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ABSTRACT

There are several current theoretical models used to discuss configuration management,
including aspects, closures, and promises. We examine how these models relate to one another,
and develop a overall theoretical framework within which to discuss configuration management
solutions. We apply this framework to classify the capabilities of current tools, and develop
requirements for the next generation of configuration management tools.

Introduction

Configuration management is the process of con-
straining the behavior of a network of machines so
that each machine’s behavior conforms to predefined
policies and guidelines and accomplishes predeter-
mined business objectives. Configuration management
would be easy if objectives did not change, the num-
ber of machines in a network were small, machines
were simple in structure, machines were identical,
machines did not fail, and no unauthorized parties
could alter behavior. Unfortunately, objectives change,
networks are large, machines are complex, machines
differ, machines fail, and new security holes appear
each week, making configuration management a
costly part of administering any large network.

The overall goal of configuration management as
a practice is to maximize the extent to which systems
conform to predetermined expectations, while mini-
mizing the cost of keeping the network’s behavior
within predetermined guidelines. There are many
strategies for accomplishing configuration manage-
ment, from manually making changes to using power-
ful and comprehensive software tools to assert,
enforce, or monitor configuration changes. Each
approach has loyal advocates who consider their
approach superior to others, leading to spirited debates
in the LISA Configuration Management Workshop.1

At the present time, configuration management
remains one of the most controversial aspects of system
administration. Approaches and tools abound, each with
faithful adherents whose dedication to the approach
borders on religious fervor [1, 3, 4, 5, 6, 13, 20, 21, 22,
23, 24, 27, 29, 30]. Understanding the key differences
between approaches has proven difficult, and many
practitioners have asked why it seems so necessary to
‘‘ r e - i n v e n t the wheel’’ [27] in creating completely new
configuration management tools from scratch. Many

1What began as the CFengine Workshop at LISA 2001 in-
spired many discussions and was more appropriately re-
named the Configuration Management Workshop by Paul
Anderson shortly afterward.

tools seek to enable new collaboration methods(e.g.,
[23, 27]) to enable sharing of work. So far, collabora-
tion seems to be the exception rather than the rule.2

Are authors of new tools really contributing any-
thing new? Why has it proven so difficult to apply
configuration management tools to new sites? In try-
ing to answer this question, it has proven difficult to
get beyond issues of personal taste and understand
why there are so many approaches, and what drives
each approach. Part of the reason for this is that there
has been no coherent language with which to compare
and contrast strategies both precisely and fairly. With-
out this language, advocates of particular approaches
seem like zealots; with this language, the reasons
behind their thinking can become clear.
The Quandary of Cost

One reason for the diversity of approaches is that
the least costly strategy for configuration management
is often determined by the nature of the site being
managed and its mission [19]. There is, for example, a
profound difference between the best configuration
management strategy for an academic research lab and
for a bank. ‘‘Tight’’ sites such as banks require much
more disciplined and expensive strategies than aca-
demic research labs, because the cost of downtime is
much higher in a bank than in a research lab [26].

To better understand the sources of cost, there
have been several tries at creating theoretical models
of configuration management. Closures attempt to
encapsulate parts of network function in black boxes,
to reduce configuration management complexity and
cost [15, 16], while promises model the way
autonomous parts of a network exchange information
and commit to certain behaviors [10, 11, 12, 14], to
allow networks and computers to become more self-

2AC: At a configuration management ‘‘birds of a feather’’
session at LISA 2003, an informal poll was taken concerning
the number of people in the room using other authors’ config-
uration management tools. Of the attendees present, excepting
users of CFengine, everyone had written custom tools for the
task, and the only user of each tool in the room at the time
was its author.
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managing and self-sufficient. We present aspects as a
way of describing the dependencies and constraints
that plague configuration management and increase
management cost [2]. The diversity and disparity of
the contributions has been a hindrance to a feeling of
progress in the field. Why are there so many different
ways to think about the same basic problem?

In this paper, we discuss the relationships
between current models of configuration management
with several goals in mind. We define the terms and
concepts in each model precisely, and show how they
relate to concepts and terms in other models. This
leads to an overall theoretical picture of configuration
management based upon the union of concepts. This
unified theory suggests and clarifies challenges to be
addressed by the next generation of configuration
management tools.

The plan for the paper is as follows: we intro-
duce the concept of an aspect to capture a configura-
tion management ‘unit of planning.’ We can think of
this as a requirement. We then discuss how such
aspects can be reliably implemented. This takes us to
the concepts of closures and promises. However, there
is an obstacle: it is far from clear that we have the
authority to require anything of a distributed system,
so we must transform a description of requirements
into a description based on agreed compliance, or
promises. Reviewing briefly the concept of service-
oriented computing we show that, if we express
aspects and closures in terms of ‘promises,’ then all of
our results apply regardless of whether they are imple-
mented as granted services or as authoritative control
scripts. This abstraction makes our theory completely
general. We finish by indicating how convergent oper-
ational semantics can be expressed as promises, thus
completing the picture from high to low level.3

How Expensive Could It Be?

It helps to understand from whence configuration
management costs arise. The cost of configuration
management includes the costs of planning, deploying
machines, deploying changes, and troubleshooting
changes. Planning includes determining desired
behaviors and how to accomplish them. Deployment
consists of creating machines with a known initial
configuration, to which configuration changes can be
applied later. Changes are deployed by modifying
machine configurations, network-wide, and changes
often cause problems that must be investigated
through troubleshooting.

Some of these costs are fixed and difficult to
control, while others are somewhat under the control
of the system administrator. Planning costs the same
amount of staff time regardless of how one decides to

3MB+AC: for the reader’s amusement we have left our (of-
ten wry) commentary to one another as bonus material to the
director ’s cut of this paper.

manage systems, but deployment costs vary based
upon whether the deployment is accomplished auto-
matically or manually. The cost of troubleshooting
shows the greatest variability and greatest opportunity
for savings. It can be argued that the cost of trou-
bleshooting is the sum of staff cost for repairing the
problem and staff time and revenue lost due to the out-
age [26]. This observation makes troubleshooting a
dominant factor in overall cost of ownership.

Constraints, Dependencies, and Preconditions
One core problem in configuration management

is that accomplishing changes is often nontrivial.
Often, when a change is made, ‘‘something breaks’’
[28], and troubleshooting is required to determine the
cause. For example, installing a new version of a
dynamic library has the potential to cause every pro-
gram that loads that library to stop working properly.
In Microsoft Windows, program installers can modify
the registry entries of other programs, either intention-
ally or maliciously, so that installing a new program
can lead to seemingly unrelated failures [31]. Pro-
grams often invoke other programs. For example,
installing an inappropriate version of GhostScript can
prevent Xfig from generating Postscript figures.

There are several ways that different authors
describe the above situation in words. One can say that
‘‘ t h e r e is a dependency between Xfig and the version of
GhostScript’’ or ‘‘there is a constraint that the versions
of GhostScript and Xfig must match.’’ These are equiv-
alent statements. A precondition [18, 24] is another
name for a dependency; one could say that ‘‘a precon-
dition for Xfig to function properly is that the appropri-
ate version of GhostScript is installed.’’ The difference
between a precondition and a dependency is that a pre-
condition describes relationships between events or
occurrences in time, while a dependency or constraint
describes relationships between subsystem states.

But the above situation is the easy case. Often,
we do not know (or perhaps forget) the dependencies
or constraints that must be satisfied. In making
changes, it is possible to put systems into states whose
behavior is unknown or unverified. Usually, this is
because the system is in a different state than we
believe it to have, either when applying a configura-
tion change or when trying to use a program. We can
say a failure is due to a hidden dependency or a hidden
constraint, or that the success of a command requires
(or prohibits) a latent precondition [24].

