
Everlab – A Production Platform for
Research in Network

Experimentation and Computation
Elliot Jaffe, Danny Bickson, and Scott Kirkpatrick – Hebrew University of Jerusalem, Israel

ABSTRACT

We have pioneered the deployment of EverLab, a production level private PlanetLab system
using high-end clusters spread over Europe. EverLab supports both experimentation and computa-
tional work, incorporating many of the features found on Grid systems. This paper describes the
decision process that led us to choose PlanetLab and the challenges that we faced during our im-
plementation and production phases. We detail the monitoring systems that were deployed on Ev-
erLab and their impact on our management policies. The paper concludes with suggestions for fu-
ture work on private PlanetLabs and federated systems.

Introduction

Evergrow is a European Commission Sixth
Framework Integrated Project with around 28 partici-
pating research organizations spread across Europe
and the Middle East. The project combines research
efforts including network measurement [11, 17], dis-
tributed systems [1], and complex systems research
[9]. Our researchers span the range from systems de-
velopers to physicists. At the onset of the project, we
realized a need to provide computational and experi-
mental tools for our members. We purchased a set of
eight IBM HS20 clusters co-located with some of our
research members. Each cluster has 16 blades, where
one blade is a storage server and another blade is used
for configuration management. We allocated support
expenses to the hosting members in order to provide
administration, maintenance and support to our users.

Intentionally, the clusters were spread across
eight European facilities: Aston University – UK, Uni-
versite Paris-Sud 11 ‘‘Orsay’’ (UPSXI) – France, Istituto
Nazionale per la Fisica della Materia (INFM) – Rome,
Italy, Collegium Budapest Egyesulet (COLBUD) – Hun-
gary, Tel Aviv University (TAU) – Israel, Otto-von-Gu-
ericke-Universitat at Magdeburg (UNI MD) – Germany,
Universite Catholique de Louvain (UCL) – Belgium and
Swedish Institute of Computer Science (SICS) – Swe-
den. The clusters were deployed in different sites so that
we could run ‘‘real-world’’ network experiments using
existing wide area network links.

In September of 2004, the team met to decide
how to integrate the clusters into a shared resource. It
was agreed to setup a VPN between the clusters with a
master LDAP server for authentication. We intended
to use IBM’s GPFS file system to make our storage
available throughout the cluster.

For various reasons, our agreed upon approach
was not implemented. The reasons included technical
problems, networking policies and the availability of

local resources. One year later in September of 2005,
we undertook a survey of our clusters. We found a

Figure 1: Geographic location of EverLab clusters.

very sad state of affairs. Each local administrator had
chosen a different stand-alone implementation for
their cluster. Initially the clusters had RedHat EL2 in-
stalled. Some of the local system administrators changed
the operating system to Fedora Core 4, Debian, Ubunto
or Mosix. Many of the clusters were inaccessible be-
cause the local network policy forbade open access to
‘‘ i n t e r n a l ’’ computational resources. At one point, we
had eight different operating systems. No part of the
original plan was universally implemented and hence our
researchers had to request permission from each admini-
strator both for a login id and for a firewall exemption so
that they could access the nodes.

21st Large Installation System Administration Conference (LISA ’07) 203

Everlab – A Production Platform for Research . . . Jaffe, Bickson, & Kirkpatrick

Our first task was to deploy a monitoring system
for all nodes in the eight clusters. We found that Gan-
glia [10] was easy to install and required only a small
number of changes to existing network policies. Gan-
glia gave us our first view into what the clusters were
doing. The results were disappointing. Many of the
nodes were idle.

Having realized that our current approach was
not working, we started looking at alternatives. One
option was to force all the administrators to adopt a
standard platform. This was rejected because each do-
main had their ‘‘standard’’ platform, be it RedHat, Fe-
dora Core, Debian or BSD. The administrators did not
want to be responsible for an unfamiliar system. The
other option was to find a standard platform that could
be administered centrally, relieving the local adminis-
trators from direct interaction with the installed oper-
ating system. Two options were suggested: Grid and
PlanetLab. A comparison of these two approaches can
be found in [21].

We explored using a Grid infrastructure [3]. Grid
systems are designed for computation and could have
been deployed across our clusters. Grid environments
are reasonably well developed. Such a system would
have provided a unified login, the ability to deploy ap-
plications across the nodes and a strong monitoring
and management infrastructure. The problem was that
the Grid is optimized for computation. Applications
are automatically deployed to available nodes. A large
fraction of our researchers wanted to perform experi-
ments where the location of a process is important.
When debugging network experiments, it is important
to be able to run test scripts and tracing programs di-
rectly on each remote node. The Grid infrastructure
does not allow this kind of access. Grid computation
nodes are accessible to users only through the Grid
management system.

At the time PlanetLab [18] had been deployed to
around 500 nodes across the world. PlanetLab sup-
ports network experimentation across remote distrib-
uted nodes. The system is centrally managed from
Princeton University in the United States. PlanetLab
itself was not a complete solution for two reasons;
first, PlanetLab is designed only for network experi-
mentation. A significant fraction of Evergrow re-
searchers needed computational resources. Secondly,
at the time, there were no production level Private
PlanetLab installations. At October 2005, we initiated
a European PlanetLab workshop in EPFL, Switzerland
[16]. We found out there was significant interest at
both educational institutions and in industry for imple-
menting and using Private PlanetLabs to share and
manage remote resources.

In December 2005, we took up the challenge of
implementing PlanetLab on the Evergrow clusters. We
called the new system EverLab. The path was treach-
erous. At the time, the PlanetLab software was not

designed for ease of installation. It was a moving tar-
get with components being rewritten and upgraded on
a regular and unannounced basis. PlanetLab was de-
signed for ‘‘low end’’ computers. It ran on single pro-
cessor from the Pentium family with 512 MB or
RAM, a CDROM and 50 GB of local disk and direct
connect keyboard connected to a central USB BUS.
Our cluster blades have dual 3 Ghz Xeon processors
with 4 GB of local ram, 80 GB of disk, no CDROM
and a USB keyboard. It took many months to identify
the problems and build the appropriately modified ker-
nels and support files.

