.

• Attacks to the MSD. The MSD is a passive de-
vice that cannot enforce any effective security mea-
sure. An adversary who physically accesses the de-
vice, can copy, corrupt and delete both files and the
identification record, making the device content no
longer available to legitimate users. However, ad-
versaries cannot forge any valid data signature since
they have not any valid signing key. Moreover, ad-
versaries cannot read the content of the files stored
on the MSD, because they do not possess the neces-
sary encryption keys. However, revoked users can
still read data that is encrypted with a key they ob-
tained before being revoked. Roll-back attacks are
always possible. Adversaries could make a copy of
the filesystem at a certain time and afterwards they
can overwrite each more recent version of any file.
Revoked users can roll-back the MSD content to a
date it was still legitimate and begin an unautho-
rized branch of the data.

• Attacks to offline platforms. Data modifications car-
rying signatures by revoked users are no longer con-

170 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

sidered valid. Offline platforms may still success-
fully verify signatures by certain revoked users, and
even produce some output based on possibly ma-
licious input. However, when the MSD containing
such “corrupted data” is connected to an online plat-
form, unauthorized modifications can be found and
discarded. Nevertheless, in this way, revoked mem-
bers might still obtain new data from offline plat-
forms to which the new key has not been delivered
yet. Currently, our implementation does not include
a solution to this problem.

8 Related Work

The widespread use of Mobile Storage Devices (e.g.,
memory cards, USB sticks, transportable solid-state hard
disks), that allow users to move files among different
workstations, poses several problems, in primis related
to data confidentiality and integrity. In order to cope with
these problems, cryptographic mechanisms, i.e., encryp-
tion and digital signatures are useful means.

Cryptographic filesystems [7, 12, 27, 25] embed en-
cryption mechanisms into the filesystem operation, fea-
turing a way to encrypt data and metadata without any
effort by user level applications. This makes it possi-
ble to have good performance and fine-grained security.
In particular, the Plutus filesystem [25] features lazy re-
encryption [2] at the level of single file-blocks and the
key rotation mechanism to efficiently generate and man-
age new encryption keys.

Traditionally, cryptographic filesystems provide a
client-server architecture in which the former is trusted
and features file content encryption, integrity verification
and key management and the latter (untrusted) simply
acts as storage for encrypted files. Although several en-
crypted filesystem can be used also to encrypt local stor-
age devices, they best fit the networked scenario.

Solutions that focus on local storage encryption vary
between full disk encryption enforced by hardware or
software security modules and creating encrypted par-
tition on local devices [30, 42]. In this case, the aim is
guaranteeing the data confidentiality even if the device is
stolen and connected to another computer.

The Virtual Private File System [44] leverages on vir-
tualization to assure confidentiality whereas data is ac-
cessed through a possibly compromised operating sys-
tem. Sensitive applications run in a trusted compartment
and access their own separated storage through a filesys-
tem layer that features data secrecy, integrity and recov-
erability and relies on the untrusted filesystem provided
by a virtualized legacy operating system.

Encrypted filesystems as those mentioned above are
built on top of a specific operating system and are gen-
erally not portable. This may introduce inacceptable

constrains in a large scale environment. Moreover, dis-
tributed encrypted filesystems have, in many cases, their
own key management infrastructure which may not be
easily interoperable with other existing infrastructures
(e.g., PKIs, LDAP). This introduces some redundancies
and administrative overhead. Conversely, local storage
encryption facilities essentially protect personal devices
and workstation and do not feature any distributed key
management service. The VPFS also suffers from this
shortcoming. In contrast, our solution works for a wide
range of applications and operating systems due to the
virtualization approach. In fact, any application that can
run in a VM transparently benefits from the underlying
encryption mechanism. Moreover, it is possible to use
the same mobile storage device with its encrypted data
on various heterogeneous platforms since the TVD in-
frastructure provides an abstraction of the underlying en-
cryption mechanism and its key management.

