Network Patterns in Cfengine and
Scalable Data Aggregation

Mark Burgess and Matthew Disney — Oslo University College
Rolf Stadler — KTH Royal Institute of Technology, Stockholm

ABSTRACT

Network patterns are based on generic algorithms that execute on tree-based overlays. A set
of such patterns has been developed at KTH to support distributed monitoring in networks with
non-trivial topologies. We consider the use of this approach in logical peer networks in cfengine as
a way of scaling aggregation of data to large organizations. Use of ‘deep’ network structures can
lead to temporal anomalies. We show how to minimize temporal fragmentation during data aggre-
gation by using time offsets and what effect these choices might have on power consumption. We
offer proof of concept for this technology to initiate either multicast or inverse multicast pulses

through sensor networks.

Introduction

In this paper we consider an approach for scaling
data dissemination (e.g., for configuration manage-
ment) or alternatively for scaling data aggregation
(e.g., for monitoring or archiving) by implementing
Network Patterns on top of cfengine’s pull-based copy
methods. This follows up preliminary work on scaling
in [1, 2] and Voluntary Cooperation [3] and is inspired
by work on the Generic Aggregation Protocol (GAP)
described in [4, 5, 6].

Consider the sharing of load in a multicast process
by handing off parts of a task to decentralized process-
ing. For example, in a distributed backup scheme, one
could imagine assigning responsibilities such that local
nodes collected and compressed their own data before
passing them from the leaves of a tree to their parent
node; the parent would then aggregate data from all of
its children and adds its own data, and so on up the tree
to a final repository. By introducing several tree levels
one reduces the total computational burden on the fi-
nal host. Such a strategy could be useful in either a
fixed infrastructure network (where nodes have limit-
ed computational power) and especially in battery
powered processors such as wireless ad hoc devices,
sensor networks, and so on.

Network Patterns are based on generic, distrib-
uted algorithms that execute on spanning trees, de-
signed to collate information from a topologically con-
strained network, such as a fixed routing infrastructure
or ad-hoc substrate. They employ the basic structures
used in routing and switching, like spanning trees, and
can adapt to node or link failures [4, 5, 6]. We shall
consider only aggregation algorithms here, where ag-
gregates of local variables across a domain of local de-
vices are computed using functions, such as sum, max,
or average.

The overlay networks are usually created under
some basic physical constraints such as geography,

physical network design, allowed access, or even by
wireless power limitations in an ad hoc network. In oth-
er words, certain branches and levels in the tree could
be forced into the final topology by physical circum-
stances, hence one could not merely choose the sim-
plest star topology for the task, even if it were not an
unacceptable burden on the single bottleneck. However,
we can also ask whether it makes sense to build such
structures even where there are no constraints, such as
local area networks with underlying star topology.
There are valid resource sharing reasons for doing this
in system administration, especially where resources
are limited.

Network patterns allow a kind of load balancing,
but they are different from the kind of service balancer
which one might use on a web server: a traditional
load-sharing dispatcher acts like a switch, taking a sin-
gle input stream and offloading it to a separate queue:
in a network pattern data are sent to all branches, like
a “smart” multi-port repeater or amplifier/aggregator.

Inter-Domain Management and Voluntary Cooper-
ation

A subject that is increasingly discussed in to-
day’s world of cooperative outsourcing is the issue of
inter-domain management. In the extreme case, each
node in a network is in its own administrative domain
(this is approximately true for border routers, for ex-
ample, as well as hand-held devices). Inter-domain
management involves many issues that are often ig-
nored in discussions of system administration. For ex-
ample, we do not typically have privileged access to
all of the devices we communicate with. The concept
of Voluntary Cooperation was introduced to discuss
“minimal trust” interactions with autonomous do-
mains [3].

Even a wireless ad hoc network of personal elec-
tronic devices (or a military network deployed in the

21st Large Installation System Administration Conference (LISA ’07) 275

Network Patterns in Cfengine and Scalable Data Aggregation

field) could be formed from many devices with different
privileges and privacy policies. Traditional models of
centralized control do not begin to address these issues.

Monitoring (data collection) from a network of
sensors (either in a fixed infrastructure net or in a
wireless environment) is an application that has re-
ceived a lot of attention. This is because ‘“network
management” has traditionally been about watching
network traffic data. Even today as vendors advocate
the virtues of autonomic computing, network man-
agers still want to watch the automation in progress.
Thus the problem of distributed aggregation with un-
clear domain relationships is still at the heart of net-
work management.

Cfengine is a management system that represents
state of the art research on integrating monitoring and
reactive (““autonomic”) management of computers. In-
tegrating network patterns into cfengine would allow
distributed monitoring and management of a manifestly
autonomic system with any chosen degree of central-
ization or decentralization. Cfengine is designed to be
able to work in mobile, partially connected environ-
ments. It is an ideal testbed for exploring the usefulness
of patterns in host based system administration. More-
over, eventually it is expected that cfengine will be able
to manage routers and switches for which patterns were
originally envisaged.

Network Patterns are not generic routing or
switching structures, although they share similarities.
They are designed to execute any computation whose
data can be represented on the underlying graph. This
typically involves aggregation, dissemination, maxi-
mization or minimization etc. Here we use them only
for the simplest aggregation of data from every node

Burgess, Disney, & Stadler

in a network to an arbitrary but central place. They are
therefore used to initiate either multicast or inverse
multicast pulses through sensor networks.

Any collection of “sensor devices” that can run
on a GNU/Linux platform could use cfengine in the
way we demonstrate here, and this accounts for an ev-
er increasing number of devices available today. One
application is for collecting and correlating data from
around a network from cfengine’s own sensor compo-
nent cfenvd. Cfengine’s investment in methods of vol-
untary cooperation means that one need not give away
privileges in order to implement patterns, hence risk-
ing or sacrificing security. This makes monitoring of
large an fragmented organizations an easier process to
swallow for security officers (the alternative being to
open firewalls to unspecified network pushes). In-
creasingly companies are outsourcing their systems in-
to different formal domains with their own policies
and barriers. The fact that one can make patterns work
with voluntary cooperation is therefore itself a valu-
able proof of concept.