We succeeded in deploying a Private PlanetLab
system. The system provided a centrally managed
platform that was usable for experimentation. We in-
stalled Ganglia on EverLab so that we could monitor
both the old and new systems from one platform. We
also developed a custom-built resource reporting sys-
tem called EverStats. Together, these tools allow our
administrators to track system usage and to identify
network and hardware problems. Ganglia told us
which machines were in use and EverStats told us who
used our system and how each node was allocated.

At this point, EverLab was operational and us-
able by all Evergrow researchers, but it did not yet
support High Performance Computation (HPC). To
this end, we deployed the Condor [19] system from
the University of Wisconsin. We deployed the Mes-
sage Passing Interface (MPICH2) [5] on top of Con-
dor. With these two additions, Everlab now supports
both computation and networking research.

As far as we know, we were the first production-
quality Private PlanetLab. Unlike the original Planet-
lab network which is mainly based on regular PC
computers, our network is based on high-end servers
with Gigabit Internet connection.

EverLab runs on a subset of the 112 EverGrow
nodes. It currently includes more than 50 blades in six
clusters. All Evergrow researchers can create an ac-
count on EverLab and have quick access to the re-
sources without negotiating with eight separate admin-
istrative domains. EverLab is monitored 24x7, and
problems are quickly identified. The EverLab admin-
istrators can handle system level issues. Local admin-
istrators respond to hardware related problems.

The rest of this paper describes the challenges
and solutions that we encountered during this journey.
We detail the value of Ganglia and EverStats to our
administration efforts. There are still many opportuni-
ties to improve and extend EverLab some of which are
described in the Future Work section. Finally, we con-
clude with our lessons and opinions about the use of
EverLab type systems for new research projects.

PlanetLab

Everlab is based on PlanetLab version 3.2 [18].
This section describes the PlanetLab implementation.

204 21st Large Installation System Administration Conference (LISA ’07)

Jaffe, Bickson, & Kirkpatrick Everlab – A Production Platform for Research . . .

Overall, we found PlanetLab to be a very stable plat-
form once the installation process and initial settings
were completed.

FC2

PostgreSQL DB

RPM

WEB
Server

PLC
API

PlanetLab

Node1

FC2

VServer

Slice
A

Slice
B

Slice
Z

Node X

FC2

VServer

Slice
A

Slice
B

Slice
Z

Internet

Figure 2: Schematic diagram of the PlanetLab net-
work components.

PlanetLab is a centrally managed collection of
distributed computers which are called nodes. The
system is designed to be used on a publicly accessible
network where all nodes can at a minimum access the
central management node. The central management
node or PlanetLab Central (PLC) supplies three func-
tions: database for storing system state, web interface
for management and a RPM [4] repository for updat-
ing the remote nodes. The web interface provides a
human readable interface and an XMLRPC interface
called PLCAPI for internal use. Remote nodes com-
municate with the PLC through HTTPS and PLCAPI
calls.

At the time of our initial efforts, The PlanetLab
Central node ran on Fedora Core 2 (FC2). The PLC
used a PostgreSQL database and an Apache web serv-
er. Most of PlanetLab was implemented in a mixture
of shell and python. The use of common open-source
components was a significant factor in our decision to
implement PlanetLab. We felt that we could under-
stand, maintain and modify any or all of the compo-
nents as needed.

Each PlanetLab Version 3 node consists a modi-
fied FC2 system. All user activity is performed using
virtualization technology implemented by the vserver
[8] kernel extension. Node installation is intentionally
kept as simple and minimal as possible both to reduce
complexity and to increase security. PlanetLab’s virtual-
ization unit is called a slice. Each slice is a minimal FC2
installation. A user logged into a slice has slice level

superuser privileges through the sudo command. Slices
provide compartmentalization between users and system
components, thus reducing or eliminating the possibility
of one user modifying or removing a file or component
necessary to another user or process.

PlanetLab Security

PlanetLab was designed from the outset as a plat-
form for network experimentation. PlanetLab nodes need
free access to and from the Internet in order to provide
the broadest possible research opportunities and to limit
unexpected network interactions caused by firewalls or
local network policies. This focus impacted many of the
installation, administration and security aspects of Plan-
etLab.

PlanetLab utilizes asymmetric encryption keys to
create secure authenticated communication channels.
These keys are used to identify nodes, servers, and
users within the system. There are unique keys for
run-time and debug mode operations.

All nodes are assumed to be at risk. Even with the
strong compartmentalization provided by the vserver
slices, in principle an attacker could enter the root do-
main and take over the machine. To minimize this expo-
sure and to provide a recovery mechanism from a pos-
sible penetration, PlanetLab initially boots from a
CDROM. The CDROM contacts the PLC and can ei-
ther enter a debug mode, boot to the exiting disk based
kernel, or re-install the node.

Figure 3: Planetlab boot process. (1) Everlab node
boots from CD-ROM. (2) Node gets certificate
and identity from floppy drive. (3) Authentica-
tion process is done via the PLC. (4) Local files
are updated from PLC. (5) Node bootstraps into
VServer kernel.

The PlanetLab kernel includes a secure Ping Of
Death (POD) implementation which allows the PLC to
cause the kernel to reboot given an encrypted secret
that only the PLC could have produced.

If a node is suspected of having been compro-
mised, a PlanetLab administrator can cause the node
to reboot using the Ping Of Death and to reboot from
CDROM into debug mode. At this point, the admini-
strator can log into the node using a special debug

21st Large Installation System Administration Conference (LISA ’07) 205

Everlab – A Production Platform for Research . . . Jaffe, Bickson, & Kirkpatrick

mode SSH key. The administrator can mount the local
disk, examine the files and determine if the machine is
worth saving. At any point, the administrator can set
the nodes status to ‘‘reinstall’’. On the next reboot, the
CDROM based kernel will wipe the disks clean and
install a clean system from scratch.