Several architectures aim at enforcing sophisticated
security policies within large scale and multi-domain en-
vironments and are built on top of a filesystem encryp-
tion layer. In particular, the Concord framework [37] al-
lows organizations to monitor data while it is accessed by
mobile equipment and makes it possible to enforce the
access policies even in a disconnected scenario. Institu-
tion’s data are stored in encrypted form and encryption
keys are shared (through a threshold encryption scheme)
by a trusted policy enforcer and the user mobile device
(e.g., a laptop). In order to access data, the user and the
enforcer have to cooperate in order to reconstruct the data
encryption key. This approach allows the infrastructure
to promptly deny the access to data if it realizes the client
has been compromised. In the disconnected scenario, the
infrastructure restricts the user privileges to read-only ac-
cesses to a subset of organizational data. The role of the
enforcer is played by a “disconnected” policy enforcer
to which only a limited subset of encryption key shares
has been delivered. To the best of our knowledge, Con-
cord is the approach closest to our proposal. In our ar-
chitecture, Concord’s user machine and policy enforcer
are collapsed into the same platform, though as differ-
ent compartments, namely the virtual machine and the
TVD Proxy. However, our solution features a less re-
stricted off-line scenario (Concord’s disconnected mode
does not allow users to modify protected data). More-
over, the virtual storage management in TVDs is in gen-
eral more flexibile and transparent to the user.

Traceability and reversibility of data modification is an
important feature when allowing full data access within
the offline scenario and can be achieved through so-
called file versioning services, available both at applica-
tion level [41, 6] and at filesystem level [13, 31, 38, 34].
In particular, several recent proposals address security
and integrity checks for stored data, as well as verifiable

USENIX Association LISA ’09: 23rd Large Installation System Administration Conference 171

audit trails [36, 11, 35]. However, these systems do not
fit our requirements since they have not been designed to
handle totally passive storage devices.

9 Conclusion and Future Work

In this paper we presented an architecture for the secure
and transparent deployment of Mobile Storage Devices
(MSDs) within Trusted Virtual Domains (TVDs). We
believe that multi-domain IT infrastructures addressed in
the TVD model take advantage from the use of these de-
vices. We argued that the usually adopted approaches to
protect data stored on these devices suffer from several
shortcomings, mainly due to: their intrinsic untraceabil-
ity, their lack of any effective security feature, and the
considerable overhead that their management introduce
into the users’ work. Moreover, we pointed out that in-
troducing MSDs within TVDs is not a trivial task if the
resulting architecture should still be compliant with some
typical usage scenarios of these devices, and in particular
in the offline scenario. We introduced a general model
of a multi-domain environment that enables the secure
and transparent use of MSDs and showed how to ex-
tend existing TVD architectures with MSD management
components to realize this model. Finally, we sketched
a proof of concept implementation based on the Turaya
security kernel, which uses an L4 microkernel to provide
protected execution environments for management ser-
vices and virtual machines for reusing user applications.

Another important security problem related to MSDs
is the proliferation of malicious software like trojan
horses and viruses. Our solution limits such attacks, be-
cause only data written and signed by legitimate mem-
bers of a TVD is accepted as input by other TVD mem-
bers. However, legitimate members might still spread
malicious code inadvertently (e.g., if they are infected by
a virus). Future research might be directed towards pre-
venting the execution and propagation of malicious code
from MSDs.

References
[1] ARMKNECHT, F., GASMI, Y., SADEGHI, A.-R., STEWIN, P.,

UNGER, M., RAMUNNO, G., AND VERNIZZI, D. An efficient
implementation of trusted channels based on OpenSSL. In Pro-
ceedings of the 3rd ACM Workshop on Scalable Trusted Comput-
ing (STC 2008) (2008), ACM Press, pp. 41–50.

[2] BACKES, M., CACHIN, C., AND OPREA, A. Lazy revocation
in cryptographic file systems. In 3rd International IEEE Secu-
rity in Storage Workshop (SISW 2005), December 13, 2005, San
Francisco, California, USA (2005), pp. 1–11.

