
Interactive Traffic Analysis and
Visualization with Wisconsin Netpy
Cristian Estan and Garret Magin – University of Wisconsin-Madison

ABSTRACT

Monitoring traffic on important links allows network administrators to get insights into how
their networks are used or misused. Traffic analysis based on NetFlow records or packet header
traces can reveal floods, aggressive worms, large (unauthorized) servers, spam relays, and many
other phenomena of interest. Existing tools can plot time series of pre-defined traffic aggregates,
or perform (hierarchical) ‘‘heavy hitter’’ analysis of the traffic.

Wisconsin Netpy is a software package that goes beyond the capabilities of other existing
tools through its support for interactive analysis and novel powerful visualization of the traffic
data. Adaptive sampling of flow records ensures that the performance is good enough for
interactive use, while the results of the analyses stay close to the results based on exact data.
Among the salient features of the package are: hierarchical analyses of source addresses,
destination addresses, or applications within aggregates identified by user-defined filters; time
series plots that separate the traffic into categories specified with ACL-like syntax at run time;
interactive drill-down into analyses of components of the traffic mix; ‘‘heatmap’’ visualization of
traffic that describes how two ‘‘dimensions’’ of the traffic relate to each other (e.g., which sources
send to which destinations, or which sources use which service, etc.).

Introduction

The unrestricted packet communication sup-
ported by the Internet offers immense flexibility to the
endhosts in how they use the network. This flexibility
has enabled the deployment of new applications such
as the web long after the IP protocol has been stan-
dardized and has contributed significantly to the suc-
cess of the Internet. On the other hand, network opera-
tors want to monitor and to some extent control how
their networks are used. Firewalls, network address
translation, and traffic shaping boxes offer a degree of
control that helps keep networks manageable. But
even within the constraints of the policies imple-
mented through these devices, the network traffic is
very variable and traffic monitoring is necessary.

An analysis of network traffic can reveal impor-
tant usage trends such as the application mix and the
identity of the heaviest traffic sources or destinations.
Sometimes these analyses can reveal misuses of the
network: compromised desktop computers turned into
spam relays, remote computers scanning the network
for vulnerabilities, network floods directed against a
single victim, or caused by a worm trying to spread
aggressively. It is often the case that the analysis is
urgent because it is carried out to explain a degrada-
tion in network service. It is also often the case that
the network administrator does not know in advance
which ports or IP addresses to focus on and he goes
through an iterative process before being able to find
convincing evidence for the cause of the problem. For-
tunately there are many traffic analysis and visualiza-
tion tools to assist the network administrator in the

task of exploring and understanding the traffic carried
by their network. Wisconsin Netpy is a new and pow-
erful addition to this large family.
Related Work

To b i a s Oetiker ’s MRT G [12] is an early traffic
visualization tool widely used by network administra-
tors to track the volume of IP traffic based on SNMP
counters provided by routers and switches. His RRD-
tool [12] provides support for visualizing time series
plots of arbitrary data and it is actually used by all
traffic visualization applications discussed in this sec-
tion. Jeff Allen’s Cricket [1] takes MRTG’s idea one
step further by allowing the user to track a large num-
ber of variables (say the traffic of various links in the
network) using a scalable config tree. These tools offer
visual information only about the volume of the traf-
fic, but nothing on the composition of the traffic mix.

The NetFlow flow records generated by routers
are an information source much richer than the SNMP
counters. Toolkits such as OSU flow-tools [7] and
SiLK [8] have tools for manipulating and analyzing
NetFlow data. Typical analyses allow finding the top
sources and destinations of traffic. cflowd [2] is a
related package that also supports various types of
traffic matrices. Dave Plonka’s FlowScan [13] and
Cristian Estan’s AutoFocus [5] also provide time series
of various predefined categories of traffic represented
within the traffic mix. The supercomputing community
is also interested in IP traffic visualization, and its
members have written tools such as’’t h e spinning cube
of potential doom’’ [11] and NVisionIP [10].