A natural application for this kind of process is
for monitoring grid systems. These are systems that
are often geographically distributed and already form
part of some organized structure. Patterns at the level
of host based monitoring would allow grid administra-
tors to view the performance characteristics of the
component systems or even aggregate results from
them with controllable accuracy.

There are various other applications for data ag-
gregation to a point. Another one is to perform a dis-
tributed backup, collecting and compressing data as
they propagate up the tree. This would offload the

A

width

depth

Figure 1: Depth and width in network patterns formed from promises.

276 21st Large Installation System Administration Conference (LISA ’07)

Burgess, Disney, & Stadler

burden of performing the compression, and data could
be encrypted with local keys before compression. We
shall not elaborate on these applications here, but sim-
ply present these tests as proof of the concept.

Some Patterns

The patterns discussed here are dissemination
and aggregation algorithms that bridge the worlds of
centralized monitoring and fully distributed monitor-
ing. They are built from “component” pieces that rep-
resent the extreme cases of any network structure:
chain (for maximum depth) and the star topology (for
maximum width), see Figure 1.

Network Patterns in Cfengine and Scalable Data Aggregation

Trees are structures that bridge these two ex-
tremes. We can characterize patterns by their depth
and breadth. Note that a chain is also geometrically a
half-ring, so it gives us a basic model for ring-topolo-
gies also.

Here we consider only two patterns: Echo and
GAP and consider how these can be implemented in
cfengine using existing context awareness within the
system.

Echo

The simplest example of a network pattern is the
echo pattern [7, 8]. During its execution, echo creates

val(D) val(E) val(F) val(G)

agg(B) = agg(C) =
val(D)+val(E) val(F)+val(G)
+val(B) +val(C)

agg(B)+agg(C)

agg(A) =

+val(A)

Figure 2: The expansion and contraction steps in the echo pattern. The pattern is a sequence of “pulls” initiated by

“pushed” signals.

21st Large Installation System Administration Conference (LISA ’07) 277

Network Patterns in Cfengine and Scalable Data Aggregation

a spanning tree topology, with root of the tree chosen a
by an administrator. The pattern has two phases of
communication: expansion and contraction (see Fig-
ure 3). During the expansion phase, the root node is-
sues a query to its children. Each node in the tree re-
peats this process. The contraction begins as the query
reaches a leaf node. The leaf node answers the query,
sending its response to its parent in the tree. The par-
ent receives the response of its children, aggregates or
calculates information for the query to the fullest ex-
tent possible, and then sends a single aggregate answer
to its own parent. This process is repeated recursively,
until the root node is reached, which aggregates the
messages from its children. The tree topology pro-
vides for parallelized execution, while the aggregation
of query responses during contraction reduces the
amount of traffic that would otherwise be necessary.
The echo pattern therefore forms a wave, spreading
out from the root to the edge of the network and back,
collecting data as it progresses. Echo is intrinsically a
“push” protocol, and is easily understood as a recur-
sive descent parser.

GAP

Similar to Echo, the Generic Aggregation Proto-
col (GAP), creates a spanning tree along which com-
munication and computation takes place. Unlike echo
however, data in GAP are passed from the leaves of
the tree towards the root, whenever the local variable
in one of the nodes changes. Updates to monitored ag-
gregates can thus be initiated by any node, not only by
the root node. Thus GAP, one initialized, responds to
local events rather than initiating measurements from
a central observer.

GAP is an asynchronous distributed protocol that
builds and maintains a Breath First Search (BFS) or a
spanning tree over which aggregates are computed in-
crementally and continuously. The tree is maintained
in a similar way to the algorithm underlying the
802.1d Spanning Tree Protocol (STP). In GAP, each
node maintains a table of its peers and especially its
nearest neighbours along with an estimation of the
nodes’ aggregate values. GAP is event driven, in the
sense that each update from a leaf node triggers a cas-
cade of events through the tree branches, updating the
local aggregates as it goes. Update events can be trig-
gered by changes in topology, loss of a node, a timer,
etc.

The advantage of GAP over echo is that there is
no “push phase” required to initiate a reading of the
values from the network. As each change occurs in the
network, new values can be percolated back to the
centralized root node initiating an update only in those
tree nodes that are in the path to root. This avoids the
need for much unnecessary traffic and computation
during updates.

The Topology Manager

A key feature of the patterns above is the algo-
rithm by which the topology of the spanning tree is

Burgess, Disney, & Stadler

decided. The GAP algorithm incorporates the topolo-
gy adjustment mechanism into the GAP aggregation
algorithm, by using nearest neighbour communications,
hence combining these features into a robust protocol.
However, they can be separated also. The GoCast algo-
rithm finds such a spanning tree, for example. At this
stage of the work we shall not attempt to encode auto-
mated topology management, as this requires additional
subsystems. Rather we consider how patterns can be
used at the logical level for distributed load balancing,
using existing mechanisms within cfengine. We note
however that cfengine has implemented peer neighbour
management functions for some time in the form of the
SelectPartitionNeighbours
SelectPartitionLeader

functions. These functions take a flat list of all known
hosts and partition this list into clusters of a specified
size. Each cluster is assigned an identified leader
which can be used to single out a root or responsible
node for each group, and in this way any host can au-
tonomously be made aware of its nearest neighbour
topology based only on the shared information of the
flat list. These functions, or functions like them could
in principle be used to provide an implementation of
GAP topology management in future, for automatical-
ly adaptation for fault tolerance. However, we shall
not pursue the details of the topology here, since it
turns out that the implementation of patterns throws
up a number of issues that are more fundamental.

The problem of building soft-overlays for com-
putational load sharing is slightly different to the prob-
lem of finding a spanning tree through a physically re-
dundant topology however. In principle, any kind of
overlay could be built in software, but physical con-
straints can limit the potential optimizations. What we
find interesting in a cfengine environment is that we
must deal with a combination of these issues. If
cfengine is used in a simple star network, any kind of
overlay can be built. However, if it is used for inter-
domain management, or between zones with different
administrative regimes, then these amount to essential-
ly physical constraints.