Aspects

We begin our story by proposing a definition of
configuration management based upon aspects.4 Our
definition of an aspect differs somewhat from that of
Anderson [2], who defines it as ‘‘a part of configura-
tion specified by one human person or administrator,’’

4MB: on hearing about Promise Theory, Alva turned crim-
son and sang – ‘‘Mark’s tongues in aspects.’’
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but we agree with the spirit of his remarks. Instead, we
define an aspect of configuration as a bundle of con-
figuration information whose values must be coordi-
nated to satisfy some known set of a priori constraints.
Aspects Are Required Characteristics

Our extended definition has more precise mathe-
matical properties than Anderson’s definition, but sat-
isfies the spirit of the original definition; typically
Anderson’s hypothetical ‘‘one person’’ will be charged
with deciding the values for a single aspect.

We pursue this course not so much because
aspects are interesting in and of themselves, but
because they provide the ‘‘glue’’ and intermediate rep-
resentation that allows us to discuss the similarities
between the seemingly very different concepts of
‘‘closures’’ and ‘‘promises,’’ i.e., the concepts we need
to actually implement configuration changes. They
also better represent the way in which administrators
plan and think about distributed management.

We begin with some definitions. It is necessary
to understand precisely what we mean by a ‘‘configu-
ration parameter’’ or a ‘‘constraint upon configuration
parameters’’ before we can characterize the problem of
configuration management more accurately. This may
seem overly precise, until one considers that the lack of
precise definitions has historically made it difficult to
compare configuration management approaches, be-
cause authors have utilized differing terms to describe
similar concepts.

Definition 1: Configuration parameter A config-
uration parameter is a unit of configuration infor-
mation. It can be manipulated by use of specified
get and set methods, where get re t u r n s the param-
eter ’s value and set specifies a new value.

A parameter ’s location within the system is not
important, we refer to it indirectly, i.e., by a method or
access service which conceals that specific location.
The value of a parameter might be anything from a
single scalar value to the contents of a hierarchy of
files located somewhere within the filesystem.

We now want to talk about aspect ‘types.’

Definition 2: Type of a parameter The type of a
configuration parameter p is a label identifiable
with the domain of possible values that the
parameter can assume, which we notate as Dp.

Note that a type is a shorthand for a set of options
Dp. Try not to think of an aspect type as a primitive
data-type, e.g., like ‘‘string’’ and ‘‘integer ’’; rather
think of ‘‘parameter set 1’’ and ‘‘parameter set 2’’ in a
system specification, i.e., different configuration con-
cerns. Types have the character of database schemas or
XML schemas for configuration parameters.

Definition 3: Parameter constraint A single
constraint on a configuration parameter p may
be expressed in two equivalent ways:
1. As a restricted set of values, i.e., a subset Vp of

the domain Dp of its allowable values.

2. As a set of rules Rp that indirectly define the
contents of Vp.

The reader may be confused by this abstract
specification of a rather mundane thing. When we
make a constraint upon a parameter, e.g., ‘‘the hard
disk must contain more than 4 GB of space,’’ we are
in actuality selecting a subset of hard disks that meet
the criterion. By thinking of this set, rather than the
rule or formula that defines it, we can avoid messy
notation and clarify the concept.

Definition 4: Parameter set constraint For a
parameter set A, we can think of the constraints
on the set A as being specified in two ways:
1. As the union of the rules Rp for values of

parameters p ∈A.
2. As a set of allowable tuples of values

TA ⊆ Πp ∈ADp where Π denotes cross product.

In other words, the constraints on a set of things are
some subset of the ordered tuples of parameter values,
or alternatively, some set of rules that determine those
tuples.

Example 1 It is common for sets of parameters
to have constraints between parameter values.
The hostname declared for the web server is usu-
ally the same name as the name of the physical
host running the server. This is a form of tuple
constraint.

A constraint is a specification of a subset of the
possible parameter values that we particularly require.
Defining rules RA expresses that, for the parameters
PA, we are disallowing some tuples of values and are
left with a smaller set of tuples TA that are suitable.
This set may be defined by enumerating possible
tuples, or by abstract rules, but the effect is the same:
to limit the set of allowable values.

An aspect, then, is a logical grouping (schema)
of such parameters whose values are a characteristic
of the system that we are trying to manage.

Definition 5: Aspect An aspect A is a pair
〈PA, CA〉, where PA is a set of configuration
parameters and CA is a set of constraints limiting
the values of those parameters. CA may be
expressed as either a ruleset or an enumeration
of tuples.

If a parameter p is part of an aspect, values of the
parameter p must conform to the constraints VA for the
overall aspect (specified as a tuple space). If the value
of one parameter p is changed, we must choose a new
value v ∈VA (the set of allowable tuples), so that v(p)
has the value we desire, while all other parameters are
adjusted so that the value of the aspect v remains a
member of the constrained set VA of allowable values.

Example 2 Suppose that two data values are
required to have the same value, but are stored in
different places and accessed via different
means. They are different parameters, but can be
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considered to be members of the same aspect,
bound together by the aspect constraint of
‘‘value identity.’’ For example, a web server must
be configured to answer requests for a numeric
IP address that happens to agree with the IP
address of the machine running the server.

If we have two parameters whose constraint is that
they must have the same value at all times, then set for
one must set the same value for the other, using mecha-
nisms of traditional aspect-oriented programming.

Example 3 Consider the number of times the
hostname of the current host appears inside files
in /etc. Under our definition, each occurrence is
a separate parameter, but the aspect ‘‘hostname’’
embodies all of them, and setting the hostname
as an aspect should modify all occurrences of the
hostname everywhere it might appear in configu-
ration files. There are many aspects with this
quality, of one value stored in many places.

Again, we have a relationship between setting one
parameter and setting several others. Aspects may be
more subtle than identity, though.

Example 4 Consider an aspect dealing with host-
name in a local-area network. The hostname of
each host must be unique, so we make this prop-
erty an aspect of the local-area network. Setting
the hostname of one specific host to an already-
assigned name would require us to set the already-
assigned host’s name to something different.

Aspect constraints can be much more complex
than this:

Example 5 Consider an aspect for installing
software packages. This aspect has constraints
for determining when a package can be consid-
ered to work, in terms of dependency packages
that must be installed beforehand.

Aspects can even honor dependencies inside a
single software package.

Example 6 In the aspect called ‘‘web service,’’
there are specific requirements and limitations
on which modules can be installed in Apache,
due to interoperability limits.

In general, we can model the dependencies,
requirements, and documentation of a network as a
mesh of overlapping, inter-dependent aspects. Over-
laps will be a problem, but we shall solve this matter
by reducing aspects to networks of ‘‘promises.’’ Our
definition of an aspect is very similar to that of a
promise [14], but at a higher level, and indeed this is
no accident. We shall be returning to the reason for
this in later sections.

Properties of Aspects

Having introduced aspects, the concept of
parameter becomes somewhat redundant: we can
meaningfully converse in terms of aspects alone.

Proposition 1: Any single parameter p is also an
aspect 〈p, Dp〉.
Proof 1 The type of a parameter by definition
corresponds to a set of domain values, so the
result is trivial.

Proposition 2: Any set of parameters is also an
aspect, with the set of constraints that is the
union of their individual constraints/types.

Proof 2 Again, this is obvious from the defini-
tion.

Aspects consisting of only type information are
rather dull; to make life interesting, we must include
constraints about how parameters interoperate or must
be related. We can do this most straightforwardly via
composition:

Lemma 1: Aspect composition A union of
aspects is an aspect.

Proof 3 Let 〈PA, RA〉 re p re s e n t one aspect A
(expressed as a set of parameters PA and a set of
constraint rules RA) and let 〈PB, RB〉 be another
aspect expressed in the same fashion. The lemma
follows trivially from
A∪B = 〈PA, RA〉∪〈PB, RB〉

= 〈PA ∪PB, RA ∪RB〉.
The union of the sets of constraints is a larger
(and perhaps more restrictive) set of constraints.

In other words, to make a union of two aspects, take
the union of their parameter and constraint sets. Natu-
rally, the behavior of a larger set of constraints is more
constrained than a smaller number; as we make suc-
cessive unions of aspects we arrive at a system with
completely determined behavior at top level.

