
Programming
the Virtual
Infrastructure
Paul Anderson <dcspaul@ed.ac.uk>

T
H
E

U N
I V E R S I T

Y

O
F

E
D I N B U

R
G
H

http://homepages.inf.ed.ac.uk/dcspaul/
publications/lisa-2008-talk.pdf

http://homepages.inf.ed.ac.uk/dcspaul/
http://homepages.inf.ed.ac.uk/dcspaul/
http://gabbly.com/private/IT%2520Futures%2520Conference/mobilecomp
http://gabbly.com/private/IT%2520Futures%2520Conference/mobilecomp
http://gabbly.com/private/IT%2520Futures%2520Conference/mobilecomp
http://gabbly.com/private/IT%2520Futures%2520Conference/mobilecomp

Acorn System I
(1979)

MP-C Serial Interface
MP-M 4K Memory

MP-A CPU Board
0.9MHz MC6800

Power Supply
8 Volts 10 Amps

SWTPC
6800

128K Mac

 (1984) Sun 3/50

What software goes
on each machine?

Someone else
creates the software
and the hardware ...

Which machine is
connected to which
network?

Which disk is
connected to which
machine?

System Configuration

Mail

Web

File

File

File

Virtualisation
We can now virtualise ...

• the processor
• the network
• the storage

So we no longer need physical intervention to do
most reconfiguration tasks

• replacing failed machines (we can migrate off)
• transferring to a machine with more resources
• adding more storage
• reconfiguring network topology
• etc

Flexiscale

Aldous Huxley

The charm of history and
its enigmatic lesson consist
in the fact that, from age to
age, nothing changes and
yet everything is completely
different.

An Analogy ?

Mail

Web

File

File

File

Programming the Virtual
Infrastructure

In some sense, we can think of configuration as
“programming the virtual infrastructure”

• the function of the infrastructure (hardware)
depends on the configuration (program)

• (but, of course, the problem is not identical)

The “virtual” nature of the infrastructure does not
fundamentally change the nature of the configuration
problem

• but it does significantly increase the complexity
• the configuration of the inside and the outside of the

virtual machines are intimately related

Learning from History?

When something becomes sufficiently complex, a new
layer of abstraction often develops to enable things to
move forward

Each stage comes with new techniques, theories and
specialists

Can we learn anything from the way in which
programming languages and software engineering have
developed?

• maybe there are some specific analogies?
• or perhaps just lessons in the process?

Lets look at some history ...

In the Beginning ...

The hardware engineers
wrote their own programs

Writing machine code was
slow and error-prone

“Automatic Programming”
was proposed as the
solution

Fortran was one of the
first high-level languages

Efficiency

The programmer
attended a one-day
course on Fortran
and spent some
more time referring
to the manual.

From a 1957 paper
on Fortran

He then programmed
the job in four hours,
using 47 Fortran
statements. These were
compiled by the 704 in
six minutes, producing
about 1000
instructions.

He estimated that it
might have taken
three days to code this
job by hand.

Correctness

He studied the output
(no tracing or memory
dumps were used) and
was able to localise his
error in a Fortran
statement he had
written.

He rewrote the
offending statement,
recompiled and found
that the resulting
program was correct.

He estimated that it
might have taken three
days to code this job by
hand, plus an
unknown time to
debug it.

From a 1957 paper
on Fortran

Some Other benefits
Programs were now portable between different types
of hardware

• and programmers did not have to learn multiple
machine codes

Control of the machines was opened up to those who
wanted to make use of them

We would like to have the same properties for
programming our virtual infrastructure:

• efficiency
• correctness
• portability
• usability ...

Programming Languages

1950 1960 1970 1980 1990 2000

Structured programming

OO programming

High-level languages

Fortran 1954
Algol 1958, C 1972
Simula 1967, Smalltalk 1980, C++ 1989, Java 1995

Complexity?
“Essential Complexity” is the complexity inherent in a
problem

• virtual machines are significantly increasing the
essential complexity of the configuration problem

“Accidental complexity” is the complexity created as
part of a (bad) solution

Fred Brooks claims that modern programming has
eliminated most of the accidental complexity

• No Silver Bullet - Essence and Accidents of Software
Engineering

This does not feel true for configuration ...