[3] BACKES, M., CACHIN, C., AND OPREA, A. Secure key-
updating for lazy revocation. In Computer Security - ESORICS
2006, 11th European Symposium on Research in Computer Se-
curity, Hamburg, Germany, September 18-20, 2006, Proceed-
ings (2006), vol. 4189 of Lecture Notes in Computer Science,
Springer, pp. 327–346.

[4] BEAUTEMENT, A., COLES, R., J., IOANNIDIS, C., MONAHAN,
B., PYM, D., SASSE, A., AND WONHAM, M. Modeling the
human and technological costs and benefits of USB memory stick
security. In Workshop on the Economics of Information Security
(WISE) (2008).

[5] BERGER, S., CÁCERES, R., PENDARAKIS, D. E., SAILER,
R., VALDEZ, E., PEREZ, R., SCHILDHAUER, W., AND SRINI-
VASAN, D. TVDc: Managing security in the trusted virtual data-
center. Operating Systems Review 42, 1 (2008), 40–47.

[6] BERLINER, AND POLK. Concurrent versions system (cvs), 2001.
http://www.cvshome.org/.

[7] BLAZE, M. A cryptographic file system for unix. In ACM
Conference on Computer and Communications Security (1993),
pp. 9–16.

[8] BRAY, T. Bonnie - filesystem benchmark tool. http://www.
textuality.com/bonnie.

[9] BUSSANI, A., GRIFFIN, J. L., JANSEN, B., JULISCH, K.,
KARJOTH, G., MARUYAMA, H., NAKAMURA, M., PEREZ,
R., SCHUNTER, M., TANNER, A., DOORN, L. V., HER-
REWEGHEN, E. A. V., WAIDNER, M., AND YOSHIHAMA, S.
Trusted Virtual Domains: Secure foundations for business and IT
services. Tech. Rep. RC23792, IBM Research, 2005.

[10] CABUK, S., DALTON, C. I., RAMASAMY, H. V., AND
SCHUNTER, M. Towards automated provisioning of secure virtu-
alized networks. In Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007, Alexandria,
Virginia, USA, October 28-31, 2007 (2007), ACM, pp. 235–245.

[11] CACHIN, C., AND GEISLER, M. Integrity Protection for Revi-
sion Control. In Applied Cryptography and Network Security:
7th International Conference, ACNS 2009, Paris-Rocquencourt,
France, June 2-5, 2009, Proceedings (2009), Springer, p. 382.

[12] CATTANEO, G., CATUOGNO, L., SORBO, A. D., AND PER-
SIANO, P. The design and implementation of a transparent cryp-
tographic file system for unix. In Proceedings of the FREENIX
Track: 2001 USENIX Annual Technical Conference, June 25-30,
2001, Boston, Massachusetts, USA (2001), USENIX, pp. 199–
212.

[13] CORNELL, B., DINDA, P., AND BUSTAMANTE, F. Wayback:
A user-level versioning file system for linux. In Proceedings of
Usenix Annual Technical Conference, FREENIX Track (2004),
pp. 19–28.

[14] DISTRIBUTED MANAGEMENT TASK FORCE. ”web-based en-
terprise management (wbem)”. http://www.dmtf.org.

[15] EUROPEAN MULTILATERALLY SECURE COMPUTING
BASE(EMSCB) PROJECT. Towards trustworthy sys-
tems with open standards and trusted computing, 2008.
http://www.emscb.de/.

[16] EUROPEAN NETWORK AND INFORMATION SECURITY
AGENCY (ENISA). Secure USB Flash Drives, June
2008. http://www.enisa.europa.eu/doc/pdf/
publications/SecureUSBdrives_180608.pdf.

[17] FABIAN, M. Endpoint security: managing USB-based removable
devices with the advent of portable applications. In InfoSecCD
’07: Proceedings of the 4th annual conference on Information
security curriculum development (New York, NY, USA, 2007),
ACM, pp. 1–5.