AutoFocus and Ryo Kaizaki’s aguri [9] employ a
novel type of analysis related to top k reports called

19th Large Installation System Administration Conference (LISA ’05) 177

Interactive Traffic Analysis and Visualization with Wisconsin Netpy Estan and Magin

hierarchical heavy hitters or traffic cluster analysis [6,
3]. This type of analysis is used extensively by Netpy.

Network administrators are often interested in
the largest sources or destinations as measured in
bytes, packets or flows. One important observation is
that while existing tools give the exact traffic for these
heavy hitters, the user can often accept small errors. In
fact such small errors are already present if one uses
sampled NetFlow. Netpy exploits this observation by
sampling flow records to speed up traffic analysis and
to reduce disk usage. For measuring the traffic in bytes
or packets we use the ‘‘smart sampling’’ of flow
records introduced by Duffield, et al., [4].

Traffic Analysis With Netpy

The user can direct Netpy to perform traffic
analyses through a graphical user interface or through
a console that supports interactive queries as well as
scripts. All analyses use an intermediary database of
flow records (see ‘‘The Structure of netpy’’ for more
details about Netpy’s structure). But what kind of traf-
fic analyses can one perform with Netpy? That’s the
question we answer through the rest of this section.

Figure 1: Hierarchical heavy hitter analysis on the sources of the traffic. Indentation is used to highlight prefixes in-
cluding each other. The analysis finds the appropriate granularity based on the current traffic: 208.0.0.0/4 is a
sixteenth of the address space and 145.89.5.212/32 is a single IP (all addresses are anonymized), but they are
both reported because their traffic is above the threshold.

Time Series Plots With User Defined Categories

Time series plots are an easy to read visual repre-
sentation of the traffic. Existing tools such as FlowS-
can and AutoFocus allow the network administrator to
define various traffic categories based on port num-
bers or network prefixes and have them plotted with
separate colors. This way the plots reveal information
about the cause of various spikes. Furthermore with
separate plots measuring the traffic in bytes, packets,
(and flows in a future version) the user will be able to

detect not only large floods, but also scans that gener-
ate many flows, but not many bytes.

Netpy also supports these types of time series
plots. The user can specify the categories using an
ACL-like syntax: each rule specifies a source and des-
tination prefix, protocol number and source and desti-
nation port range; flows are mapped to the category
associated with the first rule they match. For FlowS-
can and AutoFocus the user needs to specify the cate-
gories of interest before the NetFlow data is
‘‘imported,’’ whereas with Netpy the user specifies the
categories at run time and it is quicker to recompute
the plot after the user changes the ACL rules defining
the categories because the analysis relies on the data-
base, not on the large NetFlow files.

The Scope of Traffic Analysis
For time series plots, and all the other analyses,

one needs to define which NetFlow records constitute
the input to the analysis. Existing toolkits often allow
the network administrator to configure separate traffic
reports for separate links. Netpy separates NetFlow
data into different links as data is imported into the
database. When running an analysis, the user specifies
which links’ traffic to work with. The user also speci-
fies the time interval of interest to the analysis.

The user can also specify a filter to apply to the
data matching the previous two criteria. The filter con-
sists of one or more rules similar to router ACLs (each
rule specifies a source address prefix, destination
address prefix, source port range, destination port
range, and protocol number) and flow records that
don’t match any of the rules in the filter are not con-
sidered in the analysis. The GUI’s interactive drill-

178 19th Large Installation System Administration Conference (LISA ’05)

Estan and Magin Interactive Traffic Analysis and Visualization with Wisconsin Netpy

down feature works by setting the filter to select only
the traffic of interest.

Figure 2: Hierarchical heavy hitter analysis on the application hierarchy. Based on the traffic the analysis picked to re-
port the traffic for the entire UDP protocol, for high and low TCP source ports, for individual TCP source ports 80
(web) and 139 (netbios) and for two UDP source and destination port pairs (used by a database application).

