
USENIX Association

Proceedings of the 17th Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26–31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Further Torture: More Testing of
Backup and Archive Programs

Elizabeth D. Zwicky

ABSTRACT

Every system administrator depends on some set of programs for making secondary copies of
data, as backups for disaster recovery or as archives for long term storage. These programs, like all other
programs, have bugs. The important thing for system administrators to know is where those bugs are.

Some years ago I did testing on backup and archive programs, and found that failures were
extremely common and that the documented limitations of programs did not match their actual
limitations. Curious to see how the situation had changed, I put together a new set of tests, and found
that programs had improved significantly, but that undocumented failures were still common.

In the previous tests, almost every program crashed outright at some point, and dump
significantly out-performed all other contenders. In addition, many programs other than the
backup and archive programs failed catastrophically (most notably fsck on many platforms, and the
kernel on one platform). Few programs other than dump backed up devices, making them
incapable of backing up and restoring a functional operating system. In the new tests, crashes are
rare, and more programs function as backups of entire systems, but failures in backup and archive
programs are still widespread, and dump is not inherently more reliable than other programs.

Why Is Copying Files Hard?

You would think that the problem of writing
backup and archive programs would have been solved
some time ago. After all, the basic task has been per-
formed for almost as long as computers have existed.
But there are a number of problems.

Flexibility and Inflexibility

Filesystem design changes relatively fast, and
human behavior changes even faster. Archive formats,
on the other hand, mutate so slowly that many archive
programs will attempt to not only read but also write
tar archives in a format not significantly changed in
the last 20 years. This is a format that allowed 100
characters for a filename (because it was invented in a
world that had only recently given up 14 character
filenames, and that had not yet reached auto-complet-
ing shells or graphical user interfaces).

The result is what amounts to a war between the
filesystem people and the archive people. Just when
you think you’ve invented an archive format that’s sat-
isfactorily flexible – it doesn’t arbitrarily limit file-
names, it can deal with any number of hard links, it
can take any character you can dish out – somebody
comes along and increases the size of inode numbers,
device numbers, user names (which you may be stor-
ing as part of the ownership data), and then adds
access control lists.

Combinatorics and the Contrariness of Users

My current set of test conditions involves tens of
thousands of files, and it tests a fairly small number of
conditions. It’s quite possible that it misses a number

of cases; for instance, what about bugs that are trig-
gered by files with very long names and unusual per-
missions? Testing backup and archive programs is not
an easy process, and it’s not surprising that program
authors have problems with it.

All this wouldn’t matter much if people used a
consistent set of filesystem features, but they don’t.
However improbable a combination may appear, some-
body somewhere is going to use it for something. It may
be pure accident; it may be the result of file sharing,
where perfectly reasonable behavior on one system
often becomes deeply weird behavior on another; it may
be an automated system that ends up doing things a
human wouldn’t have thought of; or it may be human
perversity. But one way or another, over time, the oddest
corners of the filesystem will be explored.

Active Filesystems

Filesystems that are in use are not guaranteed to
be in a consistent state. Worse yet, even if they are in a
consistent state at the moment when you start to back
them up, they will change during the process. Files
will be created, deleted, or modified; whole directories
may come and go. These problems are discussed in
detail in Shumway [1].

The Tests

File Size

Historically, some archive programs have chosen
to ignore empty files or directories. This is extremely
annoying; empty files are often being used as indicator
flags, and empty directories may be mount points. The
test program therefore creates an empty file and an

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 7

Further Torture: More Testing of Backup and Archive Programs Zwicky

empty directory to ensure that they can be backed up.
It also creates a test file over four gigabytes to ensure
that the program handles large files well.

Devices
In order to restore a system to a functional state,

you need to be able to back up and restore devices.
The testing program therefore creates a named pipe, a
block device, and a character device. (I know of no
reason why a program would back up block devices
but not character devices, or vice versa; it does both
purely for the sake of completeness.) It also creates a
character device with major and minor device num-
bers 65025, if possible, in order to test handling of
new longer device numbers.