[18] GALINDO, D., HERRANZ, J., AND KILTZ, E. On the generic
construction of identity-based signatures with additional proper-
ties. In Advances in Cryptology - ASIACRYPT 2006, 12th Inter-
national Conference on the Theory and Application of Cryptology
and Information Security, Shanghai, China, December 3-7, 2006,
Proceedings (2006), vol. 4284 of Lecture Notes in Computer Sci-
ence, Springer, pp. 178–193.

172 LISA ’09: 23rd Large Installation System Administration Conference USENIX Association

[19] GASMI, Y., SADEGHI, A.-R., STEWIN, P., UNGER, M., AND
ASOKAN, N. Beyond secure channels. In Proceedings of the 1st
ACM Workshop on Scalable Trusted Computing (STC’07) (2007),
ACM Press, pp. 30–40.

[20] GASMI, Y., SADEGHI, A.-R., STEWIN, P., UNGER, M.,
WINANDY, M., HUSSEIKI, R., AND STÜBLE, C. Flexible and
secure enterprise rights management based on trusted virtual do-
mains. In Proceedings of the 3rd ACM Workshop on Scalable
Trusted Computing, STC 2008, Alexandria, VA, USA, October
31, 2008 (2008), ACM, pp. 71–80.

[21] GOLDMAN, K., PEREZ, R., AND SAILER, R. Linking remote
attestation to secure tunnel endpoints. In Proceedings of the First
ACM Workshop on Scalable Trusted Computing (STC’06) (2006),
pp. 21–24.

[22] GRIFFIN, J. L., JAEGER, T., PEREZ, R., SAILER, R., VAN
DOORN, L., AND CÁCERES, R. Trusted Virtual Domains: To-
ward secure distributed services. In Proceedings of the 1st IEEE
Workshop on Hot Topics in System Dependability (HotDep’05)
(June 2005).

[23] GUILLOU, L. C., AND QUISQUATER, J.-J. A ”paradoxical”
indentity-based signature scheme resulting from zero-knowledge.
In Advances in Cryptology - CRYPTO ’88, 8th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA,
August 21-25, 1988, Proceedings (1990), vol. 403 of Lecture
Notes in Computer Science, Springer, pp. 216–231.

[24] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARK-
SON, W., PAUL, W., CALANDRINO, J. A., FELDMAN, A. J.,
APPELBAUM, J., AND FELTEN, E. W. Lest we remember: cold-
boot attacks on encryption keys. Commun. ACM 52, 5 (2009),
91–98.

[25] KALLAHALLA, M., RIEDEL, E., SWAMINATHAN, R., WANG,
Q., AND FU, K. Plutus: Scalable secure file sharing on untrusted
storage. In Proceedings of the FAST ’03 Conference on File and
Storage Technologies, March 31 - April 2, 2003, Cathedral Hill
Hotel, San Francisco, California, USA (2003), USENIX.

[26] KATSUNO, Y., KUDO, M., PEREZ, P., AND SAILER, R. To-
wards Multi-Layer Trusted Virtual Domains. In The 2nd Work-
shop on Advances in Trusted Computing (WATC 2006 Fall)
(Tokyo, Japan, Nov. 2006), Japanese Ministry of Economy, Trade
and Industry (METI).

[27] LI, J., KROHN, M. N., MAZIÈRES, D., AND SHASHA, D. Se-
cure untrusted data repository (sundr). In OSDI (2004), pp. 121–
136.

[28] LIEDTKE, J. On micro-kernel construction. In SOSP (1995),
pp. 237–250.

[29] LÖHR, H., SADEGHI, A.-R., VISHIK, C., AND WINANDY, M.
Trusted privacy domains – challenges for trusted computing in
privacy-protecting information sharing. In Information Security
Practice and Experience, 5th International Conference, ISPEC
2009 (2009), vol. 5451 of Lecture Notes in Computer Science,
Springer, pp. 396–407.

[30] MICROSFOT CORP. Bitlocker drive encryption, 2006.
http://technet.microsoft.com/en-us/windows/
aa905065.aspx.