Cfengine Principles and Patterns

By implementing network patterns in cfengine we
hope to achieve two things: i) an efficient way of aggre-
gating data for centralized analysis and decision-mak-
ing, and ii) open for the possible load sharing optimiza-
tions that are possible with patterns. An obvious goal for
centralized decision-making would be to use this to
build an “autonomic nervous system” from cfengine’s
autonomous agents so that centralized monitoring and
decision-making can be added to its local stimulus-re-
sponse approach to management. Although many con-
figuration management schemes boast “centraliza-
tion’’, this can often be seen as a weakness, as it is a
clear limitation on scalability, and such systems usual-
ly only disseminate data from a centralized source: we

278 21st Large Installation System Administration Conference (LISA ’07)

Burgess, Disney, & Stadler

are advocating stimulus-response in a distributed sys-
tem, something like a central nervous system. While
individual machines work autonomously, we collect,
process and return data to the nodes on a continuous
basis.

The desired model is not without its own chal-
lenges however: cfengine maintains strong principles
of autonomy that are largely responsible for its record
of security and reliability. The challenge is to imple-
ment aggregation/dissemination patterns without sac-
rificing those strong principles.

A cfengine host is, by default, a completely au-
tonomous entity with no obligations towards other
agents in a physical network. Every node is therefore
individual and is not part of a pattern a priori. Leaf
nodes cannot initiate a push of new data in response to
events, because the parent node does not accept data
from any outside source, unless it explicitly pulls the
data itself. To use patterns as a form of inter-peer col-
laboration, we must encode them as policy rules that
are compatible with cfengine’s pull-only principle of
communication. There are several questions to be an-
swered about this:

¢ [s the underlying physical network topology
important in building a logical load sharing
topology?

* How will the topology be decided?

e How will the topology respond to the failure of
nodes?

We shall not be able answer all of these ques-
tions, but we present the basic approach to building
GAP-like patterns using cfengine’s internal mecha-
nisms, and provide tools for readers to experiment on
their own.

Periodic Execution

Cfengine is normally used for regular (periodi-
cally) scheduled maintenance sweeps, yet the tradi-
tional idea of a network probe is to ask a question and
get back the answer on demand (as with probes like
ping and traceroute). The Echo pattern is a “push-me
pull-you” strategy for connecting to all elements in a
managed network and transmitting or collecting data:
a kind of broadcast ping. The principal advantage of
this kind of approach is that the timing of the distrib-
uted process is event driven. It does not require an
elaborate clock synchronization and timed firing to co-
ordinate the distributed execution, since the interac-
tions are themselves synchronous. However, it is in-
herently fragile as it involves the privilege to push and
collect through a chain of dependencies. If the top
node loses communications with its children, none of
the network operations will be executed. A better ap-
proach would be allow all nodes in the network to op-
erate autonomously and have them cooperate when
they are able.

A typical cfengine approach to the problem to ex-
ecute the distributed agents periodically (with period P,

Network Patterns in Cfengine and Scalable Data Aggregation

anything from a few minutes to an hour). Neighbour-
ing cfagents could download from their children servers
to aggregate the results, but now the timing plays a role.
Since there is no push possibility to coordinate the op-
erations, the process is fragile to time coordination [9].
There are two issues: i) clock synchronization and ii)
clock schedule for ensuring the data are updated in time
before the data values are pulled downstream. If either
of these requirements is not met, data that are pulled
will be out of date and will not give an accurate repre-
sentation of the true values.

So what happens if the nodes are not properly
synchronized? Since cfengine operates autonomously
and its copying is fault tolerant, a missed update could
simply be captured at a later time. This might not
seem like a problem, unless one begins to measure the
spread of times in the “current” data. The situation is
somewhat analogous to asking post office branches to
report to their head office on how many customers
they have each day using their own postal delivery. At
any given regular delivery, the letters that arrive at the
central office have a variety of postmarks. Some of
them are delivered on the same day, and some of them
take perhaps a week to deliver. Thus updates might ar-
rive eventually, but how shall we understand the re-
sults that arrive? Do we group letters by their post-
marks and only combine results that were originated
on the same date? Or do we ignore the post-marks and
combine data that were received on the same date? In
the first case, we might have to wait a long time for
the data, but we are certain of what we are seeing. In
the latter case, the result is available quickly but the
meaning of the data is in question.

Each hop in a chain of delivery adds new possi-
bility for delay. If the mail does not arrive before one
post office sends its own delivery, the incoming mail
will have to wait a whole day for the next delivery (a
whole scheduling period P). A single failure could not
bring down the entire system, but it could skew the
impression received at the central monitoring station.
It is therefore advantageous, if not imperative, to de-
velop patterns that do not have this strong dependency
feature.

To avoid the dependency and delay problem, we
based our work on the assumption of time synchroniza-
tion. As we shall see, even this is susceptible to noise.
Apart from a proof-of-concept implementation, we did
not pursue the echo pattern for this reason (in spite of
its ready comprehensibility) and instead were inspired
by the Generic Aggregation Protocol (GAP) approach.
For GAP we shall not attempt a complete implementa-
tion, but rather emulate its operation as a first step to
making progress. GAP includes an algorithm for auto-
matic renegotiation of the structure. This has several
implications which require some soul searching when
implementing in cfengine. Further research by KTH
based on the cfengine experience can also help to adapt
the GAP algorithm for pull-based scenarios.

21st Large Installation System Administration Conference (LISA ’07) 279

Network Patterns in Cfengine and Scalable Data Aggregation

Promise Agreements and Voluntary Cooperation

The notion of promises was introduced as a way
of modeling networks of agents cooperating in an ad
hoc fashion. Cfengine can be viewed as a reference
implementation of the abstract promise-theoretic sce-
nario. Promise theory was introduced precisely as a
modeling framework that could describe cfengine,
where others could not.

Promise theory is a high level graphical descrip-
tion of constrained behaviour in which ensembles of
agents document the behaviours they promise to ex-
hibit. Agents in promise theory are truly autonomous,
i.e., they decide their own behaviour, cannot be forced
into behaviour externally but can voluntarily cooper-
ate with one another [10]. A promise is a directed edge

4, L 4, (1)
that consists of a promiser 4; (sender), a promisee A,
(recipient) and a promise body b, which describes the
nature of the promise. Promises made by agents fall
into two basic categories, promises to provide some-

thing or offer a behaviour b (written A4, RN A,, and
promises to accept something or make use of another’s

promise of behaviour b (written 4, —— 4;). A suc-
cessful transfer of the promised exchange involves
both of these promises, as an agent can freely decline
to be informed of the other’s behaviour or receive the
service.