Strange Names
Different filesystems impose different limitations

on the character sets that can be used in filenames.
Because ‘‘/’’ is used as a directory separator, it is ille-
gal in filenames; because null is used as a string termi-
nator, although it is theoretically legal it is not in gen-
eral practical to insert it in a filename. Beyond that,
some filesystems allow only 7-bit characters (standard
ASCII, including annoyances like escape and bell,
which makes your terminal beep), while others allow
larger character sets that use 8-bit or larger characters.

There are circumstances in which files can end
up having illegal filenames. In particular, some pro-
grams that share filesystems with other operating sys-
tems do not go through the local UNIX filesystem.
Since ‘‘/’’ is not the directory separator in either tradi-
tional MacOS or Windows, while it is traditionally
used to write dates with, these machines may write
filenames with ‘‘/’’ in them. These problems are rare
these days; programs which share filesystems now
routinely translate directory separators so that a Mac-
intosh file which contains a ‘‘/’’ is written on UNIX as
‘‘:’’, and a UNIX file with ‘‘:’’ in it is shared to a Mac-
intosh with a ‘‘/’’, for instance. However, you should
be aware that any program that writes to the disk
device directly, which may include file sharing pro-
grams, is capable of writing files that the filesystem
doesn’t properly understand. Such files may be possi-
ble to back up (for instance, with ‘‘dump’’), but they
are unlikely to be possible to restore. These tests don’t
test truly illegal filenames.

Strange characters cause problems different ways
depending on where they’re found. For instance, some
programs have problems with whitespace at the end or
beginning of file names, but not in the middle; others
handle directory names, symbolic link names, or sym-
bolic link targets differently from file names. There-
fore, the program runs through all 127 characters of
7-bit ASCII, creating the following files, directories,
and links (<charnumber> is the decimal number corre-
sponding to the character, and is included so that when
things fail, you know which character caused the fail-
ure even if it is non-printable):

• Directories, each containing a file named
‘‘<charnumber>’’:

funnydirnames/a<char><charnumber>
funnydirnames/<char>

• Files, each containing a line of text indicating
which file it is:

funnyfilenames/a<char><charnumber>
funnyfilenames/<char>
plainfilename/<charnumber>

• Symbolic links:
named ‘‘funnysym/a<charnumber>’’ to
‘‘funnyfilenames/a<char><charnumber>’’
named ‘‘funnysym/a<char><charnumber>’’
to ‘‘plainfilenames/<charnumber>’’
named ‘‘funnysym/<charnumber>’’ to
‘‘ f u n n y f i l e n a m e s / < c h a r > ’’
named ‘‘funnysym/<char>’’ to ‘‘plain
filenames/ <charnumber>’’

• Hard links:
between ‘‘funnyfilenames/a<char> <char
number>’’ and ‘‘funnyhard/a<charnumber>’’
between ‘‘funnyfilenames/<char>’’ and
‘‘funnyhard/<charnumber>’’

Since hard links are symmetrical (the two names
are equally applicable to the file), there is no particular
reason to believe that strange characters will have a
different effect in a hard linked file than in a normal
file. Stranger things have happened, but even if there
is an effect it’s liable to be dependent on which name
the program encounters first, which is difficult to con-
trol for. The main reason for the hard links is simply to
ensure that the test directory has a very large number
of hard linked files in it, since that presents problems
for some archive programs.

Because Unicode characters are pairs (or triples)
of 8-bit characters, I test 8-bit characters in pairs. This
test actually runs through both valid Unicode charac-
ters and meaningless pairs, since it tests every pair
where both halves have the eighth bit set (values from
128-255). It creates the same sorts of directories, files,
and links as for the 7-bit characters, but sorts them
into subdirectories by the value of the first character in
the pair (otherwise, the directories get large enough to
be annoyingly slow).