[31] MUNISWAMY-REDDY, K., WRIGHT, C. P., HIMMER, A., AND
ZADOK, E. A Versatile and User-Oriented Versioning File
System. In Proceedings of the Third USENIX Conference on
File and Storage Technologies (FAST 2004) (San Francisco, CA,
March/April 2004), USENIX Association, pp. 115–128.

[32] NAOR, D., SHENHAV, A., AND WOOL, A. Toward securing un-
trusted storage without public-key operations. In Proceedings of
the 2005 ACM Workshop On Storage Security And Survivability,
StorageSS 2005, Fairfax, VA, USA, November 11, 2005 (2005),
ACM, pp. 51–56.

[33] PARKIN, S. E., KASSAB, R. Y., AND VAN MOORSEL, A. P. A.
The impact of unavailability on the effectiveness of enterprise in-
formation security technologies. In Service Availability, 5th In-
ternational Service Availability Symposium, ISAS 2008, Tokyo,
Japan, May 19-21, 2008, Proceedings (2008), vol. 5017 of Lec-
ture Notes in Computer Science, Springer, pp. 43–58.

[34] PETERSON, Z., AND BURNS, R. Ext3cow: a time-shifting file
system for regulatory compliance. ACM Transactions on Storage
(TOS) 1, 2 (2005), 190–212.

[35] PETERSON, Z., BURNS, R., ATENIESE, G., AND BONO, S. De-
sign and implementation of verifiable audit trails for a versioning
file system. In Proceedings of the 5th USENIX conference on
File and Storage Technologies table of contents (2007), USENIX
Association Berkeley, CA, USA, pp. 20–20.

[36] SHAPIRO, J. S., AND VANDERBURGH, J. Access and integrity
control in a public-access, high-assurance configuration man-
agement system. In Proceedings of the 11th USENIX Security
Symposium, San Francisco, CA, USA, August 5-9, 2002 (2002),
USENIX, pp. 109–120.

[37] SINGARAJU, G., AND KANG, B. H. Concord: A secure mo-
bile data authorization framework for regulatory compliance. In
Proceedings of the 22nd Large Installation System Administra-
tion Conference, LISA 2008, November 9-14, 2008, San Diego,
CA, USA (2008), USENIX Association, pp. 91–102.

[38] SOULES, C., GOODSON, G., STRUNK, J., AND GANGER, G.
Metadata Efficiency in Versioning File Systems. In Proceedings
of the 2nd USENIX Conference on File and Storage Technologies
(2003), USENIX Association Berkeley, CA, USA, pp. 43–58.

[39] STUMPF, F., TAFRESCHI, O., RÖDER, P., AND ECKERT, C. A
robust integrity reporting protocol for remote attestation. In 2nd
Workshop on Advances in Trusted Computing (WATC’06 Fall)
(Tokyo, December 2006).

[40] SZEREDI, M. File system in user space. http://
sourceforge.net/projects/fuse.

[41] TICHY, W. Design, implementation, and evaluation of a Revision
Control System. In Proceedings of the 6th international confer-
ence on Software engineering (1982), IEEE Computer Society
Press Los Alamitos, CA, USA, pp. 58–67.

[42] TRUECRYPT FOUNDATION. Truecrypt - free open-source on-
the-fly encryption, 2004. http://www.truecrypt.org/.

[43] TRUSTED COMPUTING GROUP. TPM main specifica-
tion, version 1.2 rev. 103, July 2007. https://www.
trustedcomputinggroup.org.

[44] WEINHOLD, C., AND HÄRTIG, H. VPFS: Building a virtual
private file system with a small trusted computing base. In Pro-
ceedings of the 2008 EuroSys Conference, Glasgow, Scotland,
UK, April 1-4, 2008 (2008), ACM, pp. 81–93.

[45] WIRED. Under worm assault, military bans disks, USB drives,
Nov. 2008. http://www.wired.com/dangerroom/
2008/11/army-bans-usb-d.