The duality between constraint rules and allow-
able value sets may seem curious to the reader. A rule
r ∈RA limits an aspect, which means that the larger RA
is, the smaller the set of allowable values VA becomes.
The same apparent strangeness occurs in object-ori-
ented programming, where adding constraints to a
subclass (via inheritance) limits the number of
instances that can be considered members of that sub-
class, compared to the instances that are members of
the parent class. Increasing constraints limits the num-
ber of acceptable values. Decreasing the number of
constraints increases the number of acceptable values.
This duality and contravariance between constraints
and instances will be exploited in several ways in the
rest of the paper.

Definition 6: Value of an aspect The value vA of
an aspect A is a function from parameters within
the aspect to values of those parameters, so that
vA(p) represents the current value of parameter
p ∈PA.

Again, this is a simple concept. A value is simply a
tuple vA where fields vA(p) conform to all constraints
of the aspect.
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Hard and Soft Constraints
Note that constraints on values take two forms:

‘‘ h a r d ’’ and ‘‘soft.’’ A ‘‘hard’’ constraint is one whose
violation also violates physical law or the preconditions
of a software or hardware subsystem. A ‘‘soft’’ con-
straint is a matter of policy or personal taste or choice.

A ‘‘hard aspect’’ contains only hard constraints:

Definition 7: Hard aspect A hard aspect is one
in which all constraints reflect physical limita-
tions of the configured device and/or its software.

For example, not using existing partitions in a parti-
tion map would lead to a non-functional system. Hard
aspects arise both from documentation (of which val-
ues ‘‘should’’ work) and direct experience (of what
works and does not work).

A ‘‘soft aspect’’ is one that we impose as a mat-
ter of policy, even though no physical laws are broken
in its absence.

Definition 8: Soft aspect A soft aspect is one in
which all constraints are elective and do not
reflect actual physical limitations. We might also
call this a policy aspect.

For example, the place we actually install the
web server software is a ‘‘soft aspect’’ of the web ser-
vice hierarchy; there are no physical reasons we can-
not install it anywhere we wish (provided that parti-
tions are large enough, which is a hard aspect!).

If we consider that the parameter that we are set-
ting is itself an aspect, and the value we are asserting is
a constraint within a new aspect containing that param-
eter, then our desires for a host’s configuration can all
be expressed in terms of aspect composition. Indeed,

Proposition 3: Configuration is an aspect The
entire configuration of a host or network can be
thought of as the value of a composition of hard
and soft aspects, including physical limits, policy
choices, and arbitrary choices.

An aspect generalizes and embraces related alter-
natives, i.e., one choice is available for each parameter
in an actual configuration, whereas an aspect may pro-
vide alternatives. We can therefore arrive at a configu-
ration by imposing a sequence of increasingly
demanding constraints, from hardware and software
limits, tempered by policy decisions, all the way to
individual choices that may not matter.

The key idea of aspects is that it is an easy and
straightforward way to encapsulate relationships
between parameters and subsystems. While a parame-
ter corresponds to a single configuration item, an
aspect binds several together with a shared meaning,
that might be either localized or distributed. In this
respect, aspects will turn out to be related to roles in
promise theory, which we will also discuss.
Managing Aspects

The concept of an aspect is a compelling mirror of
design practice. Implementing configuration management,

one must constantly conform to a series of practicality and
policy constraints. These constraints commonly overlap,
making configuration management a constraint satisfac-
tion problem [25]. Worse, the constraints of an aspect may
not be known, and we sometimes must make guesses
about their nature. We can thus rethink configuration
management as a problem of managing aspects.

Clearly, aspects are a mechanism for specifying
the requirements for a functional system. But there is a
presumption here – namely that we can actually
require anything at all of a system. As computers and
devices become increasingly personalized, a configu-
ration planner becomes increasingly powerless to con-
trol autonomous devices; this is an issue which we are
forced to confront.5 An aspect specification is com-
pletely free of assumptions about how it will actually
be managed, as a physical entity. This conceptual
decoupling allows us compile the high level concept
into some kind of lower level language – and this
brings us to discuss closures and promises below.

Many aspect constraints are simple value choices.
We can conform to these constraints most easily by
storing the (replicated) specification in a database or
file, and replicating the information into several files
via a ‘‘generative’’ [18] or template based configura-
tion management strategy, e.g., like LCFG [1, 3, 20].

Since the definition of a parameter arises from the
ability to get and set it, two parameters are identical iff
they are defined by exactly the same get and set meth-
ods. In case of overlaps, it is important to know whether
values for two overlapping aspects are reasonable:

Definition 9: Coordinated aspects Two aspects
are mutually coordinated iff they agree to share
the possible values of aspect parameters.

In promise theory one has the notion of a coordination
promise as a primitive construction to handle scenarios
like this. Compiling aspects into promises will allow
us to keep track of the logic of these complexities.

The most difficult aspects to manage are those
with ‘‘distributed constraints.’’ While a ‘‘local’’ aspect
involves one machine, a ‘‘distributed’’ aspect involves
some group of machines and their interactions. These
have proven difficult to manage in several ways. First,
there is a need for coordination whenever part of an
aspect must change on one host in an aspect group.

An example of a distributed aspect is a client-
server relationship. In this relationship, a client has an
aspect that identifies the server, while the server has
an aspect that defines the service. The union of these
aspects and a port-number aspect describes a binding
between server and client.

5MB: There is an important crossroads here. As we move
towards a service-oriented picture of autonomously man-
aged services, we move into a realm of having no authority
to require anything of a server. Thus we must eventually
move away from the idea that we are in control, to a view of
encouraging voluntary cooperation. This step is taken by
reinterpreting aspects in terms of promises [14, 10, 12].
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Proposition 4: Bindings are distributed aspects
All service bindings of a client are distributed
aspects with both client-side and server-side
components.

Example 7 For a more complex distributed
aspect, consider the inherent coupling between
DHCP and DNS. If a host is in DHCP, then its
MAC address maps to a particular IP address,
and if it is in DNS, then its IP address is mapped
to a name. Thus the triple (hostname, IP address,
MAC address) is a distributed aspect spanning
the host itself, the DNS server, and the DHCP
server. Once the value of that aspect is defined, it
constrains values in all three domains and, by
overlap, constrains contents of other configura-
tion files whose aspects overlap. It is often con-
sidered good form to place a record for the host-
name of a host into /etc/hosts; this would happen
because the hostname aspect (on the local host)
must be coordinated with the DNS/DHCP aspect
(on the distributed network service layer).

State of the Art

At most sites, distributed aspects are maintained
and updated by hand, by distributing policies for local
aspect control. For example, the policy writer must
insure manually that the DNS server listed in
/etc/resolv.conf is actually a DNS server, and that the
zones of that server contain the appropriate SOA
records for it to be an authority for the zones for which
it is intended to be authoritative.

This difficulty in coordinating distributed aspects
is also largely responsible for the incorrect belief that
centralized coordination is necessary for effective con-
figuration management. Tools such as LCFG [1, 3],
BCFG [20], Puppet, Arusha [23], and others manage
distributed aspects through centralized coordination.
Mostly this is accomplished by storing values in a sin-
gle data structure that can be checked on a central
server for consistency. The strength of generative con-
figuration management is that identity relationships
among aspects (where several parameters must have
precisely the same value) are addressed by generating
multiple files from the same hierarchy of values, thus
solving the aspect consistency problem implicitly.

To our knowledge, with one exception, none of the
data models of production configuration management
tools are explicitly aware of aspect constraints; they
manage aspects by constructing some values as func-
tions of others. Thus the kinds of aspects a typical tool
can express are rather simple ones, where there is a
functional relationship between the choice of value for
one parameter and choices for values of others. The
exception is Anderson’s prototype implementation using
SmartFrog [3], which dynamically computes aspect
constraints and chooses among the resulting values.
CFengine [4], on the other hand, is explicitly constraint

oriented at the low level, but does not cope well with
high level or aspect-level constraints.