Hierarchical Heavy Hitters

The network administrator cannot always know
in advance what port numbers or IP prefixes will dom-
inate the traffic, so forcing her to specify in advance
the ACL rules defining the categories doesn’t always
work. This is especially true after one drills down into
a small, unfamiliar portion of the traffic mix. A tradi-
tional solution to this problem is to use ‘‘top K
reports’’: one computes the traffic of each source
address and reports the top K (say top 20). A related
solution is the ‘‘heavy hitter report’’ which reports all
sources whose traffic is above a given threshold in the
data analyzed (say more than 1% of the total traffic).
A problem with both these solutions is that they tell us
nothing about sources that send little traffic: if for
example we have a prefix with many small sources
that nevertheless add up to a large portion of the traffic
(a large modem pool), we would want to find out
about their behavior. Netpy relies on the ‘‘hierarchical
heavy hitter’’ algorithm that finds not just individual
addresses, but also prefixes whose traffic is above a
certain threshold specified as a percentage of the traf-
fic being analyzed. This algorithm has the property
that it not only identifies the prefixes generating sig-
nificant traffic, but it also automatically finds the right
prefix lengths to use when describing various portions
of the traffic.

The hierarchical heavy hitter algorithm works as
follows: first it reports all individual IP addresses
whose traffic is above the threshold, next it aggregates
the remaining traffic at the /31 level and reports any
prefixes that are above the threshold, next it aggre-
gates the remaining traffic at the /30 level and so on
until it reaches the root of the IP address hierarchy.
The criterion for reporting more general prefixes is
that the difference between their traffic and the traffic
of more specific prefixes already reported is more than

the threshold. However, when Netpy reports such a
prefix, it reports its total traffic not the difference
between its traffic and that of more specific prefixes.
Figure 1 shows the result of a hierarchical heavy hitter
analysis on the source addresses in the traffic mix
using a threshold of 5%. Through the threshold the
user can control the level of detail: with a lower
threshold, more prefixes are reported, with a higher
threshold the user gets a coarser view.

The same type of hierarchical heavy hitter
approach applies to destination IP addresses too. The
approach actually generalizes to any hierarchy we can
define on one or more of the packet header fields
present in the flow record. To capture information
about the applications in use, Netpy defines the fol-
lowing hierarchy: the first level below the root divides
the flows by protocol, the second level divides the
flows by source port into flows originating from low
ports (0 to 1023) usually used by servers and high
ports (1024 to 65535) usually used by clients, the third
level divides the flows by actual source port value and
the fourth level divides them by source and destination
port value. The analysis will pick the granularity of
the results based on the actual traffic. For example if
there is a large TCP connection (e.g., a huge backup),
the amount of traffic between its source port and desti-
nation port will be reported. If there is a source port
used by many small connections (e.g., web traffic on
port 80), the total traffic coming from port 80 will be
reported. If there is no dominant source port, but the
source ports used are in the high port range (e.g., traf-
fic coming from a network of typical desktop comput-
ers). An example of this type of analysis is shown in
Figure 2.

Bidimensional Analysis

The analyses looking at simple hierarchies such
as the ones above can tell you that TCP port 80 and
UDP port 53 generate a lot of traffic, and they can also
tell you that servers A and B generate a lot of traffic,

19th Large Installation System Administration Conference (LISA ’05) 179

Interactive Traffic Analysis and Visualization with Wisconsin Netpy Estan and Magin

but you won’t be able to tell which one is a web server
and which one is a DNS server. With Netpy’s ‘‘unidi-
mensional’’ reports the user can look at these hierar-
chies in isolation. Netpy also has ‘‘bidimensional’’
reports that look at two hierarchies at once: Netpy
computes the relevant categories for both dimension
and reports a crossproduct of the results – for every
pair of categories from the opposite hierarchies, the
traffic matching both categories is reported. For the
example above, if we run a bidimensional analysis on
the application and source address dimensions, the
application dimension will pick (protocol=TCP,source
port=80) and (protocol=UDP,source port=53) as rele-
vant categories and the source address will pick
(source address=A) and (source address=B). The bidi-
mensional report will have the traffic of the following
four combined categories of traffic: (proto-
col=TCP,source port=80,source address=A), (proto-
col=TCP,source port=80,source address=B), (proto-
col=UDP,source port=53,source address=A), and (pro-
tocol=UDP,source port=53,source address=B).

Figure 3: Bidimensional Hierarchical heavy hitter analyses on the application hierarchy and source IP address hierarchy.