The essential assumption of promise theory is
that all nodes are independent agents, with only pri-
vate knowledge (e.g., of time). No node can be forced
to promise anything or behave in any way by an out-
side agent. Moreover, there are no common standards
of knowledge (such as knowing the time of day) with-
out explicit promises being made to yield this infor-
mation from a source. This viewpoint fits nicely with
our view of collection of distributed information for
measurement purposes.

We shall consider the following promise designa-
tions: +d server provides data, —d client receives/uses
data, +a branch node aggregates data, +¢ server pro-
vides time/clock, and —¢ client uses time/clock. Al-
though we speak mainly of network nodes below, it
will be understood that each node is modeled as an
“agent” in promise theory parlance.

Promise theory allows us to see the relationship
between network patterns and policy for autonomous
agents. Each arrow in the promise graph attaches to a
rule in the policy to either grant access to data or to
fetch available data. In this way we can build dissemi-
nation processes over graphs using node location data
or context sensitivity information.

A common mistake is to think of promises as
communication transactions, rather than as abstract
behavioural specifiers. A promise says nothing neces-
sarily about the details of what is communicated be-
tween agents at a given moment, only that it intends to

Burgess, Disney, & Stadler

behave within the confines of its promise. However,
one usually assumes that a promise means a best effort
to comply with the announced constraints and that no
promise means that nothing will happen. A reliable
binding between two hosts requires both a promise to
serve and a promise to use the promised service.

A, 2oy 4, 4, =0 4, @)

The Echo and GAP patterns are particularly well
suited to implementation using voluntary cooperation,
because the propagation of data along tree-like path-
ways does not depend strongly on whether data are
pushed or pulled. The main challenge in a voluntary
cooperation scenario is for an agent in the graph to
know when its child has data waiting. When data are
pushed, we essentially send a signal “do it now”, and
no other time synchronization is required. This be-
comes more complicated in a pull regime however.
Regular polling of a host’s servers is an obvious an-
swer to the question of when to download data. If
clocks in the network are synchronized correctly we
can even ask for data to be copied only if they have
been updated since the last copy. However, this re-
quires the extra overhead of time synchronization and
it still does not guarantee that data will be ready for
collection at a given moment.

This issue becomes most pronounced when one
attempts to request regular pollings of data and the
time for data to propagate through the network ap-
proaches the time interval for the polling. We have
discussed this issue in a separate paper [9], but some
of the effects can be seen in Figures 5 and 6.

Using Context Awareness for Making Network Pat-
terns

Cfengine agents are aware of location and con-
text through their evaluation of the environment into a
set of classes. These classes are then used as Boolean
flags to attach policies conditionally to scenarios. This
context sensitivity enables a set of distributed promis-
es to be coded into a single document.

A method in cfengine is like a pair of promises,
provided it is voluntarily declared by both parties. An
MDS5 hash is used to verify that the methods are in fact
the same.

The first (service) promise identifies the function
being performed, as the body b(). The class expression
A_1:: says that this rule applies to the context of agent
A_1, which is the service provider (server host). The
server=A_1 attribute matches the context expression
and, from this, the agent deduces that it is the provider.

methods:
A 1::
b(params) server=A_1
Ay 2 4,4, =05 4, 3)
The second part applied to agent 4, and has the
form:

280 21st Large Installation System Administration Conference (LISA ’07)

Burgess, Disney, & Stadler

methods:
A 2::
b(params) server=A_1

This identifies the function being performed and
signals to A, that it will use the results performed by
server A;. Since this is not its own identity, this im-
plies that the result is a use-promise.

If we assume that two agents use an identical
configuration specification, then a remote procedure
call binding can then be written methods:

A_1|A_2::
b(params) server=A_1

The same text either in both contexts and a single
link in a logical overlay network is added.

Echo

Cfengine’s modus operandi is to “pull” data
rather than to push. This is a natural side effect of its
philosophy of voluntary cooperation. Push is disal-
lowed, with one exception: we are allowed to send a
single invitation to each peer to execute its existing
policy using the command cfrun. The host is free to
disregard this message, but for cooperation purposes it
is normal for the peer to respond to such an invitation
by executing its policy compliance-checking agent.
We can use this mechanism to start an echo avalanche,
with a pre-arranged pattern.

The start host executes cfrun to a number of “chil-
dren”. Each child then voluntarily executes cfengine,
which in turn encapsulates the execution of cfrun di-
rected at another set of children, which encapsulates
cfrun to another set, and so on. Since cfengine aggre-
gates the data from encapsulated processes automati-
cally, it automatically aggregates the entire tree in a
synchronized manner. This is the simplest implemen-
tation of echo which uses context sensitivity to identi-
fy parent-child relationships.

Both serial and parallel star collation can be per-
formed in cfengine echo. The difference is that the
parallel star cfagent.conf issues an individual cfrun com-
mand to each client in the background. Additionally,
the output from each of those commands is redirected
to a file. When all the cfrun processes have finished,
the output files are concatenated together and printed
to the terminal so that the parallel and serial star tests
both provide nearly identical terminal output. Howev-
er, it should be noted that the parallel star approach,
involving the use of a separate temporary file for each
client, involves a great deal more file input and output
operations than serial star.

The echo cfagent.conf draws from the same frame-
work used for the parallel star, e.g., executing cfrun com-
mands in the background with output redirected to
files. In this case, a variable is defined for each host
that has children. The variable contains a list of the
node’s children in the tree. If this variable is defined,
cfrun is called for each child node. Therefore the tree is
statically defined.