One problem with contemporary mechanisms is
that they take a lot of human labour to set up, and
require that the centralized hosts generate configura-
tions by acquiring and maintaining rather intimate
knowledge of the hosts that they manage. In order to
manage a distributed aspect, a central server must con-
trol both sides of the aspect. Initial setup takes a lot of
time and specialized knowledge, and this has discour-
aged the use of such mechanisms except at the largest
and most complex sites. While this setup is feasible,
with some effort, in the networks of today, it cannot
scale easily to future networks involving millions of
pervasive nodes.
Practical Aspect-Oriented Design

So what does this mean to the practical admini-
strator? Aspects are a way of thinking about the config-
uration management problem. They are a planning tool
for distributed characteristics. When aspects overlap or
work in concert, coordination is necessary to avoid con-
tradictions. But, looking deeper, there are immediate
benefits to thinking about and designing systems in
terms of aspects, rather than basing design upon the
capabilities of existing tools. In fact, it seems that the
most effective way to save money spent on configura-
tion management is not to utilize powerful tools, but to
instead re f i n e the problem description so that manage-
ment difficulties are reduced or even eliminated.6

For example, it is common practice to run one
kind of service per server-host, where possible. Why?
In our present model, we understand this: running
more than one service can lead to overlapping of
aspects, because certain parameters might be needed
by more than one service, risking the possibility of
contradictions, and making the problem of maintain-
ing and updating the server potentially more complex.
Virtualization now provides a low-cost method for
implementing the one-host-to-one-service practice, by
simulating several independent servers with one phys-
ical machine.

Note that there are situations in which very com-
plex systems exhibit no costly overlaps, again as a
result of careful analysis. Consider, for instance, a
linux workstation image consisting of a pre-tested
suite of applications, managed as a unit, such as Red-
Hat Enterprise Edition. We might want to think of the
resulting workstation as a product of complex depen-
dencies, but we can pay to have others do that thinking
for us and manage each workstation as a unit. Thus we
reduce cost by outsourcing the management. This is
fine provided that we do not construct our own aspects
that interfere with that remote management.7

6MB: Ideally these refinements would be equivalent, but
our failure to model CM adequately in the past has led to a
gap between common sense and technology.

7AC: Herein lies an important observation: system adminis-
trators often construct aspect overlaps in crafting the re-
quirements for a system.
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Rules for efficient aspect-oriented design of net-
works are thus simple and straightforward and are eas-
ily motivated by promise theory:

1. Factor services onto independent closures, e.g.,
virtual machines where possible (to eliminate
aspect overlaps).

2. One manager for one aspect. Maintain clear sep-
arations in the source of aspect control, i.e.,
avoid interfering with systems that manage their
own aspects, e.g., RPM and RedHat Enterprise.

3. Specify replicated parameters at a single
source, e.g., one configuration file.

4. Document all remaining overlaps, so that future
administrators will not fall into the trap of vio-
lating their constraints.

These rules seem intuitive, indeed they arise naturally
in Service-Oriented Architectures (SOAs), which we
come to shortly.

Simplest is Best?

How do we know when we have made configu-
ration management as simple and straightforward as
possible? Simple is relative, but many will agree that
simple as possible is when there are minimal aspect
overlaps, and the aspects in force are as unrestrictive
as possible. Conversely, a site is ‘‘complex to man-
age’’ when overlaps cannot be eliminated and severely
restrict choices. If there were an automated and reli-
able way to enforce an aspect via a software tool, then
the complexity of managing that aspect is the com-
plexity of managing the interface to the aspect, not the
aspect itself.

At this point, we digress briefly to comment
upon the relationship between the distributed aspect
management problem and SOAs. This discussion will
lay the groundwork for discussing methods of imple-
menting the distributed constraints we have been dis-
cussing, and the next concept: closures.

Service-Oriented Architectures

Service Oriented Architectures (SOA) are cur-
rently in vogue. They ascend along with a heightened
interest in outsourcing and delegation of responsibility
in commerce. Clients need to be able to buy and sell
services without surrendering their autonomy, or right
to decide. SOAs enable the construction of distributed
computing applications from a collection of
autonomous, cooperating services. One does not
expect that all the parts of the system are under the
same jurisdiction.

For example, we no longer think of a ‘‘web
application’’ as living on a single ‘‘web server’’; the
application is instead composed from the interactions
of autonomous components, and linked via middle-
ware that utilizes the Simple Object Access Protocol
(SOAP) to expedite requests. The application thus
spans several physical machines and perhaps even
several enterprises, utilizing components from each.

No single administrator controls the configuration of
this arrangement.

Learning from SOAs
Let us be clear: we are not advocating the use of

web services for configuration management. There are
many reasons why this would not be the best solution.
However, service architectures embody some com-
pelling ideas that we can utilize in configuration man-
agement:

1. Subscribing to a service is not a simple matter
of pointing each client at a server. It involves
some form of service guarantee as well.

2. The protocols by which one receives a service
are defined by the servers of the service, using
a transaction that defines required inputs and
their formats.

A compelling feature of SOAs is that the process
of binding client to server is not just a matter of point-
ing each client at a server, but involves a two-sided
agreement to provide and to utilize services. This
means that in an SOA, one manages service bindings
rather than managing service references. With some
careful thought, we can apply this practice to non-web
services such as DNS, DHCP, and the like. This is a key
idea that we will develop further throughout the paper.

Internet
Client

Front−end
Web server

Database: IP to 
location mapping

Database: location to 
directory listings

Location 
Server

HTTP
Local
Directory

IP to Lat,Long

Lat,Long to listings

Figure 1: A service-oriented architecture in which a
web application is composed from remote loca-
tion and directory services.

As an example of a service-oriented application,
consider Figure 1. There, a web application is created
from a front-end server, bound to both a location ser-
vice that maps IP addresses to latitude and longitude,
and a geographically-aware search service that returns
results for matching businesses, indexed by latitude
and longitude.

This example exhibits many properties of an
SOA:

1. Services are autonomous and even managed by
different corporate entities.

2. Services are coordinated via negotiation
between client and server.

3. There is a concept of quality of service that
defines how quickly a server should respond to
a request.
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4. Clients can – at their option – change service
providers dynamically, based upon whether a
current provider is functional or not.

SOA and Configuration Management

A large part of configuration management
involves receiving and utilizing remote services. How-
ever, theoretical results for configuration management
have primarily concerned the low level practice of con-
trolling bits on local disk or processes on a local system.

By contrast, the service concept deals with the
intermediary issues of creating a distributed applica-
tion. If we can view a computer network as a whole,
as if it were an SOA application, then the problem of
configuration management becomes primarily a bind-
ing problem between services and clients. This bind-
ing problem involves both network client transactions
(entity to entity or peer to peer) and local transactions
on the client machine (to make the machine able and
ready to receive services).

There are thus two ways in which the service
model applies to configuration management:

• As an information binding between hosts or
peers in a network.

• As an information binding between data objects
internal to a local host.

The components of an SOA application are
known commonly by another name: closures [15, 16].
A closure is nothing more than an encapsulation of a
service, that is – to some extent – self-managing.
While closures do not need to comply with service
standards such as SOAP or WSDL or WSAPI, any
service that complies with these standards is in fact a
closure. It is not surprising, therefore, that closures
and SOA applications have some of the same
strengths and limitations.

Closures

A closure is a domain of ‘‘semantic predictabil-
ity’’ in which inputs result in outputs with a pre-
dictable structure. The central property of a closure is
that of freedom from unknown effects; its behavior is
completely determined by its transactions with the
outside world, defined as input that it receives from
various sources.

The configuration of a closure can be thought of
as the sum of its transactions with the outside world,
so that each output from a closure – in terms of behav-
ior – is a function of all input received so far. Input
can take many forms, including transactions, events,
streams, etc. The only hard requirement for a closure’s
input is that it must be equivalent to a serializable
source, i.e., one must be able to express ‘‘what hap-
pened’’ as a series of occurrences, including inputs,
events, etc.