In the GUI, the two dimensions of a bidimen-
sional report are the two sides of a square and the cate-
gories defined within individual dimensions are repre-
sented as small segments on the sides of the square.
The rectangles within the square represent the com-
bined categories. The darkness of the rectangles indi-
cates the amount of traffic of the combined category
with darker shades indicating more traffic. The GUI
displays the actual amount of traffic in any combined
category when the user moves the mouse over the cor-
responding rectangle. Using darkness to convey the
intensity of traffic (or other data) is known as the
‘‘heatmap’’ representation. Figure 3 shows a bidimen-
sional analysis with the application hierarchy as the

horizontal dimension and the source IP address hierar-
chy as the vertical dimension.

The bidimensional reports do not capture all the
information present in the (textual) multidimensional
reports used by AutoFocus that consider all five
packet header fields at the same time. The advantage
of these bidimensional reports is that they can be com-
puted much faster than the multidimensional reports
and yet they can convey much of the information
present in a multidimensional report.

Structure of Netpy

Netpy has four main parts: the database, the anal-
ysis engine, the console and the GUI. The role of the
database is to store preprocessed NetFlow records and
deliver the records selected for the current analysis to
the engine. The analysis engine runs the hierarchical
heavy hitter algorithm, and all other analysis algo-
rithms supported by Netpy. The console is a text based
interface to the analysis engine and the only interface
that allows the network administrator to update the
database. The GUI is an interface that visualizes the
traffic analysis results and helps the user navigate the
traffic data.
The Database

The Netpy database is an intermediary represen-
tation of the NetFlow flow records. The aim of the
database is to preprocess the flow records in a way
that ensures that when the user asks for an analysis,
one has to read from disk the minimum amount of
data needed to compute the result. Quick analyses are
important for interactive exploration of the traffic mix.
The entire database manipulation code is written in C
and it links against the flow-tools library.

180 19th Large Installation System Administration Conference (LISA ’05)

Estan and Magin Interactive Traffic Analysis and Visualization with Wisconsin Netpy

Database Structure
The Netpy database is actually a hierarchy of

files with simplified flow records. This format has the
following four main advantages over just storing Net-
Flow records directly: data reduction and better con-
trol over disk usage through adaptive sampling when
there are too many flow records; storing flow records
for different links in different files; using separate files
for time bins that make it easier to only read in the
records of flows active during the selected time inter-
val; more compact flow records with fewer fields.

Database

GUI

Analysis
Engine

Console

Figure 4: Netpy’s modules.

Field name Match
Exporter address prefix match
Engine type exact match
Engine ID exact match
Source address prefix match
Destination address prefix match
Next hop addr. prefix match
Input interface exact match
Output interface exact match

In the links.conf configuration file the user can define
any number of links. The file has a list of rules with
the NetFlow fields in this table. Each flow record is
mapped to the link associated with the first rule it
matches. For all fields, a ‘*’ in the rule matches all
possible values.

Netpy groups flow records into ‘‘links’’ based on
the links.conf configuration file that uses the fields
from Table 8 to select the link a flow record belongs
to. This allows the network administrator to separate
traffic carried on various links of a router that is never-
theless reported together. The flow records corre-
sponding to different links are then stored in separate
directories. Thus when the user runs an analysis on
only one of the links, we don’t have to go through all
flow records, but only read those mapping to that link.

The links.conf file also specifies a cap for each
link on how much hard disk space an hour’s worth of
traffic can take. When the number of flow records
exceeds the allotted space, Netpy applies sampling
using a rate that ensures that the disk usage stays
within budget. The smaller the disk usage allowed, the

more aggressive the sampling has to be and the less
accurate the results of the analyses will be. See the
section on sampling algorithms for results on the
amount of error introduced by sampling.

Each directory corresponding to a link contains
individual files with flow records, each representing a
five minute time bin. For the current version of Netpy,
this does limit the time intervals. The user can only
request analyses on multiples of five minutes, but once
the user specifies the interval, we can read in the right
flow records by just reading the files representing the
five minute bins included in the interval. Some of the
original NetFlow flow records can span two or more
bins. We handle these by splitting them and storing the
resulting records in their respective bins. This splitting
of records results in an increase of only 2% in the
number of records stored in the database which is a
price worth paying.