Network Patterns in Cfengine and Scalable Data Aggregation

The use-promises are encoded as follows as in
Figure 3.

control:
actionsequence = (shellcommands tidy)
domain = (cftestnet)
IfElapsed = (1)
TrustKeysFrom = (10.0.0)
nodel::
serve = (node2:node3:node4)
node2::
serve = (node5:node6:node7)
node3::
serve = (node8:node9:nodell)
node4::
serve = (nodell:nodel2:nodel3)
node5::
serve = (nodel4:nodel5:nodel6)
node8::
serve = (nodel7:nodel8:nodel9)
nodell::
serve = (node20)
classes:

HasChildren = (IsDefined(serve))
shellcommands:
"/bin/echo $(hostname)"
HasChildren::

"/usr/local/sbin/cfrun $(serve) \
2>&1 > /tmp/echorun.$$"

background=true # parallelize

"/usr/bin/pgrep cfrun > /dev/null; \
while [$?2 =0 1; \

do pgrep cfrun > /dev/null; done"
"/bin/cat /tmp/echorun.*"

tidy:
HasChildren::
/tmp pattern=echorun.* age=0
Figure 3: The only kind of push structure that can be
implemented in cfengine is the echo pattern, using
nested cfrun commands. These must be autho-
rized in advance.

Promise Chains (Forwarding)

Two implementations of chains are shown in
Figures 7 and 8 for readers to try. Conventional wis-
dom suggests that tree depth corresponds directly to
latency in terms of end-to-end communication; chains
contain the maximum number of non-repeated hops in
a topology and therefore the highest latency on mes-
sages passing from one end of the chain to the other.
Chains are highly susceptible to failure due to the fact
that any individual link or node failure can disrupt
end-to-end communications; the closer the failure is to
the root, the more substantial the loss. This is a basic
problem with all structures of significant depth.

Using a chain length of 20 nodes, we consider the
periodic execution of cfagent each minute and measured
the time to propagate data from one end of the chain to
another, in repeated trials. The result of the completed
aggregation for this test is a file on the root node contain-
ing each node’s CPU load average as well as the time at
which that information was collected. Each node used

21st Large Installation System Administration Conference (LISA *07) 281

Network Patterns in Cfengine and Scalable Data Aggregation

the cfengine copy action to copy a partially aggregated
file from its child. Then the node used the cfengine edit-
files action to append its own load data to the bottom of
the file.

The results of the experiments are shown in Fig-
ure 4. We shall report on a detailed explanation else-
where.

The graphs can be understood roughly as fol-
lows. The solid line shows a prediction based on the
assumption of regular deterministic behaviour. For ze-
ro time-delay between receiving and sending in the
chain the age of the data is about ten periods. This is
what one would expect by random chance: about half
the nodes are correctly ordered on average. As the de-
lay is increased to one minute (greater than noise) the
noise becomes irrelevant and an optimal number of
nodes is correctly ordered for direct transmission. This
gives the fastest result. Then as the delay increases,
the time increases in steps. If the wait time times the
length of the chain is greater than a period, then the
nodes on the period boundary will be out of step and
will have to wait a whole period to update, hence the
jumps in the graph. What is interesting is that the ef-
fect of noise is to improve this handicap. There is no
room here for a full discussion of this phenomenon,
but the result is essential to understand for monitoring.

Promise Trees (Aggregation)

The chain is an unlikely topology in a real dis-
tributed system. In most cases one would expect a

Burgess, Disney, & Stadler

node to be able to connect to several other nodes and
allow a greater centralization of data during aggrega-
tion. We have repeated our experiments for binary
trees and the results are show in Figure 5. The
cfengine configuration patterns for these tests are
shown in the aggregation examples, Figures 8 and 9.

The data from the tree results are not directly
comparable to those of the chain, for several reasons. A
number of scales change when performing local aggre-
gation and these changes interfere with the time-scales
of system noise. Understanding the tree results is there-
fore rather more complicated than understanding the
chains. The parallel arms of the trees interfere some-
times destructively for parallelized copy and sometimes
constructively in serialized copy. Thus our graph seems
to reveal a relative stability compared to the chain. This
is slightly misleading however. The same basic behav-
iour is common to both cases; however, the tree is able
to delay the onset of temporal instability from chain
depth (see [9] for more explanation).

Suppose we put aside the restrictions on topolo-
gy due to local environment, e.g., the finite range of a
wireless network, and ask whether there are reasons
for building a tree with a particular number of neigh-
bours (node degree) for aggregation or dissemination.
This question should be answered differently depend-
ing on who initiates a transmission through the net-
work, how often and at what relative times. In the
cfengine model of maintenance in which data are

The effect of incremental sleep delays on update latency

25

20

15

Age of leaf node data in minutes
-
S
T

Measured ———
Prqdictiop (OA1? noisg) e

L
5

L
6

7 8 9 10 11 12

Sleep factor
Figure 4: Predicted versus experimental results for the chain propagation. The presence of noise or time-variations
actually improves performance compared to a deterministic prediction.

The effect of incremental sleep delays on update latency -

copy tree

Age of leaf node data in minutes

282

20

25 40 45

Sleep factor

Figure 5: Experimental results for binary tree propagation.

21st Large Installation System Administration Conference (LISA ’07)

Burgess, Disney, & Stadler

sampled at regular intervals, the behaviour of an ag-
gregation process is something of a cross between the
GAP protocol and a Gossip approach [11]. The peri-
odic checking of cfengine promises adds a level of
complexity to the data quality of the final result. How-
ever, the synchronization of the binary tree is much
less sensitive to the size of small offsets than for the
chain so it would seem to be advantageous to choice a
tree over a chain.

Clearly then the tree is more efficient in terms of
time and the decreased network depth gives more free-
dom in choosing the synchronization parameters. In-
creasing the node degree (number of children) in the
tree increases the processing burden on the aggregator
in order to maintain the same accuracy of service level
however. A question therefore presents itself: is there
an optimal node degree for distributed monitoring?

Scalability

Scalability is about how well a system continues
to perform in all its parts as it grows. The burden of
size can have a variety of negative effects on a system.

For scalability, we seek to minimize the time to
delivery from the leaves of the data structures to the
roots (i.e., obtain the lowest value on the vertical axis),
while maintaining meaningful data by minimizing
temporal fragmentation (partially represented by the
error bars). Thus we would like to be as close the low-
er left of the figures as possible. Our results tell us
something about how to achieve this by adjusting
overlay topology.