In the 18 months that we have run PlanetLab
nodes on the Internet, we have never had a known pene-
tration. We have used both the POD and the Reinstall
option to recover from hardware and software errors.

NetFlow: Security Monitoring and Logging
PlanetLab includes a package called NetFlow on

each node. The PlanetLab Netflow component is
based on the Netfilter [12] ulogd package. This pack-
age tracks all network flows, i.e., communications be-
tween this node and all other nodes. The data is avail-
able over HTTP from port 80 on each node. The flow
traces are very useful in determining which slice was
responsible for communication to a given node. This
can be helpful when debugging an application or ex-
periment. It can also be used when we suspect that the
node has been compromised either by an external par-
ty or a rogue experiment.

Installation Issues

PL_BOX
The first efforts to deploy Private PlanetLabs

were through a package called ‘‘pl_box:’’ PlanetLab
in a Box. The package consists of a set of scripts
which can download and install all necessary Planet-
Lab components. The local machine is installed as a
PlanetLab Central (PLC) and separate scripts are pro-
vided to create deployment CDROM’s and kernels.
The PLC installation copies the necessary RPM files
to a local directory for use when installing PlanetLab
nodes. These RPMs include the FC2 package as well
as separate PlanetLab packages.

The pl_box package generates all public and pri-
vate keys, installs the databases and web applications
and creates the necessary cron jobs to keep PlanetLab
running.

For our implementation needs, there were two
major drawbacks to the pl_box system. First, the in-
stalled system is a copy of the PlanetLab system. All
the web pages, documents and embedded links point
back to the original PlanetLab system instead of the
newly installed Private PlanetLab. Secondly, there is
no upgrade path for pl_box. Changes made to the orig-
inal PlanetLab system must be manually imported into
the private pl_box. At the time, there was no mecha-
nism for change notification and so the public Planet-
Lab and the private pl_box system were guaranteed to
diverge.

Even with these issues, we have found pl_box to
be sufficiently stable for our needs. We have had no
serious issues since our deployment more than 18
months ago. The PlanetLab project has since replaced

pl_box with a new system called MyPLC. The My-
PLC system offers the ability to customize the user in-
terface for the private installation. It provides a up-
grade mechanism through the use of standard RPM
source and binary packages available from the Planet-
Lab development team. There is no formal upgrade
path from pl_box to MyPLC and so we will need to
re-install our entire system and re-implement our ex-
tensions. None-the-less, we believe that MyPLC rep-
resents the future of private PlanetLabs and we plan
on upgrading to the new system sometime this year.

Our first challenge was to install pl_box. We
chose to use a Fedora Core 4 platform for this pur-
pose. At the time, Thierry Parmentelat at Inria in
France showed that it was possible to run a PLC on
FC4. We decided to install on FC4, given that it was a
fresher, more secure release than the default FC2. The
installation and production challenges revolved around
changes to core packages such as PHP that pl_box re-
quired. Debugging these differences gave us our first
understanding of the core functionality.

Once the PLC was installed, we moved to in-
stalling new nodes. We started with two local ma-
chines that had already been PlanetLab nodes. We had
no trouble installing these two machines and were
now ready to deploy to the clusters. It was here that
our real problems began.

Cluster Ownership

We spent many month prototyping and experi-
menting with PlanetLab to determine its appropriateness
for our installations. At the EverGrow general assembly
meeting in December 2005, we presented our results
and were given the green light to deploy EverLab on the
group’s clusters. We then went to each local site admini-
strator and asked for access to deploy the new system.
We were met with three types of responses.

Some administrators welcomed us with open
arms. We were going to reduce their overhead by man-
aging all of cluster’s software and user issues. These
systems were converted to EverLab as soon as the ex-
isting researchers had finished their ongoing experi-
ments.

Some site administrators had integrated one or
more of their cluster’s nodes into research workflows.
These nodes became dedicated to that project and
were unavailable to EverLab. At these sites, EverLab
was installed on most but not all of the nodes.

Finally, one cluster never made the transition to
EverLab. This group had installed a load balancing
version of Linux and were able to keep all of the clus-
ter ’s node fully loaded more than 90% of the time. It
was decided that there was little benefit to be had by
moving these nodes to EverLab.

Network Politics

The Evergrow nodes were deployed to eight uni-
versities across Europe. Each university had and has

206 21st Large Installation System Administration Conference (LISA ’07)

Jaffe, Bickson, & Kirkpatrick Everlab – A Production Platform for Research . . .

their own network policies. Some of our host universi-
ties were already hosting PlanetLab nodes.

We had to fight the network battle at each sepa-
rate location. PlanetLab minimally requires that:

1. Each node has a public DNS entry.
2. Each node has unhindered access to the PLC.
3. The PLC can send packets to each node for the

Ping of Death feature.
In addition, we hoped that all machines would

have unhindered access to and from the Internet.
We negotiated with the local system administra-

tors and they negotiated with their local network ad-
ministrators. In most cases, we were able to get the
nodes physically located on a public Internet. The ne-
gotiations sometimes required the signatures of uni-
versity officials or worse, university security officers.
All told, it took many months to simply gain access to
the remote clusters.

Hardware
The closest cluster to our developers was in Tel-

Aviv University (TAU). Unfortunately, TAU has very
restrictive access policies and to this day, provides on-
ly restricted access to their EverLab nodes. In contrast,
The Swedish Institute of Computer Science (SICS)
had nodes directly connected to the Internet and were
eager to help with our new system. We decided to start
testing with the SICS cluster.