The flow records in the database contain only the
fields used in the analyses: source and destination IP
address, protocol, source and destination port and byte
and packet count. We need not store timestamps
because the file a flow record is in identifies which
five minute time bin it belongs to. We also discard
most of he fields from Table 8 because the useful
information they hold has already been incorporated in
the choice of the link the flow record is mapped to.
This way the size of a flow record is reduced from 60
bytes to 21.

Reading from the Database
The analysis engine specifies what data to select

for the analysis. This specification has four parts: the
list of links to include, the time interval, a filter, and
whether the analysis counts bytes, or packets. The first
two parts of the specification determine which data-
base files are read. As the files are read in, all records
are compared against the filter and the ones not match-
ing any rule are ignored. The records at this point rep-
resent the traffic the analysis will be run on, but the
database performs two more operations to help the
analysis engine: it samples and sorts the data.

Analyses that cover a large time interval and
don’t specify very selective filters can read millions of
flow records from the database. Given that the analy-
sis engine implements complex algorithms in python,
it runs slow on this many records. Before passing the
results to the analysis engine, we apply the same adap-
tive sampling algorithms used when writing the data-
base to ensure that the number of flow records passed
to the analysis engine is not very large (no more than
100,000 in the current version). The database also
sorts the records by the field used in the analysis.

The Analysis Engine
The current version of Netpy has an analysis

engine implemented entirely in python.1 It runs the
1Netpy’s name comes from the fact that it does network

traffic analysis in python.

19th Large Installation System Administration Conference (LISA ’05) 181

Interactive Traffic Analysis and Visualization with Wisconsin Netpy Estan and Magin

hierarchical heavy hitter algorithms and all other algo-
rithms doing the analysis of the traffic. Analyses can
complete in under five seconds or take as long as a
minute. Running a destination address hierarchy anal-
ysis for an hour’s worth of traffic takes 5.3 sec to com-
plete. Running a application hierarchy analysis on the
same time interval takes 2.7 sec. On a 24 hour time
period the analysis takes 34.7 sec and 27.0 sec, for
address and application analysis, respectively. We plan
to reimplement most analysis algorithms in C and we
expect a speedup by at least a factor of 100. It happens
quite often that the user asks for the same analysis
again, for example by pushing the ‘‘back’’ button in
the interface. To avoid accessing the database and
doing the computations again, the analysis engine
keeps a cache of analysis results and it reads the
results of old analyses out of this cache. The size of
the cache is modest because the results of the analyses
are typically quite small. The entries in the cache are
gzipped binary dumps of the analysis data structures,
the average file size is 1 KB.

The database and the analysis engine are nor-
mally part of the same process as the GUI or the con-
sole. It is also possible to run the GUI remotely and in
this case the analysis engine runs as a daemon on the
machine with the database.

The Console and The Graphical User Interface

The console and the graphical user interface,
both implemented in python, are the two interfaces to
Netpy. The console supports a simple language of
commands for updating the database and performing
analyses. It is the only interface that allows the user to
add new NetFlow data to the database and delete old
flow records. The console can accept commands inter-
actively or as a script. The GUI, built using the
wxPython user interface toolkit, visualizes the traffic
analysis results and helps the user navigate the traffic
data. Drill-down through clicks on graphical elements
representing IP address prefixes or port ranges is inte-
grated with filters. The ‘‘back’’ and ‘‘forward’’ buttons
further facilitate the exploration of the traffic mix.

Sampling Algorithms Used By Netpy

There are two measures of traffic that Netpy
analyses can choose to compute: the number of bytes,
and the number of packets within various categories of
traffic that make up the traffic mix. The aim of the
sampling algorithms is to take a large number of flow
records and reduce it to a smaller sample that is an
unbiased, low error representation of the original traf-
fic. By sampling we fundamentally loose information,
so it is unavoidable that there will be errors when we
estimate the traffic of some categories of traffic, and
categories with little traffic are especially vulnerable.