The two structural poles for the network patterns
were illustrated in Figure 1: the star pattern for maxi-
mum parallelization and centralization (hence maxi-
mum burden per root node) and the chain for maxi-
mum off-loading and decentralization (hence maxi-
mum temporal fragmentation). With centralization, the
fraction of the central node’s capacity that is available
to its children decreases in proportion to the number of
clients, so since the capacity is fixed scaling means a
reduction of workflow on the children proportional to
their own number [1]. In a chain, every node can use
its maximum processing capacity on its neighbour and
that chain can grow as long as we like until the load of
data aggregation (which grows in proportion to its
length) becomes a significant burden.

There are thus advantages and disadvantages to
each of these structures, with regard to both organiza-
tion and processing capacity. A tree is essentially a
compromise between the two: any tree can be seen as
a number of stars chained together. We must decide as
a matter of policy what node degree or number of
branches these stars should have in order to compro-
mise on these two dipolar effects of growth.

One interesting example in which the topology of

a network pattern could have a direct effect on scalabil-
ity is power consumption. Since we envisage network

Network Patterns in Cfengine and Scalable Data Aggregation

patterns finding application in mobile ad hoc networks
which run off batteries, e.g., sensor networks with lim-
ited resources, we should think about the possibility
that the choices we make will affect the lifetime of the
devices. Power consumption too might have to be
traded against speed and accuracy.

We have no generic answer to the question of
which kind of structure is best in a given case, as such
concerns are a matter for policy. However, consider the
following. The rate of power consumption of a node is
proportional to its CPU frequency [12] squared. Thus if
we design at maximum utilization to cope with demand
from aggregation of k neighbours, we must scale cost as
k* which represents power, cost of cooling or shortened
battery life, etc. The risk, on the other hand, associated
with not getting data quickly is proportional to the effec-
tive depth of the network pattern (N — 1)/k. So we have
a cost function that is a balance between these two

Cost = 0k + M . “

A plot for this for the arbitrary policy aa=0.1 is
shown below. This shows the existence of an optimum
aggregation degree, in this case k = 5. If k were a con-
stant all over the network, i.e., the network formed a
regular graph, this would be the optimal answer for
minimizing power consumption. However, there are
many constraints in ad hoc networks that would make
it unlikely to be able to maintain such a regular tree,
moreover there are other concerns than power con-
sumption. In general one must compromise between a
number of different optimization parameters compet-
ing for attention. More detailed considerations then
need to be applied to the problem. As we see, the cost
rises sharply with increasing centralization, however
this does not help roaming hand-held devices with
limited range that both cannot centralize and do not
want the computational burden focused in one place.

40 T

30— —

Cost function C
N
o
I
|

10— —

0 ! \ \
0 5 10 15 20

Node degree k

Figure 6: Cost considerations can plausibly lead to an
optimum depth of network pattern when power
considerations are taken into account. The mini-
mum cost here is given for k£ = 5. Such considera-
tions require an arbitrary choice to be made about
relative importance of factors.

21st Large Installation System Administration Conference (LISA ’07) 283

Network Patterns in Cfengine and Scalable Data Aggregation

Our work here does not offer a simple answer to
this conundrum, but shows network managers how to
investigate and locate their own compromise as a mat-
ter of policy.

Conclusions

In the present work we have provided a proof of
concept for implementing network data aggregation
and dissemination patterns at the host level, using
promise theory inspired methods. We have shown that
we can avoid scalability bottlenecks only at the ex-
pense of temporal fragmentation of data. If users make
logical star networks, they will have the greatest level
of certainty about their data but the most fragile archi-
tecture in the face of growth. If they choose a number
of star topologies chained together they can make a
suitable compromise. Most importantly, we point out
that the uncertainties incurred should be monitored
and presented as part of the data’s time-stamps.

We feel that our hybrid network/system study is a
stepping stone towards integrating host and network ad-
ministration within a common framework. Our work
has been based on KTH’s distributed protocols, and our
investigation must be seen as tentative. We have not
implemented all the features of the GAP protocol here.
The adaptive creation of a network overlay is a topic
for a later time, nevertheless some experimental peer to
peer features of cfengine are already similar to the ideas
used in GAP, and we intend to explore these further.
Some partial approximations for this are implemented
as SelectPeerNeighbours, SelectPeerLeader functions in
cfengine, with failover options. However, the full de-
tails of the algorithm still have to be understood. This
will probably take another six months to a year to find
the time to complete. Tests are proceeding and will
drive a discussion as to the most appropriate way for
deciding a topology in a cfengine peer network.

Our microscopic investigation of propagation un-
certainty in [9] shows that distributed structures lead
to uncertain results. The uncertainties measured in a
cfengine network are not simply related to errors in
aggregation due to unreliable nodes, as studied in [5,
11], so it is not clear whether the generalization A-
GAP would be a realistic solution to the problem here.

The syntax of cfengine’s voluntary cooperation
model is based on peer to peer interactions, just like
promise theory. It was designed with simple one-to-
one contracts in mind. We did not consider the possi-
bility of widespread interconnection of contractual re-
lationships. This results in clumsy and cumbersome
policy files for encoding patterns in cfengine. Further
work is expected to be able to enable regular expres-
sions of some form to more efficiently encode the bi-
lateral promises required for pattern policies.

As we write this, the team at Stockholm has de-
veloped a new pattern which they refer to as MGAP,
in which every node in a structure can receive a copy
of the total aggregate. It seems likely that this pattern

Burgess, Disney, & Stadler

will find a special place in cfengine for extending
cfengine’s peer to peer monitoring capabilities. We
look forward to reporting on this is future work.

This work is supported by the EC IST-EMAN-
ICS Network of Excellence (#26854).

Author Biographies

Mark Burgess is professor of Network and Sys-
tem Administration at Oslo University College. He
was the first professor with this title. Mark obtained a
Ph.D. in Theoretical Physics in Newcastle, for which
he received the Runcorn Prize. His current research in-
terests include the behaviour of computers as dynamic
systems and applying ideas from physics to describe
computer behaviour. Mark is the author of the popular
configuration management software package cfengine.
He made important contributions to the theory of the
field of automation and policy based management, in-
cluding the idea of operator convergence and promise
theory. He is the author of numerous books and papers
on Network and System Administration and has won
several prizes for his work. Reach him electronically
at Mark.Burgess@iu.hio.no .