Language Development
New approaches can take 15 years to become
accepted practice

Language design has become more formal and
academic

• but features only survive when they prove
themselves in practice

There is a general trend towards higher levels of
abstraction

• but different levels are appropriate for different
applications

Languages can be mixed relatively easily

John Backus

“We simply made up the
language as we went along.
We did not regard
language design as a
difficult problem, merely a
simple prelude to the real
problem: designing a
compiler which could
produce efficient
programs."

Developer of Fortran & inventor of BNF

Configuration Languages
Several features of programming languages have been
exploited in the design of configuration languages

• modules and objects
• aspects, prototype-based languages

But configuration languages usually describe some
“desired configuration state”

• this is different from a conventional programming
language, which usually describes a computation

So some analogies are more interesting that others
• agile programming
• declarative programming languages ...

How do these apply to virtual infrastructures ?

Agile Configuration ?
Why is (for system configuration) ...

• Perl more popular than Java ?
• Cfengine more popular than CIM ?

Perhaps because these are more agile ?
• system configurations change rapidly
• new components need to be incorporated quickly
• “agile” development is traditional

What about the virtual infrastructure ?
• perhaps the “outside” management of the virtual

machines is a more stable problem ?
• or not ?!

Configuration Languages

1950 1960 1970 1980 1990 2000

Configuration Languages

Cfengine 1997 (?)
BCFG 2003 (?)
Puppet 2005 (?)

LCFG 1994 (?)
Approximate dates
of first publication!

How suitable are these for virtual infrastructures?

Declarative Descriptions
“Declarative” descriptions say
“what you want” rather than “how to get there”

They have some important advantages over
“imperative” descriptions:

• the sequence of statements is not important
• we don’t have to worry about “idempotence”

(multiple executions having a bad effect)
• the statements describe the desired state

(it is easier to be confident that they are correct)
• It is easy to combine requirements from different

people (aspects)

Declarative Configuration

Declarative specifications have become the norm for
system configuration tools:

• Cfengine specifies that a file should contain a line
• LCFG specifies the value of “mailrelay” resource
• MLN specifies the virtual machine configurations

BUT - the tool needs to compute and implement the
changes necessary to bring the system, into the
desired state

• this is easy when specifying the content of a file
• it is a serious planning problem when specifying the

state of a virtual infrastructure
• the intermediate states are important

MLN switch lan {}
host one {
 network eth0 {
 switch lan
 address 10.0.0.1
 netmask 255.255.255.0
 }
}
host two {
 network eth0 {
 switch lan
 address 10.0.0.2
	
 netmask 255.255.255.0
 }
}

Declarative Programming
Prolog is the original declarative programming
language (1970s)

• this is widely used, but only in restricted applications

In theory, this can support both
• the specification of the configuration itself
• and the planning of the transitions

Such fully-automated reasoning is not appropriate for
many tasks

• the outcome may be unexpected
• computation times may be unpredictable
• it may be not clear why a particular decision is made

Constraints
Constraint Logic Programming (CLP) is a technique
for solving declarative constraints

This has proven useful in generating network and
system configurations from policies

• Every network segment must have at least two
DHCP servers

• No component of network should be a single point
of failure

It seems appropriate for virtual infrastructures
• VM X must not be on the same physical machine as

any VM owned by company Y
• VMs A and B must be on the same network

Constraint Properties
Specifications from different sources can be combined
without worrying about their interaction

• VM X must be on a machine owned by Y
• All VMs on machines owned by Y must be connected

to network Z

Specifications are “loose” enough so that autonomic
systems have room to make choices

• VM X can be hosted anywhere where the filesystem
Y is available

Constraints are also useful in planning
• There must always be at least one active VM hosting

database X

Constraint Problems
Specifying things in terms of constraints is not always
natural ...