Definition 10: A closure D is a service 〈CD, FD〉
where CD describes constraints on input and FD

is a function mapping inputs to responses. FD
maps each sequence S of input transactions,
each of which obeys constraints CD, to a unique
output FD(S) (which may be empty).

This is a strange definition that is difficult to
appreciate until one looks at its opposite. A closure is
like a service whose output is a function of the totality
of its input. The alternative is a service whose output
is not such a function, i.e., its output varies with
respect to other sources than just what you tell it. The
crucial property that determines whether we have a
closure or not is ‘‘complete knowledge’’ of all opera-
tions that might change its output. Any system in
which we can claim such knowledge is said to be
‘‘closed,’’ while a system in which we cannot make
the claim remains ‘‘open,’’ i.e., closures are ‘‘fully
determined.’’8

Example 8 The simplest possible closure is one
that memorizes a mapping, e.g., a simple version
of DNS. Inputs to the closure include queries that
inquire about mappings, as well as transactions
that change mappings. While no query changes a
mapping, transactions do. So the result of a
query is always the result of the sum total of the
prior transactions that specify mappings. Since
these transactions take the form of reloading the
configuration file and DNS by nature forgets all
but the last such transaction, the result of a
query is completely determined by the last trans-
action of reading DNS configuration. This suf-
fices to make DNS a closure. DDNS is also a clo-
sure, provided that we count DDNS assertions as
transactional inputs.

Example 9 A database server is a closure; the
result of a query depends upon all prior com-
mands given to the server, all the way back to
‘‘create database.’’

Example 10 A ‘‘business data object’’ in a ser-
vice-oriented architecture is a closure; it defines
transactions (SELECT, INSERT, MODIFY, DELETE)
that can change data state and presumes that no
other operations will be utilized.

A thing is not a closure if there is a way that the
service response can change without a transaction, or
not as a function of transactions.

Example 11 If human administrators manually
make changes to a system that expects to be
manipulated only by a strict transaction proto-
col, closure will be broken.

8MB: Closures are a computer science idealization to my
mind. They ignore the effect of outside influences that one
cannot necessarily control, e.g., mistakes made by inexperi-
enced prying hands, i.e., they conjecture that we have more
control over a system than is realistic. But they are still use-
ful ways of talking about operations, that can be made ap-
proximately correct provided we make sure they are main-
tained using additional constraints such as iterative, conver-
gent maintenance [7].
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The way this usually occurs is for something that can
change the output to remain unknown to the person
interacting with the system. If you define transactions
as ‘‘actions taken by one system administrator’’ and –
unknown to you – there is another system administra-
tor clandestinely configuring the system, you do not
have a closure. Thus, rather trivially,

Theorem 1 Any closure’s behavior can be emu-
lated by a set of SQL transactions, in which each
closure transaction is translated into an SQL
equivalent.

Proof 4 First, consider each closure transaction
as a command with parameters. Translate those
parameters into SQL parameters. The definition
of a closure is that its output is a function of its
input, where some transactions may be ignored.
As SQL is Turing-Universal, the intent of each
transaction can be translated into SQL, using the
underlying database as the ‘‘Turing tape.’’ Thus
the behavior of a closure can be emulated by
SQL, as it can be emulated in any other pro-
gramming language.

In defining a closure, we have intentionally put
as little structure into the closure as possible. Structure
is imposed by algebraic rules that simplify the book-
keeping we must do to compute a closure output.
These rules tell us when an input is not operative in
producing an output, and define equivalence classes
for input streams that produce the exact same output.

Example 12 Suppose we have a simple closure
that does nothing but store and retrieve string
parameter values. It has two input input events,
GET and SET, where the last SET determines the
value of the next GET for a parameter. This last
sentence says it all: GETs do nothing to modify
state; SETs do modify state. Thus the next value
for a GET is determined by the sequence of last
SETs for each parameter, and the order of these
SETs is not important once we have deleted pre-
vious SETs of the same parameter. Thus the sim-
plicity of this closure results from the algebraic
property that all transactions are stateless [17].

The power of closures arises not from the rela-
tively awkward definition, but from the fact that many
common closures are easy to describe algebraically,
in similar fashion to the examples above. Let us con-
sider the algebraic properties of a selected group of
closures.

Example 13 We can think of a DNS server as
receiving transactions about mappings from
around the world, and queries that depend upon
those mappings. At any one time, the result of a
query is the last received mapping.

Example 14 We can think of a file-server as
receiving (block-level) transactions to write
blocks and returning (block-level) reads. At any

time, the result of a read has the content written
during the last write of that block.

Example 15 A web service closure [15] has
inputs consisting of queries and mappings.
Queries do not affect mappings, while mappings
directly affect which page is returned for a query.

Several other properties of closures are worth
repeating from [15]:

1. Closures are a unit of independence in a config-
uration; the closure only behaves according to
the inputs it receives, and no others.

2. Closures can span network nodes and constitute
the behavior of peer-peer infrastructures, e.g.,
DNS.

3. Closures can communicate amongst themselves
to create larger closures, e.g., combining web,
DNS, DHCP, and routing layers.

We need closures to understand aspect implementa-
tion, so let us look at how the two relate.

Closures and Aspects

The main difference between closures and
aspects is the use of interior versus exterior constraints.
A closure’s constraint model is exterior; its behavior is
defined as a function of its inputs, with no reference to
how that behavior is assured. An aspect has no explicit
concept of behavior; it is instead an interior measure of
how something should be configured with implicit
consequences; the behavior of an aspect is exterior to
its definition. In other words, an aspect is a declarative
concept with implicit behavioral consequences.

The mapping between configuration and behav-
ior has been systematically studied in [18] and we
adopt the notation of this work here. Behavior is
abstractly represented as a subset of a set of tests that
can be either true or false. We can think of the current
state of a system as a ‘‘subset of known symptoms’’
that can be observed. The subset consists of the tests
that are true under a given condition. The behavior of
an aspect is a relation describing the correspondence
between aspect values V and aspect behaviors T: a set
of ordered pairs (V, T) where V is an aspect value and
T is a subset of tests from a test suite T that are true
when the aspect has the corresponding value. This
may be a function of the aspect’s value, or instead a
relation between an aspect and many possible sets of
test outcomes.

Definition 11: An aspect is closed with respect to
a specific set of behaviors T if there is a map
between values for the aspect and behaviors that
are exhibited. If not, the aspect is open with
respect to T.

Note that this definition is carefully crafted. There is
no such thing as an aspect closed with respect to every
behavior; one must select a set of behaviors to
observe. Likewise, it is usually possible to find some
behaviors that are uniquely determined by aspect
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choices; these are the closure behaviors of an aspect
(or even the closure of the aspect).

Lemma 2 The closure behaviors of an aspect,
together with the aspect, form a closure.

Proof 5 The aspect – as a potential closure – has
inputs that are the values of configuration
parameters and outputs that are sets of behav-
iors that may or may not be exhibited by those
choices. By definition of aspect closure behav-
iors, these behaviors do not change except as a
result of parameter changes, which may or may
not be accomplished by other interactions. Con-
sidering the stream of inputs, including parame-
ter changes, the definition of a closure is met.

In other words, any aspect is a closure with respect to
a selected set of behaviors.

This fact has important implications. The bound-
aries of closures are determined by what is expected,
and what is known, not by what is controlled. Aspects
give us a way of easily constructing closures, which we
did not have before. The key to constructing a closure
is to think about an aspect in the proper way, and define
‘‘ e n o u g h ’’ to close it! In other words, closures are not
so much constructed as much as they are discovered.

Practical Closures
Closures – like aspects – allow one to think about

the configuration management problem efficiently and
effectively. Recall that the complexity of aspect com-
position depends upon the amount of overlap, and the
overlap is determined by the interface to the aspect in
question. Then add the concept that an aspect is closed
if its behavior over a parameter set is predictable.

Principle 1 The manageability of an aspect, rela-
tive to a fixed set of tools, is increased by limiting
variability of parameter values for the aspect.