Long Names
Traditionally, UNIX-based operating systems

have two kernel parameters that control the maximum
length of a filename, and they are ‘‘MAXCOMPLEN’’
and ‘‘MAXPATHLEN’’. MAXPATHLEN is known as
PATH_MAX in some kernels, and MAXPATHLEN as
a concept has been removed from the Hurd. MAX-
COMPLEN is the maximum length of a component in
a path (a directory name, or a file name). Traditionally,
it’s 255 characters in Berkeley-based systems, but
your kernel may vary; unless you are running an
eccentric system, it is unlikely to be lower than 128 or
higher than 512, although some traditionalists may
still be running systems with 15 character limits.

8 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Zwicky Further Torture: More Testing of Backup and Archive Programs

MAXPATHLEN is not the maximum length of a
path. Instead, it is the maximum length of a relative
path which can be passed to the kernel in a single call.
There is no absolute limit on the length of a path in
standard UNIX-based operating systems; in any given
filesystem, there is a practical limit, which is MAX-
COMPLEN times the number of free inodes you have
to devote to building a directory tree. In order to build
a path over MAXPATHLEN, all that’s necessary is to
do something like:
while (1) {

mkdir directorynamethatis\
somewherenearmaxcomplenjustfor\
convenience
cd directorynamethatissome\
wherenearmaxcomplenjustforconvenience
}

Unfortunately, many programmers have had the
understandable but unfortunate impression that MAX-
PATHLEN is the maximum path length. This leads to
any number of undesirable effects (most notably, for a
long time fsck simply exited upon encountering such a
path, leaving an unclean and unmountable filesystem).
Since the first time I ran these tests, this situation has
dramatically improved (possibly because a number of
evildoers independently discovered this as a user-level
denial of service attack against systems). Nonetheless,
no backup program I tested will successfully back up
and restore paths over MAXPATHLEN.

Saving and restoring files using relative rather
than absolute paths would allow backup programs to
avoid problems with MAXPATHLEN, at the expense
of drastically complicating the programs and the
archive formats. It’s not clear whether this would be of
any benefit; situations where valid data ends up with
absolute paths longer than MAXPATHLEN are rare,
because people find path names that long inconve-
nient. However, it’s easy to construct scenarios where
people using the filesystem as a database could end up
with such path names.

First, the test program finds MAXCOMPLEN by
experimentation, creating files with names of increasing
length until it gets an error. It creates the following:

• Files:
‘‘longfilenames/<length>’’ padded to the
length with ‘‘a’’ (as in ‘‘longfilenames/
10aaaaaaaa’’)
‘‘longfilenames/<length>’’ padded to the
length with newlines
‘‘longfilenames/<length>’’ padded to the
length with a valid Unicode character (and
an extra ‘‘a’’ if needed, since the Unicode
character requires two bytes)

• Symbolic links:
named ‘‘longsymlinks/<length>’’ to ‘‘long
filenames/<length>a...’’
named ‘‘longsymlinks/q<length>’’ to ‘‘long
filenames/<length>\n...’’

named ‘‘longsymlinks/u<length>’’ to ‘‘long
filenames/<length><Unicode>...’’

Then, it builds directories of every length from 2
to MAXCOMPLEN, each of which contains files with
names of every length from 2 to MAXCOMPLEN. This
may seem silly, but it finds some strange problems that
are sensitive to exact path lengths. Each of these files is
linked to by a symbolic link with a short name.

Next, it finds MAXPAT H L E N by creating directo-
ries with names of MAXCOMPLEN, filling each one
with names of every length from 2 to MAXCOMPLEN,
and descending until it gets an error.

Finally, it ensures that there are paths from the
root of the test directory that are over MAXPATHLEN
by changing working directories down a level and cre-
ating another directory tree out to MAXPATHLEN,
this time without filling all the directories out with
files. In order to ensure that there are files in the bot-
tom directory, the directory names are slightly shorter
than MAXCOMPLEN (due to people’s fondness for
powers of 2, MAXPATHLEN is generally an even
multiple of MAXCOMPLEN). The bottom directory
is filled out with filenames until it gets an error.
Access Permissions

Some archive programs have had problems sav-
ing or restoring files with tricky permissions. For
instance, they may skip files that don’t have read per-
mission (even when running as root). Or, they may do
straightforwardly silly things like restoring a directory
with its permissions before restoring the files in the
directory, making it impossible to restore files in a
write-protected directory.