It is easy to underspecify
• if you don’t specify that something is not valid, then

the system might well attempt it!

It is easy to overspecify
• this leaves no “room” for autonomic adjustment

Solving general constraints is computationally hard
• progress is being made with the technology
• restrictions can be used to simplify the problem
• more loosely specified problems are harder

Automatic Programming

So ... automatic programming of Virtual
Infrastructures is hard

• it is not easy to specify correctly what is required
• translating “high-level” requirements into

implementable specifications is hard
• the languages are immature and contain a lot of

accidental complexity
• the solutions can be difficult to compute
• automatic solutions may be difficult to understand

and trust
• the planning of the change implementation is

important (and difficult) as well as the final
configuration state

Operating Systems
Operating systems provide a framework for
integrating the programming of a machine

Configuration tools (such as LCFG) provide a
framework for system configuration

• these have different requirements
• configuration frameworks are much less advanced

Virtual infrastructures require a different kind of
framework again

• existing attempts at frameworks for virtual machine
management are very simple

• they are not well-suited to more complex
automation

Frameworks

One promising approach is to use a framework
which allows humans and automatic processes to
collaborate smoothly ...

In the context of modern distributed, virtual
organisations, when attempting any sort of
collaborative synthesis task, it is likely to require
the capabilities of both human and computer
agents.

The I-X Project

The I-X Framework

The I-X Framework has been used for planning, for
example, emergency response

Decisions are made by a combination of human and
automatic processes -

• the system may present alternatives for the user to
select

• decisions may be passed to other (remote) users, or
delegated to automatic processes

• “canned” solutions may be stored for configurations
or plans

• the user may make explicit choices to constrain
automatic solutions

Distributed Configuration

The underlying model of an infrastructure is also
different from a programmable machine.
For example:

• the target “machine” is distributed (and unreliable)
• the source of the configuration is distributed -

different parts of the infrastructure are under the
control of different people

These features often create difficulties for
configuration tools

• although tools such as cfengine emphasise the
autonomy of the individual machines

• there is still a tension between this and the need for
central “control”

VMs as Agents
Virtual infrastructures emphasise these difficulties

• the machines migrate around the infrastructure
(and across infrastructures)

• the “inside” of the virtual machine may be under the
control of someone different

• it may have different “goals” from the physical
machine

This makes it tempting to think of virtual machines in
terms of “reactive agents”

• this is one example of a radically different approach
to the problem ...

Reactive Systems
Reactive systems are systems that
cannot adequately be described by
the relational or functional view.

The relational
view regards
programs as
functions from
an initial state to
a terminal state.

Typically, the main role of
reactive systems is to maintain
an interaction with their
environment, and therefore
must be described (and
specified) in terms of their on-
going behaviourAmir Pnueli (1986)

VMs as Agents
Of course, thinking in terms of “agents” does not
“solve the problem” ...

There is no general method for co-ordinating the
agents towards some common goal

• Eg. “Build me a web service”

The individual agents must have implementable
specifications for their behaviour

• probably a declarative specification

There is much less certainty in the resulting
configuration

• it is harder to prove certain properties

Some Final Thoughts
Fully automatic “programming” of virtual
infrastructures is very hard and unlikely to be practical
in the near future

Existing configuration techniques are inadequate

Perhaps the demands of virtual infrastructures will
prompt a radical rethink of these

But language design takes time to evolve and eliminate
accidental complexity

And new models take time to gain trust and
acceptance

Smooth collaboration between manual and automatic
procedures is looks like an important approach

John Backus

The team was heavy with
math training because so
much of computing at the
time was numerical
analysis and
mathematics, but it was
an eclectic group.

A crystallographer, a
cryptographer, a chess
wizard, an employee lent
from an aircraft
manufacturer, a
researcher borrowed from
M.I.T. and a young
woman who joined the
project straight out of
Vassar College.

Irvine Ziller

“And in the background
was the scepticism, the
entrenchment of many
of the people who did
programming in this
way at that time; what
was called "hand-to-hand
combat" with the
machine”