Our first challenge was to replace the CDROM
based bootstrap process used in PlanetLab nodes. We
wanted to maintain the bootstrap ability, but our
blades did not have a dedicated CDROM drive or
USB drive. We needed to have our nodes boot from
the network. We discarded the option of booting from
the PLC because of the significant network delays and
limited bandwidth between our clusters in Europe and
the PLC in Jerusalem. This left the option of booting
from a local node.

Each cluster included a management node that
was originally designed to provide network boot over
DHCP and PXEboot [7]. PXEBoot usually downloads
a kernel to the target node. The node boots the kernel
in diskless mode and uses NFS to mount the root par-
tition from the boot server. We wanted our root parti-
tion to be read-only and to be unique for each node.
We could have created a separate read-only directory
on the management node and mounted it on each boot
node. Instead we choose to incorporate the complete
root partition into an initrd file. This file is then down-
loaded to each node as it boots. The EverLab initrd file
contains the complete content of the Boot CD. In a
standard system, each PlanetLab Boot CD references a
diskette which contains the private keys for that ma-
chine. PlanetLab allows an administrator to put these
keys into the CDROM itself, thus having a custom
CDROM for each node.

Our nodes do not have a diskette, thus we needed
a custom initrd for each node. We created a generic

initrd and wrote script that copies the generic initrd to a
custom file and installs the private keys. This script is
then run once for each target node on the local cluster.

Figure 4 Everlab PXE boot solution. (1) Boot kernel
and initrd downloaded from local PXE boot server
via PXEBoot. (2,3) Authentication process is
done via the PLC and local files are updated. Fi-
nally, node bootstraps into VServer kernel.

The blades have two Ethernet Network Interface
Cards (NICs). We choose to use one NIC for the boot-
strap process and the second for the public Internet.
We use the private NIC only during the boot process
and leave it un-configured during normal EverLab op-
erations. Slices are unable to configure the NICs. The
main benefit is that EverLab users have no way to at-
tack or even to see the bootserver. We believe that this
increases the probability that the boot image remains
intact. Our approach is not as good as a read-only
CDROM, but we feel that it strikes the right balance
between security and complexity for our system.

Once we had the PXEboot and initrd process
working, we were able to boot the default PlanetLab
kernel. Unfortunately, our blades were newer than the
supported PlanetLab nodes. The running nodes had no
network drivers and no keyboard controller. Each
blade has a USB keyboard, but the default PlanetLab
nodes did not install the appropriate drivers. Similarly,
the blades used a network card that was not available
when FC2 was first released. We were left with a node
that was clearly running something, but that was deaf
and blind.

Through trial and error we were able to identify
the appropriate drivers and configuration files and to
rebuild our initrd files. This process took the better part
of a month, but we were finally able to debug and boot
our nodes.

Management Challenges

Our intention was to develop a system that could
be managed remotely. The PlanetLab system provided
most of that functionality. PlanetLab defines four
types of capabilities:

1. Administrators These users can perform all
PlanetLab operations including Ping of Death
and re-install. They can enable or disable fea-
tures and capabilities for other users.

2. Principal Investigators These users are respon-
sible for the use of a set of nodes. They can

21st Large Installation System Administration Conference (LISA ’07) 207

Everlab – A Production Platform for Research . . . Jaffe, Bickson, & Kirkpatrick

enable or disable access for their students and
can create slices.

3. User Can deploy a slice to one or more nodes
and can log into those nodes.

4. Tech These users can administer their local site,
performing admin like functions only on those
nodes.

We use the standard PlanetLab definitions, but
allocated each of the local system administrators with
Principal Investigator and Tech capabilities. These
system administrators are then asked to enable ac-
counts for researchers in their institutions. Researchers
that do not have a local cluster administrator are man-
aged by the central EverLab administration team.

Hyperthreading Performance Issues

During the decision process, our computation
based researchers wereconcerned that the PlanetLab
infrastructure would require a significant fraction of
each node’s CPU cycles. We were able to show that on
our hardware, the difference between a program run-
ning on a stock kernel and one running in a slice under
PlanetLab was less than 3%. This experiment was not
particularly scientific, but it was sufficient to assuage
the fears of the HPC researchers.

Our nodes came with two Intel Xeon 3.06 Ghz
processors that support Intel’s Hyper-threading Tech-
nology (HTT) [22] . In theory Hyper-Threading Tech-
nology should provide a performance boost of up to
30%. We found that this was true only on heavily
loaded server systems running a number of CPU-in-
tensive processes that is larger than the number of in-
stalled physical CPUs. In our workloads, we typically
have only as many compute tasks as CPUs.

The Linux kernel views each hyper-threaded pro-
cessor as two virtual processors. When a task is
runnable, it is assigned to one of the virtual processors.
Ideally, since we have two physical processors per
node, the kernel should schedule each task to a different
physical processor. Unfortunately, we found that in
many instances, the kernel scheduled both CPU inten-
sive tasks to virtual processors on the same physical
processor. The resulting cache misses and contention
significantly reduced our systems performance.

In light of this finding, we have turned off
Hyper-threading on most of our nodes.

Stability

IBM describes the HS20 cluster as: ‘Powerful
2-way Intel processor-based blade server delivers un-
compromising performance for your mission-critical
applications.’’ [6] We purchased this equipment in
2003/2004 from IBM because we valued IBM’s repu-
tation for reliability and service. We have since had
cause to regret this decision.

Each of our blades came mounted with two
To s h i b a MK4019GAXB [20] 40 GB disk drives.
These drives are 2.5’’ hard disk drives of the type

found in many laptops. IBM probably choose to use
2.5’’ drives because of the size restrictions imposed
when fitting two drives on each blade.

In the interest of reducing disk management,
each PlanetLab node mounts its own local disks as a
single large logical volume. This construct enables the
system to allocate disk space without concern for the
size of each partition or disk drive. The drawback is
that if any of the drives fail, the whole partition is cor-
rupted and lost. Recall that in PlanetLab, it is easy to
re-install a node. The loss of any one node is pretty
trivial and the resources can be easily recovered (al-
though the data on that node is lost).