In other words, if one can ‘‘get away’’ with a small
number of variations, then the aspect becomes easier
to think about and manage. And, if one limits suffi-
ciently and circumscribes its behavior accurately
enough, it becomes a closure. For example, we might
limit the way hosts bind to databases: innocent at first
glance, but a good cost-saving mechanism.

In previous closure work, the implication was
that closures are constructed by building complex
interface code. This simple analysis shows that clo-
sures are instead discovered by factoring otherwise
complex systems.

Promises

No general language has been developed to
describe how aspects can be managed or described at a
low level, nor how closures should communicate in
order to implement reliable management changes. So
far, the language of closure communications has been
in terms of ‘‘demands’’ and ‘‘acknowledgments.’’
However, as we have already commented, this idea of

making demands is intrinsically at odds with the real-
ity of distributed systems.

The fact that different decision agencies are
involved in distributed systems changes many things.
One can no longer imagine being in complete control
of a network of hosts, making demands, unless every-
one agrees to behave in a subordinate fashion and
comply with our expectations of them. This brings us
to the notion of promises and, coincidentally, back to
something like a Service Oriented Architecture.
Voluntary Cooperation

If we cannot guarantee behavior by requirement
or demand, can we at least make agreements with com-
ponents of the system to behave in a manner that is
acceptable to us? Service Level Agreements (SLA) are
one manifestation of this realization for commodity ser-
vices. These are familiar to most of us. However, Ser-
vice Level Agreements are too vague and too complex
a construction to be useful for analysis. We therefore
introduce the atomic idea of a promise [10, 12, 14].

We begin with the players in the system that
make promises.

Definition 12: Agents An agent is any entity
within any system that can make or receive
promises, and which computes all decisions
autonomously. The information within an agent
is not available to any other agent, unless that
availability (of information) is promised.

An autonomous agent cannot be forced or coerced into
any behavior against its will.9 In particular, one cannot
demand or require anything of an autonomous agent,
one can only suggest or request something of it, by
expressing a willingness to receive and use a service
that one hopes it will promise to provide.

Because we are developing a language for
abstracting cooperative agreements, we are free to
apply this model to a variety of scenarios, even where
agents represent ‘‘dumb’’ resources like disks or files
if we choose. This does not mean that files are intelli-
gent, it simply means that someone is controlling the
file’s properties and behavior as an independent
object, and this abstraction allows us to describe that
interaction in low level atomic terms.

Definition 13: Promise A promise is a specifica-
tion of future state or behavior from one
autonomous agent to another. It is thus a unit of
policy. A promise is a link in a labeled graph
G = 〈A, L, Π〉 in which the set of nodes A are
agents, the directed edges or links L are promises
and the labels Π are called the promise body. A
promise is a private announcement π ∈Π from
the sender node s of the promise to the receiver r.
We denote it like this:

s → rπ (1)
meaning that s promises π to r.

9MB: This property usefully agrees with the security model
used by cfengine.
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This definition agrees with our commonplace under-
standing of a promise, but is sufficiently formal that we
can use it for analysis. Promises will form a building
block for aspect closures, and will allow us to rewrite
familiar concepts of configuration management such as
operators [8] entirely in terms of voluntary cooperation.
Give and Take

A promise is a specification of behavior, but it
might be unclear at this point how a promise might
describe behavior. There are several principles that
apply to this description:

1. A promising agent can only describe its own
behavior or behaviors of others that it has
directly observed.

2. That behavior includes the properties of a spe-
cific set of interactions that may occur with
neighboring agents.

3. There is no reason to identify an autonomous
agent with a ‘‘system’’ or a ‘‘machine.’’ One
can create many autonomous agents within a
single system, as components.

There are two primitive types of promise body from
which it is believed all others can be constructed:
these are the service and acceptance promises (or
promises to given and take). In addition it is conve-
nient to define a third type called the coordination
promise [14] as a shorthand.

• A service (giving) promise, whose body is
denoted π, is the basic type of promise which
denotes a restriction of behavior by the promis-
ing agent in the manner of a service:

a → bπ (2)
involves an offer of service from a to b and
implies a specification of future behavior of a
towards b.

• A usage or acceptance promise (taking),
denoted U(π), is the promise to receive or use a
service π promised by another agent.

a → bU(π) (3)
involves a receipt of information and service by
the promising agent a from b. It can be related
to access control, for instance.

• A coordination (or subordination) promise,
denoted C(pi), is the promise to do the same as
another agent with respect to a promise body π.

a → bC(π) (4)
involves that b informs a about its actions with
respect to promises of type π, and the receipt
and usage of that information by a. This
promise is a subordination because a is will-
ingly giving up its autonomy in the matter of π
by agreeing to follow b’s lead. Note that this
agreement is made on a peer to peer basis, and
implies no a priori centralization.

Types of Promise
Promises are only useful if they can be made

about many kinds of issues. To distinguish between
kinds of promises, each promise body consists of two

parts: a type τ which labels the issue being addressed
along with its possible domain of variability, and a
constraint C which tells us which subset of the domain
of possibility for that type is being promised.10

Example 16 Consider a configuration promise.
Suppose that τ represents a configuration param-
eter belonging to the promiser and C ⊆ τ repre-
sents a set of allowable values for that parameter
that are allowed by policy. Then pi = 〈τ, C〉 is a
promise that the values C will be adhered to as a
value for the parameter described by τ.

Note that a configuration parameter is a syntac-
tic thing, while a promise about that parameter consti-
tutes a form of knowledge. It is best to think about
active promises as a form of ‘‘distributed knowledge’’
about a system. When an entity promises something, it
limits its behavior in observable ways. The union of
‘‘ p r o m i s e s made’’ is a form of distributed system state.

Example 17 Suppose that τ re p re s e n t s a subset of
parameters, belonging to a single host, within a
distributed aspect and C represents some con-
straints on those parameters. Then the promise
re p re s e n t s a policy atom on the particular promis-
ing host that expresses its personal part of that
aspect. In other words, a promise expresses limits
imposed upon an aspect by one individual agent.

Promises can be combined into knowledge about
the network. The method of combination of promise
information is specific to the kind of promise.

Example 18 Suppose that we take the point of
view of a single autonomous agent A0. Agent A1
promises agent A0 that it is a directory server
(constraint C1), and agent A2 promises A0 the
same thing for itself (constraint C2). Then the
two promises offer alternatives to the receiver
but do not oblige it in any way. The result is that
the receiver is free to assume the logical-or of
the input promises (C1 ∨ C2).

Example 19 Suppose we again take the point of
view of a single autonomous agent A0. Suppose
agent A1 promises to A0 some information (i.e., it
is constrained to provide that information) and
that the information is part of a distributed
aspect, e.g., it informs A0 where to find DNS ser-
vice. This information in no way obliges A0 to
use that information. However, if A0 promises A1
to use that information, it is constrained to fol-
low A0’s suggestion.

The important point from these examples is that what
an agent does with promises, and the meaning of com-
bining them, is entirely up to the individual agents.
Autonomous agents, like closures, have the property
of being capable of engaging in arbitrary reasoning
based upon the inputs they are given.

10AC: It seems that no matter how flexible I am about inter-
preting this definition, a promise is more general than that!
‘‘But wait, there’s more!’’
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Promise Notation
Promise graphs become complex quickly and are

difficult to notate other than in pictures. To ease nota-
tion, we adopt some simple notational conventions.
First, if a set of nodes is involved in making the same
promise, we unambiguously represent the set of
promises as a single promise between sets. If S and R
are sets, then S → Rπ means means the set of
promises s → rπ , for s ∈S and r ∈R. Similarly,
S → rπ is the set of promises s → rπ , for s ∈S, and
s → Rπ represents the set of promises s → rπ for
r ∈R.

It is also often interesting to know which kinds
of promises have been made, without knowing neces-
sarily who made them or to whom they were made.
We write S → (.)π to mean that each s ∈S has made
the promise π to some unknown set of hosts, and
(.) → Rπ to mean that some node has promised π to
each r ∈R.