Matthew Disney has been working in systems ad-
ministration since 1998. He has a B.S. in Computer
Science from the University of Tennessee and an MS in
Network and System Administration from the Universi-
ty of Oslo. He is currently working as a cyber security
administrator at Oak Ridge National Laboratory.

Rolf Stadler is a professor at the Royal Institute
of Technology (KTH) in Stockholm, Sweden, since
2001, where he leads the network management group.
He received an M.Sc. degree in mathematics and a
Ph.D. in computer science from the University of
Zurich, Switzerland, in 1984 and 1990, respectively.
Over the last 10 years, Dr. Stadler has been instrumen-
tal in the network management research community
and served as PC co-chair for premier IEEE confer-
ences in the field, including DSOM’99, NOMS’02,
and DSOM’07. He further serves on the editorial
board of IEEE Transactions on Network and Service
Management (TNSM). His current research interests
include scalable networks and systems, autonomous
computing, and self management.

Bibliography

[1] Burgess, M. and G. Canright, “Scalability of Peer
Configuration Management in Partially Reliable
and Ad Hoc Networks,” Proceedings of the VIII
IFIP/IEEE IM Conference on Network Manage-
ment, p. 293, 2003.

[2] Burgess, M. and G. Canright, ““Scaling Behaviour
of Peer Configuration in Logically Ad Hoc Net-
works,” IEEE eTransactions on Network and
Service Management, Vol. 1, Num. 1, 2004.

[3] Burgess, M. and K. Begnum, *“Voluntary Cooper-
ation in a Pervasive Computing Environment,”

284 21st Large Installation System Administration Conference (LISA ’07)

Burgess, Disney, & Stadler Network Patterns in Cfengine and Scalable Data Aggregation

Proceedings of the Nineteenth Systems Admini-
stration Conference (LISA XIX), USENIX Asso-
ciation, Berkeley, CA, p. 143, 2005.

[4] Lima, K-S and R. Stadler, “A Navigation Pattern
for Scalable Internet Management,” Proceedings
of the VII IFIP/IEEE IM Conference on Network
Management, 2001.

[5] Gonzalez, A., Prieto, and R. Stadler, ““Adaptive
Distributed Monitoring with Accuracy Objec-
tives,” ACM SIGCOMM Workshop on Internet
Network Management (INM 06), Pisa, Italy, 2006.

[6] Dam, M. and R. Stadler, “A Generic Protocol for
Network State Aggregation,” RVK 05, Linkping,
Sweden, June 14-16, 2005.

[7] Tel, G., Introduction to Distributed Algorithms,
Cambridge University Press, 2nd Edition, pp. 181-
202, 2000.

[8] Chang, E. J. H., “Echo Algorithms: Depth Paral-
lel Operations on General Graphs,” IEEE Trans-
actions on Software Engineering, Vol. 8, Num. 4,
pp- 391-401, 1982.

[9] Disney, M., Exploring Patterns for Scalability of
Network Administration with Topology Constrants,
Master’s Thesis, Oslo University College, 2007.

[10] Burgess, Mark, “An Approach to Understanding
Policy Based on Autonomy and Voluntary Coop-
eration,” IFIP/IEEE 16th International Workshop
on Distributed Systems Operations and Manage-
ment (DSOM), LNCS Vol. 3775, pp. 97-108,
2005.

[11] Wuhib, F., M. Dam, R. Stadler, and A. Clemm,
“Robust Monitoring of Network-Wide Aggre-
gates Through Gossiping,” 10th IFIP/IEEE Inter-
national Symposium on Integrated Management
(IM 2007), 2007.

[12] Burgess, M. and F. Sandnes, “A Promise Theory
Approach to Collaborative Power Reduction in a
Pervasive Computing Environment,” Springer Lec-
ture Notes in Computer Science, LNCS Vol. 4159,
pp. 615-624, 2006.

21st Large Installation System Administration Conference (LISA ’07) 285

Network Patterns in Cfengine and Scalable Data Aggregation Burgess, Disney, & Stadler

Appendix: Examples
ﬁ##

CHAIN 4 machines 1,2,3,4 (promise chain)

i
THHHHHHHEHEHHHHHHHHHHEHEHHHHEEHHHHREEHHHHERHHHE

classes:

always = (any)

leaf = (nodei)

root = (nodel)
G
control:

workfile = ("/tmp/chain-pattern")
THHHHHHHHHEEHHHHEEHHHHEERHHHEERHHHEERRHHHEREFE-E
methods:

#

Pattern has to be coded in classes (from)
and servers (to)

#
nodel|node2:: # -b | +b - binding

Aggregate ("S$ (workfile)")
server=node2
action=method_pattern.cf
returnvars=ret
returnclasses=chain_link

node2|node3::

Aggregate ("S$ (workfile)")
server=node3
action=method_pattern.cf
returnvars=ret
returnclasses=chain_link

node3|node4::

Aggregate("S$ (workfile)")
server=node4
action=method_pattern.cf
returnvars=ret
returnclasses=chain_link

THHHHHHHHEHEEHHHHHHHHHHHHEHEEEEEEHHEHHHHHHH
editfiles:

lleaf::

{ $(workfile)

AutoCreate

EmptyEntireFilePlease
AppendIfNoSuchLine "$(Aggregate.ret)"
Handle errors so no strange loops
ReplaceAll "Aggregate.ret" With "FAILED"
}
leaf::

{ $(workfile)

AutoCreate

EmptyEntireFilePlease
AppendIfNoSuchLine "$(value_loadavg)"
}

THHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEHHHHHHHHHHHHHE
alerts:
root.Aggregate_chain_link::

"Chain aggregate $(n)S$(host)=$(value_loadavg)
at $(date) $(Aggregate.ret) "

Figure 7: A promise chain fully represented as a contract between parties by voluntary cooperation.