At installation time, the Evergrow clusters had a
total of 244 MK4019GAXB drives. In the first three
years of ownership, we have replaced more than 50 of
these drives. By far, the most common problem and
the largest management headache has been the failure
of disk drives. We have not identified any common
cause behind these failures. Some of our clusters are
in very professional data centers with significant cool-
ing capacity and managed power. Other clusters are in
less professional locations with limited cooling and
whatever power is available from the wall socket. Lo-
cation does not seem to be a factor in the failures. We
can only conjecture that these drives were defective in
one way or another. There have been no failures with
any of the non-MK4019 replacement drives.

Monitoring

Monitoring of resources is an important part of
any research project. At a minimal level, monitoring
tools identify software, systems and hardware that
may not be operating as expected. One level up, moni-
toring provides a list of assets that administrators and
users can reference to identify and find available re-
sources. At the management level, the project coordi-
nators can watch the monitoring systems to identify
users that are utilizing the projects resources. This data
also delineates those registered users who are not us-
ing the system.

Ganglia

We began to wonder about utilization of our new
system about six months after our partners received
their cluster hardware. We knew that each partner had
deployed the systems, but we had no idea if the clus-
ters were in use or even if they were operational. Our
very first effort was to implement a centralized moni-
toring system using the Ganglia [10] software pack-
age. Ganglia provided at-a-glance status for each clus-
ter and each node.

Ganglia implements both push and pull commu-
nications. Each monitored node runs a ganglia daemon
called gmond which intermittently collects informa-
tion about the local system state. Each gmond daemon
sends a regular update to a gmeta collector daemon.
The gmetad daemons maintain a list of all clients that

208 21st Large Installation System Administration Conference (LISA ’07)

Jaffe, Bickson, & Kirkpatrick Everlab – A Production Platform for Research . . .

sent it data along with the details for those clients. We
have one gmetad daemon for each cluster and a sepa-
rate one for the EverLab system. In our implementa-
tion, a central gmetad daemon running on our main
server polls each of the gmetad daemons on a regular
basis and collects a snapshot of that daemons stored
status. The collected data is then stored in RRD [13]
databases for graphing and presentation.

We keep a web browser open to our local Gan-
glia monitor. At a glance, we can see which clusters
are operational, busy, or down. Ganglia provides sum-
mary statistics of Total, Up and Down hosts which
quickly reflect the overall system health.

Figure 5: May 2006 to May 2007 EverLab One
Minute Load Average.

The main Ganglia load graphs display the 1
minute load, the number of nodes, the number of
CPUs and the number of running processes. An opti-
mally utilized system would have one process for each
CPU. The Everlab One Minute Load Average graph
shows the 1 minute load on the EverLab system be-
tween May 2006 and May 2007. The line at the top of
the graph shows the total number of CPUs, some of
which are actually virtual hyperthreaded CPUs. The
second line shows the number of reported nodes and
the third line shows the number of running processes.

As can be seen, the number of nodes changes
over time. The majority of these outages are related to
power and cooling problems in the remote data cen-
ters. The graph also shows the growth in EverLab us-
age. Initial use was minimal until after the EverLab
Workshop in June of 2006. From that point until
March 2007, we averaged about one process for every
two nodes. Toward the end of this period, we saw us-
age increase to approximately one process per node.

Ganglia has been very useful in Evergrow and
EverLab, but was not particularly successful in the
PlanetLab environment. In 2001, one of the Ganglia
developers joined the PlanetLab project and began de-
ploying Ganglia over PlanetLab. Over time, the Gan-
glia installation was removed and forgotten. It seems
that Ganglia did not provide enough benefit to the
PlanetLab team to warrant its maintenance costs.

We believe Ganglia was appropriate for EverLab
but inappropriate for PlanetLab for of the following
reasons:

1. EverLab is naturally organized by clusters of
nodes. The gmond daemons communicate over

the local network to their gmetad parents. In
PlanetLab, there is no natural structure and
hence each gmond must send remote messages
to a centralized gmetad. This increases the rate
of lost message and requires significant band-
width at the central node.

2. PlanetLab nodes have traditionally been heavily
utilized. It is very rare to find a PlanetLab node
that has no running processes. Ganglia shows
that their nodes are busy. Ganglia provides
dozens of detailed metrics, but does not differ-
entiate between slices. From a high level per-
spective, We use Ganglia only to show that a
node is busy or down. The detailed metrics
have not been useful in our environment.

3. PlanetLab has more than 600 nodes. Ganglia
does not scale particularly well over a few hun-
dred nodes. For example, in Evergrow, the
Ganglia web front end periodically queries the
main gmetad daemon for the system state. The
data is returned as a single large XML docu-
ment at least 220K bytes in length. The equiva-
lent file for PlanetLab would be more than 1 MB
large. Sending this data over the wire every 60
seconds is inefficient, particularly since most of
the data has not changed.

We are very pleased with Ganglia for our size in-
stallation and would be likely to choose it again. For
us, the benefits of a simple monitoring system out-
weigh the network traffic overhead. Ganglia is a rough
tool. The instantaneous data is frequently incomplete
because of the way that the gmetad daemon collects
and updates its internal data structures. Improvements
in this area would make Ganglia more useful and reli-
able.

EverStats

Ganglia provided our system with cluster and
host level monitoring. We could identify node status
and utilization. But our project administrators wanted
more. They asked us about the users and their projects.
Which projects were deployed on EverLab? Were the
projects computationally focused or more experimen-
tal? How many unique projects were actually using
the system? To address this issue, we developed the
EverStats usage monitoring system.

Our first challenge was to collect data from the
EverLab nodes. We knew that the CoMon [15] project
had developed a tool on PlanetLab to monitor node us-
age, so we borrowed their underlying monitoring tool
called slicestat [14]. The slicestat daemon runs on
each PlanetLab node and like the gmond daemon col-
lects performance metrics. Slicestat has the added ben-
efit that it understands the PlanetLab virtual server ar-
chitecture and can report data according to each slices
activity.