Roles
An important concept in promises is that of a

role. A role is a kind of emergent pattern that we can
identify in the promises made or received by agents.

Definition 14: Role Suppose S and R are sets of
autonomous agents and there is a promise of
type τ between each node in s ∈S and each node
in r ∈R. Then S and R are said to form role-sets
of type τ. S is said to have a sender role of type τ
while R is said to have a receiver role of type τ.

Example 20 Let S be the set of web servers and
R be the set of web clients that can access the
servers S. Then S → Rweb describes two roles:
S → (.)web (S are ‘‘web servers’’) and that
(.) → Rweb (R are ‘‘web clients’’).

If a client receives an offer of service but does not
promise to use that service, the role of the client is lim-
ited to that of being promised the service. The client
would have to formally agree to use the service in order
to be classified as a service client according to the role
model (since this implies a binding commitment).

Example 21 The simplest example of a role is
that of a file server that serves home directories.
The file server promises to serve up home direc-
tories to clients, and the clients in turn utilize
that service in order to allow users interactive
access to their files. The fact that the file server’s
promise is implicit, i.e., determined by use rather
than by an explicit communication, is not impor-
tant. The role of ‘‘file server’’ is an emergent
property of how the server is used, not a matter
of intent.

In promise theory, one can do many things with
roles. They can be composed to form composite roles (i.e.,
through the holding or use of more than one promise):

Definition 15: Composition of roles Suppose R1
and R2 are role-sets with respect to types τ1 and

τ2, where the direction of each τi may vary. Then
τ1 ∩ τ2 is also a role.

Example 22 Suppose that a web server s sends a
promise s → Rweb to a set of clients R. Those
clients who received the promise form one role R.
Those clients who also responded with a promise
to use form another role R′ ⊂ R. The clients who
for some strange reason respond with a promise
to use without a matching promise to serve form
a third role R′′ disjoint from R. There is no par-
ticular reason that an agent cannot promise to
use a service that does not exist. The distinction
between these roles is whether one or two
promises were made.

In the strictest interpretation of promise theory, roles
are distributed aspects and therefore cannot be forced
or decided by anyone. However, in practices roles can
be identified empirically (a postiori), or be decided as
a design decision in advance (a priori) if we are in the
fortunate circumstance of controlling several (for-
mally) independent agents.

Lemma 3: Agents are trivially roles Let A be the
set of agents. A is a role.

Proof 6 Consider the empty set of promises ∅ .
Every agent in the graph sends and receives this
set of ‘no promises’ in addition to any other
promises it might send or receive, thus the pat-
tern of no promises is identified as a subset
within the promise graph at every node. Hence
every agent node plays a role of ‘no promise,’
which we can re-name ‘autonomous agent.’

Promise theory is essentially a model for the
planning and analysis of generalized services. The
challenge is to use promises to see how configuration
management, perceived as a service, can be carried
out by autonomous agents. We refer readers to [10, 12,
11] for more information about promises.

Promises and Closures

The relationship between promises and closures
is subtle but straightforward. In all that has been pub-
lished about closures, little has been said about the
language utilized by closures to communicate with one
another. The concept of autonomous agent, utilized in
promise theory, is roughly the same as a the concept of
closure, though closure is more restrictive as a con-
cept. Promises, as an inter-agent language, are an ideal
mechanism with which closures can communicate.

Theorem 2 Closures are a  subclass of
autonomous agents.

Proof 7 Closures require that all transactions
are functions of prior transactions and nothing
else. This is more restrictive than the definition
of an autonomous agent, which requires actions
based upon autonomy and previous history, but
does not limit the sources of information utilized
for such actions.
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Transactions include such things as making promises,
but this is more restrictive than the restriction of
autonomy. An agent’s output could change via other
mechanisms than promises or transactions, e.g.,
resource requirements. Also, while agents act asyn-
chronously and without any notion of transaction, clo-
sures rely upon transactions and transaction serializa-
tion to arrive at a notion of internal state (in terms of
the sequence of past transactions). So in general, a clo-
sure is an agent, but not all agents are closures. In like
manner, promises are appropriate closure interactions,
but not all closure interactions are promises; some are
transactions in the traditional sense of being tightly
coupled and not subject to debate or choice.

Client cooperation is an important way of build-
ing distributed services. On the one hand, we would
like to ‘demand’ the compliance of services around
the network, since we are used to ‘‘control’’ rather
than ‘‘cooperation,’’ but we cannot.

Example 23 Consider the case of a client bind-
ing to a DNS server (see Figure 2). The client
can ask a candidate server for a ‘‘promise’’ of
service. If the DNS candidate responds with an
acknowledgment, this means that its side of the
distributed aspect called DNS is ready to con-
verge to a coherent and functional state. Then,
when the client adds the DNS server to its
resolver table, the distributed aspect becomes
complete and functional.

In the figure, notice that the client makes no
promises to the server. They have no agreement.
Rather, the master server promises to use and
requests the client sends, and to reply to them if
they arrive. The relationship between master and
slave is more complex. Slave status is acquired
by the slave agent subordinating itself with a
C(DNS) promise. This means it will make the
same promises about DNS that the master will. It
agrees to use the zone data sent by the master.
The client promises a policy adjudicator that it
will contact the master server, and if there is a
timeout, it will contact the slave.

Promises and Aspects
We have seen in a previous section how to view

the values of aspects in a network as synonymous with
its configuration. We now study service binding
aspects in more detail. We show, particularly, that
there is no way to separate the function of a service
binding from the guarantees of function that a server
can provide and, in turn, the promises the server can
keep. In this way, a  ‘‘promise kept’’ is stronger than
any current mechanism for centralized control of ser-
vice bindings.

First, we need a mechanism for ‘‘semantic
grounding’’ of the promises on each host. Let Ω be an
oracle that describes host documentation and the rea-
sonable constraints of single-host configuration. Ω is

the union of all local aspects, and could be described
as the source of a union of individual overlapping
promises 〈τ, Cτ〉. In other words, constraints arising
from the documentation of a system are promises of
the form h → ΩU(data) , where h is the local host (i.e.,
the host promises to comply with documentation).

Proposition 5: The class of promises that the
grounding agent makes are a role that determine
the kind of machine being configured.

Proof 8 All machines with the same kind of
architecture have the same grounded promises,
hence they are members of a role by definition.

The documentation Ω is nothing more than an embod-
iment or symbol of the constraints arising from the
system itself.

master

slave

U(req)

DNS(req)/req
Z U(Z) C(DNS)

client

master
slave/timout(master)

policy agent

Figure 2: A promise graph for a DNS lookup.

Second, we consider the local policy on a
machine as having a different form of grounding.

Definition 16: Let Γ represent a declaration of
local policy, which may change. Promises of the

form h → ΓU(data) determine desirable behav-
ior on the local host.

The relationship of Ω to Γ is that of a hard aspect to a
soft one; limits versus desires.

In formal promise theory, Ω and Γ are possibly
hidden parts of the agent; here we make them explicit
only to describe the relationship between aspects and
promises. Ω represents all of the hard aspects, i.e., the
things about the system that are not negotiable; Γ rep-
resents soft aspects, determined by policy. These
aspects are inputs to the agent’s view of the world, not
as binding obligations, but instead as information that
the agent can use, along with all other promise infor-
mation with which it is provided. Documentation and
experience are as much promises as are messages
from an external agent; they are guarantees of specific
behavior for the underlying systems.

The point of this discussion is that for all practical
purposes, everything an agent needs to do or know about
the world can be expressed by some kind of promise.
Some of these promises come from other agents.

We emphasize once again that agents in promise
theory are not to be confused with configuration agents
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(e.g., cfagent), their closest interpretation would be indi-
vidual configuration objects such as files or processes.