Our aim is to pick a sampling function that
ensures that the sampling error is small for the large
categories of traffic. Let’s focus on byte counts first. A

simple solution is to sample each flow record with
probability p, and for all sampled flow records to mul-
tiply their byte counts by 1/p to compensate for the
flow records that were not selected in the sample. For
example if p = 1/5 we would multiply by 5 the byte
counts of all the sampled records. This method ensures
that the number of flow records is reduced by approxi-
mately a factor of p. The errors introduced by this
method are not very high if the sizes of the flows are
close, but if there are a few very large flows the errors
can be significant. Say the traffic mix consists of
1,000 flows of 10 KB each and one flow of 10 MB,
and thus the actual total traffic is 20 MB. The sample
will contain around 200 of the small flows, each
counted with 50 KB of traffic so their contribution
will be estimated correctly at around 10 MB, but the
situation is different with the large flow: if it doesn’t
get sampled (and this has a probability of 80%), we
don’t count it at all, if it gets sampled, we count it as
50 MB. Thus we either underestimate the total traffic
by a factor of (10 + 0)/20 = 0. 5, or we overestimate it
by a factor of (10 + 50)/20 = 3.

The solution to this problem is to use size depen-
dent sampling, also known as smart sampling which
was proposed by Duffield, et al. [4]. This methods
picks the sampling probability in a way that favors the
large flows. More exactly the algorithm picks a thresh-
old z, and the flows with size s ≥ z are kept in the sam-
ple while the ones with s < z are kept with probability
ps = s/z. If one of these small flows is sampled, its
byte count is multiplied by 1/ps = z/s which gives us a
byte count of s ⋅ z/s = z.

Smart sampling has the property that if the origi-
nal set of flow records has a total traffic of T, the
expected number of flow records after sampling is at
most T/z, irrespective of how many flow records the
original set has, and how their sizes are distributed. It
also has the property that if the total traffic of a cate-
gory is C the standard deviation (average error) of the
estimate of the traffic of the category after sampling is
at most √⎯⎯⎯Cz, but it can be smaller depending on the
distribution of the sizes of the flows that are part of the
category. For example if the total traffic is T = 100,000
MB, and we use a threshold of z = 1 MB, the number
of flow records in the sample is expected to be at most
100,000 (if the original traffic mix has many flows
significantly larger than 1 MB, the number of flow
records in the sample will be significantly below
100,000). If we want to estimate the total traffic T
based on the sample, the standard deviation of the
result will be at most √⎯⎯Tz = 316 MB and the the prob-
ability that we overestimate or underestimate the total
traffic of 100,000 MB by more than 3 √⎯⎯Tz = 948 MB
(an error of less than 1%) is below 0.3% . If we look at
a smaller category with a traffic of C = 10, 000 MB,
the probability that we underestimate or overestimate
its traffic by more than 3√⎯⎯⎯Cz = 300 MB (an error of

182 19th Large Installation System Administration Conference (LISA ’05)

Estan and Magin Interactive Traffic Analysis and Visualization with Wisconsin Netpy

3%) is below 0.3%. The larger z, the smaller the sam-
ple size, the larger the errors. If we increase z by a fac-
tor of 100, we reduce the sample size by a factor of
100, but we increase the errors by a factor of 10.

When adding data to the database Netpy uses the
limit imposed on the disk usage of the database to indi-
rectly determine the threshold z. For example if the limit
for one hour’s data is set to 10 MB in links.conf, this
translates to 853 KB for each of the 12 files representing
a five minute bin, and since the size of a flow record is
21 bytes this translates to 41,600 records. Thus the
value of z will be at most one 41,600th of the total traf-
fic for the five minutes. This translates to a standard
error for the estimate of the total traffic during those five
minutes of at most √⎯⎯⎯⎯⎯⎯⎯1/41, 600 = 0. 49%. If we look at a
smaller category of say 1% of the traffic during those
five minutes the standard error of the estimate of the
components traffic is at most 4.9% . Of course, if one
looks at longer time periods (an hour, or a day) since
there will be more flow records, the relative errors in the
estimates will go down.