The CoMon project polls each slicestat and pro-
vides current CPU data along with 1 minute and 15

21st Large Installation System Administration Conference (LISA ’07) 209

Everlab – A Production Platform for Research . . . Jaffe, Bickson, & Kirkpatrick

minute network statistics. In many ways CoMon over-
laps with Ganglia as a monitoring tool.

Our interest was not in the short term node and
slice status, but in the historical usage patterns. We in-
stalled slicestat on all EverLab nodes and then built a
custom tool called EverStats to poll the deamons and
store the results in a long term database. EverStats
provides summary reports on usage for the past week,
month and year and allows administrators to drill
down from both a slice or node view.

In order to minimize network traffic, EverStats
polls the slicestat daemons once every five minutes.
We keep the raw data for 24 hours and then summa-
rize it as daily data in our database. Short term activi-
ties such as running a program for 30 seconds are un-
likely to be visible on Everstats. On the other hand,
computation or experiments that run for a hour or
more will certainly be reported.

Total CPU Hours Average Avg. Outgoing Avg. Incoming
Slice Name Nodes (all nodes) % CPU Bandwidth (Kbps) Bandwidth (Kbps)
System 52 2129.15 0.72 0.04 0.06
Condor 52 1086.05 0.96 0.21 3.40
Aston 34 19048.40 97.23 0.00 0.00
HUJI 25 5738.09 96.75 0.01 0.67
Orsay 10 2729.79 261.93 0.00 0.00
SICS 19 1575.53 88.44 2.82 1.14
UCL 25 4071.05 134.48 18.18 1.61
Others 52 5088.41 8.32 44.70 46.69

Table 1: Sample EverStats slice group report.

There are more than 65 unique projects regis-
tered in the EverLab database. New users tend to cre-
ate a test slice to familiarize themselves with the sys-
tem. These users then move to a project slice that is
shared by their research team.

The EverLab slice groups report reports on the
cumulative data for all slices in each defined group.
The sample EverStats Slice Group Report shows a
representative report from April 2007. The System
group represents the basic EverLab services. These
services tend to be active for short periods of time, but
are visible when a node is idle.

The Condor slice group represents the distributed
Condor instantiations on each of our nodes. Condor is
currently under very light load and hence the values
represent a sort of steady state overhead similar to the
System group.

The rest of the groups represent research origi-
nating at their respective universities. The ‘‘Others’’
group is a catch-all for research from one of our non-
cluster partners. There are currently seven slices in the
‘‘Others’’ group. The university research groups have
between two and five slices each.

As can be seen from the report, most research
projects do not use the full power of EverLab. As the
number of nodes in an experiment increases, so too

does the complexity of deployment, debugging and
monitoring. Projects tend to use the maximum number
of nodes necessary to produce a reasonable academic
paper.

Of the six project groups, more slices are CPU
bound with CPU loads running between 88.44% and
261%. A factor over one indicates that there is more
than one process running concurrently in these slices.
Experienced High Performance Computing researchers
attempt to allocate exactly one process to each proces-
sor in order to decrease contention for CPU cycles

The ‘‘Others’’ group provides a good example of
slices involved in networking experiments. These
slices are generating on average 45Kbps of incoming
and outgoing traffic over the life of the experiments.
As can be seen, the System and Condor groups are
minimal users of both CPU and Networking.

EverStats is a useful tool in its current instantia-
tion. Potential extensions include the graphing of
trends and improvements in the sampling technology.
Graphs and Trend analysis would be helpful for pre-
sentations and for tracking the natural growth and de-
cline of project activities.

The current sampling technology serially queries
each of the nodes. In addition to being inefficient, this
approach takes a significant fraction of the five minute
query period. While acceptable for EverLab, the serial
query mechanism takes more than thirty minutes on
the full PlanetLab for each query cycle.

Ideally, we would like to see EverStats integrated
into the base CoDeen and CoMon projects for use by
both Private and Public PlanetLabs.

Education

The Evergrow project is composed of researchers
in Computer Science and Computational Physics. All of
our researchers are computer literate and have some sci-
entific programming ability. At the beginning of the Ev-
ergrow project, we assumed that researchers would use
any and all computational resources that we could pro-
vide. In fact, we found that computational resources are
currently widely available. Desktop workstations have
enough processing power to handle many tasks previ-
ously allocated to dedicated processors. One of our

210 21st Large Installation System Administration Conference (LISA ’07)

Jaffe, Bickson, & Kirkpatrick Everlab – A Production Platform for Research . . .

authors processes gigabytes files on his laptop. The per-
formance is not great, but the benefits of taking your
work with you outweigh the time to completion.

Our partners provided a list of requirements
when we started the Evergrow project. Some wanted
High Performance Computation (HPC) services. Others
wanted distributed network platforms for experimenta-
tion. The resulting EverLab system provides both, but
we found that our partners needed help getting up to
speed. Our most effective tool has been hands-on work-
shops. Our first workshop was held in June, 2006.

PlanetLab (and EverLab) present the world as set
of virtual servers running on remote hosts. At one
time, using telnet, SSH and X-windows was the stan-
dard method for interacting with remote hosts. Today,
undergraduate and graduate students use the Microsoft
Windows platform and Microsoft Remote Desktop
connection. PlanetLab’s interfaces are much more ba-
sic and are less familiar to many of our partners.

During our workshop, we walked the participants
through the EverLab process. To get started running
your own code on EverLab (or PlanetLab), a re-
searcher must:

1. Have a registered site and Principal Investigator
(PI). We created a pseudo-site called EverLab
for all of our users.

2. Request an account by filling out a web form.
3. Wait for the account to be enabled by the PI or

site administrator.
4. Create and upload an SSH key to the manage-

ment web site.
5. Have the PI create a slice for your project.
6. Assign the users to the new slice.
7. Assign the slice to one or more nodes.
8. Wait until the slice propagates to the target

nodes.
9. Log into the slice using SSH.