Distributed Aspects
A distributed aspect has often been viewed as

‘‘pointing’’ clients to a specific server. We take a dif-
ferent view, in which both client and server take
responsibility in a more fundamental way. The key to
our argument is the following simple idea:

Proposition 6: A binding is a transaction
between service provider and service consumer,
in which the server guarantees to reliably pro-
vide a service while a client guarantees that it
will also reliably consume the service.

This simple idea has such subtle ramifications that it
must be studied in some detail to understand the text
that follows.

Example 24 In a typical configuration manage-
ment scenario, a binding is a simple concept of
‘‘ n a m i n g a server ’’ in some context. We ‘‘point’’
our resolver at a ‘‘DNS server,’’ or ‘‘point’’ our
outgoing mail at a ‘‘mail relay.’’ This ‘‘pointing’’
is a matter of blind faith; we assume at some level
that the servers we are pointing to are actually
providing the service we require, and that some
mechanism, either ours or someone else’s, has
configured them properly to provide that service.

We wish to challenge this idea of binding in an
extremely straightforward (and even seemingly trivial)
way.

Principle 2 A distributed aspect (e.g., a client-
server binding) is configured correctly only if
both sides of the client-server relationship are
both conversing with the appropriate server and
functioning properly as server and client.

This may seem silly as a principle. Everyone knows
this, except that we usually configure the server and
client separately and manage the two entities as sepa-
rate aspects. It is unfortunate that we also tend to
think of these aspects as separate entities as well. In a
sense, we do not acknowledge the distributed aspect
that consists of both of these functioning together, cor-
rectly. It is this aspect, not the individual servers, that
we are responsible for managing. In other words, a
promise is more than a pointer. It is a  ‘‘guarantee,’’
somewhat like that contained in an SLA, that a service
is up and running and answering queries.

This simple way of thinking leads to a drastically
different understanding of configuration management
as a practice. The ‘‘master-slave’’ view of configura-
tion management is that we have to make all the
servers work correctly, and point clients at servers
(taking it on faith that the servers will function prop-
erly when pointed to), and everything will just work.
The reality is that each binding between a client and a
server is something that must work properly as a dis-
tributed aspect. This may require some coordination

between server and client that we tend to ignore, but
that is crucial to network function.

Example 25 A very simple example of a distrib-
uted aspect with non-trivial behavior arises from
incompatibilities between server and client parts
of NFSV3 when utilized over a specific router
between a Sun file-server and a Linux client. The
aspect, to function properly, must utilize NFSV2
instead. The reason that this is true is not a func-
tion of either the server or the client, but of the
router between them! Correct function of the
client and server is not relevant to function of the
aspect; a third piece of the puzzle constrains
behavior further and – without that piece – two
perfectly configured hosts fail to interoperate.
Most important, this behavior of the binding
remains invisible unless one looks at the behav-
ior of the whole binding, rather than the behavior
of its endpoints.

Using Promises

A next-generation configuration management
tool might utilize promises in an extremely straightfor-
ward way. A configuration tool (let us avoid the con-
fusion of calling it an agent) runs on each host to man-
age service bindings. The tool running on a host pro-
viding a service declares this fact via a number of
promises. All service bindings are based upon
promises received. Among promises received, arbi-
trary choices are made as to which servers to use, or
perhaps some primitive form of distance calculation is
utilized to determine the ‘‘nearest’’ server from among
several candidates.

It is important to note that every promise
received corresponds to a functional machine provid-
ing a service, not just a pointer to a machine that may
or may not be working at the time. So the problem of
pointing machines to non-existent services disappears.
Every use-promise informs a server about which
agents to contact if an outage is expected. This gives
the clients time to re-organize their bindings to point
to usable servers during the outage.

Example 26 Consider the often costly problem of
maintaining default printers for desktop worksta-
tions and remote users. We want the default
printer to be ‘‘near ’’ to the user or desktop, pre-
senting an ongoing and expensive management
problem as printers and desktops are installed or
retired. Now consider the same binding problem
and apply promise theory, running an agent to
report upon the status of each printer, and bind
those agents into a role. The centralized data-
base of nearest printers is replaced by a series of
local databases, one for each agent, defining the
nearest desktops to their printers. Maintaining
this information requires only notifying a single
local agent of a change, rather than the whole
database of nearest printers. Determinism is
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preserved without centralization, and the man-
agement problem is naturally distributed to
agents within the control of each separate
administrative domain. Yes, as the reader might
be guessing already, this is a closure as well!

Example 27 Consider the problem of maintain-
ing resolver bindings in the presence of network
changes, and apply the same architecture of dis-
tributed agents as above. Each DNS server
reports its availability to all consuming agents,
and they can bind at will. This enables online
load-balancing using caching and stealth
servers, without reconfiguring the network for
each addition or deletion of server.

Example 28 Consider the problem of determin-
ing primary gateways for each host. This is
already solved through routing protocols which,
if one considers them carefully, consist entirely of
promises.

Shedding Light on Configuration Management

A taxonomy is a description of the space of
options for a thing. In this case, the ‘‘thing’’ in ques-
tion is the practice of configuration management.
Using aspects, closures, and promises, one can
describe many current configuration management
strategies, and compare them within that theoretical
framework. This gives us a fundamental idea of each
strategy’s strengths and limits.

A typical user of CFengine is using promise the-
ory without knowing it. The cfagent process receives a
configuration file from a central server that – in its
essence – contains lots of promises. Instructions that
bind the host to specific servers can be interpreted as
promises (from the master server) that the services
will be present and available. The exact same file
enforces distributed aspects, and may in fact deter-
mine closures, via its contents and ability to correct
errors. The complexity of this file is its main weak-
ness; promises, aspects, and closures offer a way to
conceptually simplify its contents in the future.

A typical user of configuration scripts uses
promises in a much simpler way. The user of a script is
– in essence – personally promising that the script will
work, which in turn is the same thing as promising that
the configuration settings changed by the script are
appropriate and will have appropriate effects. Again,
the concepts of aspects and closures are implicit and
well-hidden within the script; we cannot currently ana-
lyze scripts in enough detail to infer the reasons for a
change from the script that makes the change.

A typical user of LCFG, BCFG2, or other gener-
ative tools depends upon the tool to hide information
about promises, aspects, and closures that the tool cre-
ates and manages. The strength of these tools is infor-
mation hiding; the user need not cope with the true
complexity of aspects. But at the same time, the

centralized planning functions of these tools cannot
react automatically to distributed changes (e.g.,
between autonomously managed domains) so that
promises may provide a way to make these tools more
adaptive to changes in network state.

Conclusions

We have seen in this paper how the concepts of
closures and promises – seemingly very different – are
actually sides of the same coin. The ‘‘glue’’ by which
this comparison is made is the concept of an ‘‘aspect,’’
as well as the idea that a configuration is a composi-
tion of overlapping aspects. Aspects are important
because they are closer to the way in which adminis-
trators currently think. As Paul Anderson has noted on
several occasions, the challenge for the future is to
look for ways to compile high level aspects into low
level operations. We believe that this goal is now
much clearer from our formalizations. We now have a
complete story that captures and unifies all of our state
of the art understanding of configuration management:

1. Aspects are constellations of promises.
2. Promises with their agents can form closures.

We identify a progression from high level to low level:
High level → Low level

Planning → Implementation
Aspects → Promises

This progression makes no assumptions about central-
ization or authority, not does it have to be a linear pro-
gression. One can approach it ‘‘top-down’’ or ‘‘bot-
tom-up’’ [8], as one sees fit. Not every aspect is neces-
sarily implementable, if the associated promises are
not made (or kept), and we can discover this by
attempting the decomposition from high level goals to
low level implementation.

It follows from the requirement of convergence
that observation is a key element in configuration
management [9, 18]. The separation of change man-
agement from monitoring is a fundamental mistake in
current systems. These issues need to be tightly woven
to make reliable bindings with predictable service
agreements. It is our belief that a next generation of
configuration management tools can do this, utilizing
promises, aspects, and closures as conceptual parts of
designing and architecting an efficient and robust con-
figuration management strategy.
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