The sampled flow records used for estimating
byte counts can also be used for estimating packet
counts. Since the sampling is biased towards flows
with many bytes it will also catch flows with many
packets. Packet sizes vary between 40 bytes and 1500
bytes so it will happen that a flow with fewer larger
packets will be preferred over a flow with more but
smaller packets, but since the ratio between the largest
and the smallest packet is only 37.5 the types of patho-
logical errors that are possible with uniform record
sampling are not possible. Let s′ be the number of
packets in a flow record. If s ≥ z, the flow record will
be sampled and s and s′ will remain unchanged. If
s < z and the flow record is sampled we multiply the
packet count by 1/ps and thus have a packet count of
s′ ⋅ z/s in the flow record we keep in the sample. The
errors in the estimates for the number of packets in
various categories of traffic are similar to the errors in
the byte counts.

Future Work

While Netpy is the result of a lengthy design and
development process, we plan to improve it further. A
first thing to do is to add flow counting functionality
(partially implemented) because flow counts are better
at revealing many types of traffic a security-conscious
network administrator might want to know about such
as scans and floods with source addresses spoofed at
random. We can group the improvements we plan into
improvements that will increase the speed of the analy-
ses, and improvements that will increase their power.

The current performance bottleneck is the hierar-
chical heavy hitter algorithms in the analysis engine.
We plan to reimplement all hierarchical heavy hitter
algorithms in C and based on measurements of Auto-
Focus’ C backend that runs similar algorithms we

expect a speedup by at least a factor of 100. The data-
base read can also become a bottleneck when reading
large amounts of data (e.g., running an analysis on an
entire month). We plan to address this performance
bottleneck by conceptually keeping multiple versions
of the database a very small one with very aggressive
sampling, a medium one and a large one with mild
sampling. An analysis on long time intervals would
use the coarsest database to reduce the amount of disk
reads, while one on short time scales would use the
most detailed one to get accurate results. In practice
we can integrate these multiple conceptual databases
into a single file hierarchy. More compact encodings
of flow records or the use of gzip to compress the flow
record files will reduce disk usage and increase perfor-
mance since less data will have to be read.

There are a few directions in which we plan to
increase the power of Netpy’s analyses. Due to the
five minutes bins used currently the analysis cannot
look at a granularity finer than five minutes, even
though the original NetFlow data would have allowed
it. By adding small timestamps to the flow records we
hope to be able to support analysis at the granularity
of seconds. Another direction of improvement relies
on the observation that while currently all analyses
work on a portion of the traffic mix, it often makes
sense to compare the current traffic against historical
traffic to find the things that have changed. We plan to
extend Netpy with ‘‘comparison reports’’ working on
two data sets at a time. A third direction plans to
address limitations due to the fact that the analysis of
IP addresses relies on the implicit hierarchy in the IP
address space. The problem with this approach is that
because of how the IP address space is allocated, pre-
fixes are not always meaningful, they can include por-
tions of unrelated organizations. We plan to extend
Netpy with three more hierarchies for IP addresses:
one based on DNS reverse mappings of IP addresses,
one based on whois data, and one based on BGP rout-
ing table information. Hierarchical heavy hitter algo-
rithms can be easily adapted to all of these hierarchies
and they can provide valuable new insights into the
traffic mixes on our networks.

Our hope is that many of these improvements
will be implemented and mature enough for wide-
spread use by the end of the 2005.

Conclusions

IP traffic can be unpredictable and traffic analy-
sis can help with incident response as well as with
long term planning of network growth. This paper
presents Wisconsin Netpy, an application for analyz-
ing and visualizing NetFlow traffic data. While Netpy
is certainly not the first application in this space, we
believe that it incorporates important new ideas that
enable powerful exploratory analyses of the traffic mix
not supported by other tools currently used by network
administrators. The use of a small database of sampled

19th Large Installation System Administration Conference (LISA ’05) 183

Interactive Traffic Analysis and Visualization with Wisconsin Netpy Estan and Magin

traffic enables prompt analyses that allow the network
administrators to refine their queries iteratively. The
unidimensional and the novel bidimensional hierarchi-
cal heavy hitter analyses can provide a detailed view
of the traffic. The visualization of analysis results in
the form of time series plots and heatmaps makes it
easier for a human observer to absorb information
about the composition of the traffic mix. We hope that
Netpy will contribute to a better understanding of how
networks are used and through this understanding to
better managed networks that offer more reliable ser-
vice to millions of Internet users worldwide.