The total latency from start to finish is minimally
about one and a half hours. For a user trying this re-
motely, it can take between one to three days just to be
able to log into the nodes. The major benefit from our
workshop was to shorten this initial period and to get
users working during workshops’ first day. The sec-
ond day was spent learning about Ganglia, Condor and
custom deployment scripts that other researchers have
written for deploying experiments on PlanetLab/Ever-
Lab. Summary of presentations and tutorials are avil-
able on the web [2].

We have found that all of our active researchers at-
tended our workshop. It may be that other researchers do
not need our dedicated resources, or that the learning
curve is too steep. We plan on continuing our education-
al efforts and working with our researchers to identify
the barriers to better system utilization.

Future Work

We have identified a number of areas for future
work on PlanetLab in general and in particular on

EverLab. Each of these areas are extensions of our ex-
perience with the current EverLab system and its user
community.

Security

Fedora Core 2 (FC2) was first released in May
2004. Fedora Core 4 was the more recent release as of
September 2005, when we started working on Planet-
Lab. As of the summer of 2006, EverLab is still run-
ning FC2 on its nodes and FC4 on its central manage-
ment node (PLC).

Fedora Core 2 officially reached its end-of-life in
June 2007. Fedora Core 4 reached its end-of-life in
January 2007. Fedora Core 5 was retired in July of
2007. The implication is that bug releases and security
patches for these systems are no longer available from
the Fedora team for these systems.

Our experience and that of the PlanetLab Con-
sortium is that there have been almost no security is-
sues related to FC2 or FC4. The latest PlanetLab V4.0
release still supports only FC4. Common wisdom
would suggest that we update to FC7 as soon as possi-
ble. Our experience has been that our deployed ver-
sion of the three year old FC2 has been stable and se-
cure and that there is little urgency to upgrade.

Usability

Our user community differs from the standard
PlanetLab community in their grasp of UNIX tools.
The PlanetLab community includes many systems re-
searchers who understand the Linux operating system
and its user level tools in detail. Our community of
physicists and computer science theoreticians do not
have this level of systems knowledge. We would like
to see future systems include a suite of basic, easy to
use tools for accessing the nodes, deploying applica-
tions, collecting logs and monitoring the experiments
activity. In most cases, the effort to develop these tools
is one of packaging and documentation.

Improved Coordination

With the release of PlanetLab V4, there has been
significant improvement in the installation and up-
grade processes for private PlanetLabs. The major re-
maining issue is coordination on PlanetLab changes.
We would like to see a PlanetLab Engineering Task
Force (PETF) that would manage platform changes
and coordinate platform security.

We see PlanetLab as a moving target. There are
many possible ways to extend and improve the system.
The challenge is to choose the appropriate changes for
the private PlanetLab community. Private PlanetLabs
value stability and security over experimental features.
The PETF would collect and document these changes.
It would provide a repository for all blessed changes
and versions of the system.

As a production system, PlanetLab should have a
security coordinator. The PETF would track published
and zero-day attacks on PlanetLab or its constituent

21st Large Installation System Administration Conference (LISA ’07) 211

Everlab – A Production Platform for Research . . . Jaffe, Bickson, & Kirkpatrick

components. It would provide timely notification and
updates to administrators concerning these attacks and
would coordinate efforts to detect and correct these
problems as they occur.

The PETF could organize workshops and confer-
ences for Private PlanetLab administrators and users
as a way to educate the community and to identify ar-
eas for improvement and growth.

Federation of PlanetLab’s
One vision presented by the PlanetLab commu-

nity is to integrate remote PlanetLabs in a federation.
Users on one system would be able to utilize resources
on federated systems while abiding by inter-system
usage policies. This concept requires coordination of
the detailed federation interfaces as well as the defini-
tion of appropriate system level policies.

The EverLab installation has many of the features
required for a federated PlanetLab system. We operate
in a production environment and our system is not over-
subscribed. While our project would welcome federa-
tion with other private PlanetLabs, our partners network
administrators would be hard-pressed to open the sys-
tem to non-partner sites without additional controls to
protect their networks from abuse.

Conclusion

Everlab serves as a model for future research ef-
forts. It bridges the gap between Grid based HPC instal-
lations and free-for-all experimentation systems. Ever-
Lab makes efficient use of administrative resources and
provides reporting services to monitor system usage, reli-
ability and responsiveness. EverLab provides a service
for setting policy on resources so that all participants
have access to the shared resource. With the exception of
pure HPC projects, We believe that future efforts should
include an EverLab style system for system manage-
ment, resource allocation and monitoring.

Acknowledgement

We would like to thank the PlanetLab Consor-
tium based at Princeton for its extensive support and
encouragement, without it the EverLab project could
not have been accomplished. Special thanks to Con-
sortium members Marc E. Fiuczynski and Steve Muir.
Lior Ebel was instrumental in developing EverStats.

Author Biographies

Elliot Jaffe received his B.Sc. in Mathematics
from Carnegie Mellon in 1985. He worked in industry
as a system administrator, developer, integration spe-
cialist, manager and CTO. He returned to academia
and received his M.Sc. in Computer Science from The
Hebrew University in 2005 where Elliot is currently
working towards his Ph.D. in Computer Science. El-
liot’s research interests are in the areas of Software
Engineering, Distributed Systems and Large Scale
Storage.

Daniel Bickson is currently a Doctoral candidate
at the School of Engineering and Computer Science at
the Hebrew University, Jerusalem, Israel. His research
interests include Communications, Network Security,
Distributed Systems and Belief Propagation.