286 21st Large Installation System Administration Conference (LISA ’07)

Burgess, Disney, & Stadler Network Patterns in Cfengine and Scalable Data Aggregation

;i####################7’##1’####1’##########1’####1’#1’####
#f Netlab config

#
THHHHHHHEHHHHHHEHEHHHAEEHHHHEHEHHHHEHEHHHEEEHE

classes:

leaf (netlabd)
root (netlabl)

THHHHHHHEHHHHHHHHEHHHAEEHHHHEEHHHEEEEHHHERE

control:

workfile = ("/tmp/chain-pattern")

tempfile = ("/tmp/chain-temp")
netlabl::

serve = (netlab3)
netlab3::

serve = (netlabs)
THHHHHEHHEHHHEHHHRHHERHHEHHERHHERHERHEERHHEEEE
tidy:
THHHEHHHHHEEHHHHERHHHHEHHHHHEERHHHEERHHHHERFE
copy:
!leaf::

S (workfile)

dest=$ (tempfile)
server=$(serve)
type=checksum

define=success
elsedefine=failure

THHHHHHHHHHHEHHHHHHHHHHHHHHHEEHEEHHEHHHHHHHHRE
editfiles:
success::
{ $(workfile)

AutoCreate
EmptyEntireFilePlease
InsertFile "$(tempfile)"

AppendIfNoSuchLine "copy-chain $(host)=$(value_loadavg) at $(date)"

}
failure::
{ $(workfile)

AutoCreate
EmptyEntireFilePlease

AppendIfNoSuchLine "copy-chain - no response from $(serve)"
AppendIfNoSuchLine "copy-chain $(host)=$(value_loadavg) at $(date)"
}

leaf::
{ $(workfile)

AutoCreate
EmptyEntireFilePlease

AppendIfNoSuchLine "copy-chain $(host)=$(value_loadavg) at $(date)"

}
THHHHHHHHHHHHHHHEEHHHHHEHEHHHEERHHHEERHHHHEREH S
alerts:

success::

"Chain update succeeded"
PrintFile("$ (workfile)","6")

failure::
"No Chain update at $(date)"

Figure 8: A simplified version of the promise chain built using a simple pull method. This is much more trusting

than the previous example and assumes a certain control over the children.

21st Large Installation System Administration Conference (LISA ’07)

287

Network Patterns in Cfengine and Scalable Data Aggregation Burgess, Disney, & Stadler

;i###########################1’####7’#####1’#########
#f Depth aggregation (promise tree)

#
THHHHHHHEHHHHHHEHEHHHAEEHHHHEHEHHHHEHEHHHEEE-HE

classes:

leaf = (netlab3 netlab4)

aggregator = (netlabl)
THHHHHHHHHHEEHHHEEHHHHHEHHHHHEEEHHHEERHHHHEREH S
control:

workfile = ("/tmp/chain-pattern")

children = (
A(netlabl,"netlab3,netlab4d")
A(netlab3,"netlab3,netlabsa")
A(netlab4,"netlab3,netlabd")
)

THHHHHEHHEEHHEEHHEHHEEHHEHHEEHHEEEHEHHEEEHEEEE

methods:

netlabl|netlab3|netlab4:: # 2 servers, 1 client
Aggregate ("$ (workfile)")

server=$ (children[$(host)])
action=method pattern.cf
returnvars=ret
returnclasses=chain_link

THHHHHHHHHHHEHHHHHHHHHHHHHHHEHHEEHHEHHHHHHHE
editfiles:

aggregator::

{ $(workfile)

AutoCreate

EmptyEntireFilePlease

AppendIfNoSuchLine "$(Aggregate l.ret)"
AppendIfNoSuchLine "S$(Aggregate 2.ret)"
Handle errors so no strange loops
ReplaceAll "Aggregate.*ret" With "FAILED"
}

leaf::
{ $(workfile)

AutoCreate

EmptyEntireFilePlease
AppendIfNoSuchLine "$(average loadavg)"
}

THHHHHHHHHHHHHHHEHEHHHHHEHHHHHHEERHHHEERHHHEEREH S
alerts:
aggregator. (Aggregate_l_chain_link|Aggregate_2_chain_link)::
"Chain aggregate (n)(host)=$(average_loadavg) at $(date) \
$(Aggregate_l.ret) $(Aggregate 2.ret) "

Figure 9: A two to one aggregation of text data. This example uses a full promise approach.

288 21st Large Installation System Administration Conference (LISA ’07)

Burgess, Disney, & Stadler

;i####################7’##1’####1’##########1’####1’#1’####
Breadth aggregation by pull

#
THHHHHHHEHHEHHHHHHHHHHHHHAEEEEEEERRRHHHHHHHHAEE

classes:

leaf = (netlab4 netlab3)

root = (netlabl)
THHHHHHHHHHEEHHHEEHHHHHEHHHHHEEEHHHEERHHHHERE S
control:

Split =(,)

workfile = ("/tmp/chain-pattern")

tempfile = ("/tmp/chain-temp")

i 1

##f One link in a binary tree / \ aggregation
i 3 4
netlabl::

serve = ("netlab3,netlab4")
THHHHHHHHEHHHHHHHHHHHHHHHHHEHHHHREHEEHEEEHEEEE
copy:
!leaf::

S (workfile)

dest=$ (tempfile)_$ (this)
server=$(serve)
type=checksum

define=success
elsedefine=failure

THHHHHHHHEHHEHHHHHHHHHHHHHHEEEEEEHEHHHHHHHH
editfiles:
success::
{ $(workfile)

AutoCreate

EmptyEntireFilePlease

InsertFile "$(tempfile)_ S (serve)"

AppendIfNoSuchLine "copy-chain $(host)=$(value_loadavg) at $(date)"
}

failure::
{ $(workfile)

AutoCreate

EmptyEntireFilePlease

AppendIfNoSuchLine "copy-chain - no response from $(serve)"
AppendIfNoSuchLine "copy-chain $(host)=$(value_loadavg) at $(date)"
}

leaf::
{ $(workfile)

AutoCreate

EmptyEntireFilePlease

AppendIfNoSuchLine "copy-chain $(host)=$(value_loadavg) at $(date)"
}

THHHEHHHHHEEHHHHERHHHHERHHHHEERHHHEERHHHHERFE
alerts:
success::

"Chain update succeeded"
PrintFile("$(workfile)","6")

failure::
"No Chain update at $(date)"

Figure 10: A simpler pull version of the aggregation example.

21st Large Installation System Administration Conference (LISA ’07)

Network Patterns in Cfengine and Scalable Data Aggregation

289

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