Acknowledgments

We thank John Henry, Fred Moore, Jaeyoung
Yoon, Brian Hackbarth, Ryan Horrisberger, Pratap
Ramamurthy, Dan Wendorf, Steve Myers, and Dhruv
Bhoot who were part of the teams that worked on
Netpy as a class project in Fall 2004 and 2005. Early
conversations with Glenn Fink and Chris North at Vir-
ginia Tech lead to the use of heatmaps as visualization
metaphor. We thank Mike Hunter for suggestions for
features in Netpy and Dave Plonka for providing us
with generous amounts of NetFlow data to test on and
valuable feedback.

Author Information

Cristian Estan graduated from the Technical Uni-
versity of Cluj-Napoca, Romania in 1995 with a
degree in Computer Science. His first real job, was as
network/system administrator, and it taught him that
configuring software or networking gear always takes
longer than expected. After moving to the U. S. in
1998 he worked at two startups and eventually man-
aged to get a Ph.D. at U. C. San Diego. Currently he is
an assistant professor at U. W.-Madison and can be
reached at estan@cs.wisc.edu .

Garret Magin graduated from the University of
Wisconsin-Madison in May of 2005 with degrees in
computer science, computer engineering, and math.
He recently started working in the embedded network-
ing space on the Windows CE core networking team.
When he is not at work and its not raining he is off
riding his Honda Superhawk. He can be reached at
garret.magin@microsoft.com.

Bibliography

[1] Allen, Jeff R., ‘‘Driving by the rear-view mirror:
Managing a network with cricket,’’ USENIX 1st
Conference on Network Administration, April,
1999.

[2] cflowd: Traffic flow analysis tool, http://www.caida.
org/tools/measurement/cflowd/ .

[3] Cormode, Graham, Flip Korn, S. Muthukrishnan,
and Divesh Srivastava, ‘‘Finding hierarchical
heavy hitters in data streams,’’ VLDB, December,
2003.

[4] Duffield, Nick, Carsten Lund, and Mikkel Tho-
rup, ‘‘Charging from sampled network usage,’’
SIGCOMM Internet Measurement Workshop,
November, 2001.

[5] Estan, Cristian, ‘‘Autofocus: A tool for automatic
traffic analysis,’’ 29th meeting of NANOG, Octo-
ber 2003.

[6] Estan, Cristian, Stefan Savage, and George
Varghese, ‘‘Automatically inferring patterns of
resource consumption in network traffic,’’ Pro-
ceedings of the ACM SIGCOMM, August, 2003.

[7] Fullmer, Mark, and Steve Roming, ‘‘The OSU
flow-tools package and cisco netflow logs,’’
USENIX LISA, December, 2000.

[8] Gates, Carrie, Michael Collins, Michael Duggan,
Andrew Kompanek, and Mark Thomas, ‘‘More
netflow tools for performance and security,’’
USENIX LISA, November, 2004.

[9] Kaizaki, Ryo, Aguri: An aggregation-based traf-
fic profiler, http://www.csl.sony.co.jp/person/kjc/
kjc/software.html#aguri .

[10] Lakkaraju, Kiran, William Yurcik, and Adam J.
Lee, ‘‘Nvisionip: Netflow visualizations of sys-
tem state for security situational awareness,’’
ACM VizSEC/DMSEC04, October, 2004.

[11] Lau, Stephen, ‘‘The spinning cube of potential
doom,’’ Communications of the ACM, Vol. 47,
June, 2004.

[12] Oetiker, Tobias, ‘‘Mrtg – the multi router traffic
grapher,’’ USENIX LISA, December, 1998.

[13] Plonka, David, ‘‘Flowscan: A network traffic
flow reporting and visualization tool,’’ USENIX
LISA, pages 305-317, December, 2000.

184 19th Large Installation System Administration Conference (LISA ’05)