Scott Kirkpatrick has been a Professor in the
School of Engineering and Computer Science at the
Hebrew University, Jerusalem, Israel since 2000. While
at IBM Research in his previous career, he compiled a
distinguished scientific record (90+ publications, 10+
patents) and was elected a Fellow of the AAAS, the
APS and the IEEE. Some of his papers are among the
top cited of all time, in both Physics and Computer Sci-
ence. In addition, Prof. Kirkpatrick has more than 20
years of experience in management at IBM, supervising
several large multi-team research and development
projects, and currently coordinates the 25+ Partner
FP6 IP EVERGROW (2004-2008).

Bibliography

[1] Bickson, D. and D. Malkhi, ‘‘The Julia Content
Distribution Network,’’ The 2nd USENIX Real
World Distributed Systems (WORLDS ’05), 2005.

[2] Everlab Workshop, Huji, Jerusalem, Israel, June
7-8, 2006, http://www.cs.huji.ac.il/labs/danss/p2p/
evergrow-workshop .

[3] Foster, I., C. Kesselman, and S. Tuecke, ‘‘The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations,’’ International Journal High Perfor-
mance Compututing Applications, Vol. 15, Num. 3,
pp. 200-222, 2001.

[4] Foster-Johnson, E. (Red Hat), Red Hat RPM
Guide, March, 2003.

[5] Gropp, W., ‘‘Mpich2: A New Start For MPI Im-
plementations,’’ D. Kranzlmüller, P. Kacsuk, J.
Dongarra, and J. Volkert, editors, PVM/MPI, Vol.
2474, Lecture Notes in Computer Science, p. 7,
Springer, 2002.

[6] IBM, IBM Blade Servers – Bladecenter T-HS20
Server, http://www-03.ibm.com/servers/uk/eserver/
bladecenter/hs20/more_info.html .

[7] Intel, Preboot Execution Environment (PXE) Spec-
ification, 2002.

[8] Ligneris, B. D., ‘‘Virtualization of Linux-Based
Computers: The Linux-vserver Project,’’ 19th Inter-
national Symposium on High Performance Comput-
ing Systems and Applications, HPCS 2005, pp.
340-346, May, 2005.

[9] Lukic, J., E. Marinari, O. C. Martin, and S. Saba-
tini, ‘‘Temperature Chaos in Two-Dimensional
Ising Spin Glasses With Binary Couplings: A
Further Case For Universality,’’ Journal of Statis-
tical Mechanics, 2006.

[10] Massie, M. L., B. N. Chun, and D. E. Culler,
‘‘The Ganglia Distributed Monitoring System:
Design, Implementation and Experience,’’ Paral-
lel Computing, Vol. 30, Num. 7, July, 2004.

212 21st Large Installation System Administration Conference (LISA ’07)

Jaffe, Bickson, & Kirkpatrick Everlab – A Production Platform for Research . . .

[11] Morato, D., E. Magana, M. Izal, J. Aracil, F.
Naranjo, F. Astiz, U. Alonso, I. Csabai, P. Haga,
G. Simon, J. Steger, and G. Vattay, ‘‘The Euro-
pean Traffic Observatory Measurement Infra-
structure (ETOMIC): A Testbed For Universal
Active And Passive Measurements,’’ TRIDENT-
COM ’05: Proceedings of the First International
Conference on Testbeds and Research Infrastruc-
tures for the DEvelopment of NeTworks and
COMmunities (TRIDENTCOM’05), pp. 283-289,
IEEE Computer Society, Washington, DC, USA,
2005.

[12] Napier, D., ‘‘IPTables/NetFilter – Linux’s Next-
Generation Stateful Packet Filter,’’ SysAdmin:
The Journal for UNIX Systems Administrators,
Vol. 10, Num. 12, pp. 8-16, Dec., 2001.

[13] Oetiker, T., http://ee-staff.ethz.ch/˜oetiker/webtools/
rrdtool/ .

[14] Park, K. and V. Pai, http://codeen.cs.princeton.
edu/slicestat/ .

[15] Park, K. and V. S. Pai, ‘‘Comon: A Mostly-Scal-
able Monitoring System For Planetlab,’’ SIGOPS
Operating Systems Review, Vol. 40, Num. 1, pp.
65-74, 2006.

[16] Second European Planetlab Workshop, EPFL,
Laussane, Switzerland, October 27-28, 2005, http://
lsirwww.epfl.ch/planetlabeverywhere/ .

[17] Shavitt, Y. and E. Shir, ‘‘Dimes: Let the Internet
Measure Itself,’’ Computer Communication Re-
view, Vol. 35, Num. 5, pp. 71-74, 2005.

[18] Spring, N., L. Peterson, A. Bavier, and V. Pai,
‘‘Using Planetlab For Network Research: Myths,
Realities, and Best Practices,’’ SIGOPS Operat-
ing Systtems Review, Vol. 40, Num. 1, pp. 17-24,
2006.

[19] Thain, D., T. Tannenbaum, and M. Livny, ‘‘Dis-
tributed Computing in Practice: The Condor Ex-
perience: Research Articles,’’ Concurrent Com-
puting: Practice and Experience, Vol. 17, Num.
2-4, pp. 323-356, 2005.

[20] Toshiba, Mk4019gax, http://www.sdd.toshiba.com/
main.aspx?Path=818200000007000000010000659
800001516/818200000aff000000010000659c0000
26ad/818200000192000000010000659c0000279f/
81820000019f000000010000659c0000054e .

[21] Ripeanu, Matei, Mic Bowman, Jeffrey S. Chase,
Ian Foster, and Milan Milenkovic, ‘‘Globus and
PlanetLab Resource Management Solutions Com-
pared,’’ Proceedings of the Thirteenth IEEE Inter-
national Symposium on High-Performance Distrib-
uted Computing (HPDC-13), Honolulu, Hawaii,
June, 2004.

[22] Intel, Hyper-Threading Technology, http://www.
intel.com/technology/platform-technology/hyper-
threading/index.htm .

21st Large Installation System Administration Conference (LISA ’07) 213