The test program creates a file and a directory with
each possible combination of standard UNIX permis-
sions (whether or not it makes sense), by simply iterating
through each possible value for each position in octal.
Each directory contains a file with standard permissions.
Holes

Some filesystems support a spacesaving opti-
mization where blocks that would not contain any data
are not actually written to the disk, and instead there is
simply a record of the number of empty blocks. This
optimization is intended to be transparent to processes
that read (or write) the file. On writing, these are
blocks that the writing process has skipped with
‘‘seek’’ or its equivalent. A process that reads the file
will receive nulls, and has no way of knowing whether
those nulls were actually present on the disk, or are in
a skipped disk block. Skipped disk blocks are known
as ‘‘holes,’’ leading to any number of jokes about
‘‘holey’’ files. Files with holes in them are also known
as ‘‘sparse’’ files.

This feature is actually used with some frequency;
core dumps usually contain holes, as do some database
files. These can be extremely large holes, and core
dumps often occur on relatively crowded root file sys-
tems. Therefore, filling in holes can make it impossible

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 9

Further Torture: More Testing of Backup and Archive Programs Zwicky

to restore a filesystem, because the restored filesystem is
larger than when it was backed up and may not fit on
the same disk. On the other hand, swap files and other
database files commonly reserve disk space by gen-
uinely writing nulls to the disk. If these are replaced by
holes, you can expect performance problems, at a mini-
mum, and if the space that should have been reserved is
used by other files, you may see crashes.

Because a reading process simply sees a stream of
nulls, regardless of whether they are on the disk or rep-
resented by a hole, it is difficult for backup programs
that read files through the filesystem to determine
where there are holes. On most modern filesystems, the
available information for the file does include not only
length (which includes holes), but number of blocks
(which does not) and size of a block. By multiplying
the number of blocks times the size of a block and com-
paring it to the length of the file, it’s possible to tell
whether or not there are holes in the file. If the file also
contains blocks that were actually written to disk con-
taining nulls, there’s no good way to tell which blocks
are holes and which are genuinely there. Fortunately,
such files are rare.

The test program creates a large number of files
with holes; first, there is a file with a straightforward
hole, then a file full of nulls that does not contain
holes, and then files with 2 through 512 holes, then a
file with a four gigabyte hole, and finally (if the
filesystem will allow it, which is rare) a file with a
four terabyte hole.

Running the Tests

The basic procedure for running the tests was to
use the test program to create a directory, to run that
through a backup and restore pair (if possible, by pip-
ing the backup straight to the restore), and then to
compare the resulting directory with the original,
using diff -r to compare content and a small Perl pro-
gram to compare just the metadata. The backup and
restore were both run as root, to give the program a
maximum ability to read and write all the files. If spe-
cial options were needed to preserve permissions and
holes, I used them. If there was an available option to
do the read and write in the same process, I tested that
separately. Usually I tested both the default archive
format and the archive format with the support for the
largest number of features; I did not test old archive
formats that are known not to support the features I
was testing except where the program defaulted to
those formats. (In at least one case, I wasn’t able to
test the program default because it simply wasn’t
capable of backing up any files on the filesystem I was
using – I had accidentally tested large inode numbers!)

I ran the tests on the archive programs installed
by default on the operating systems I was testing, plus
some archive programs I found on the network. The
operating systems were chosen relatively unscientifi-
cally; I was aiming for availability and popularity, not

necessarily quality. Your mileage will almost certainly
vary, running programs with the same names, depend-
ing on the program version, the operating system ver-
sion, the type of filesystem you are using, and even
the size of the filesystem (large disks may result in
inode numbers too large for some archive formats). I
tested on RedHat Linux 8.0 with ext2 file systems,
FreeBSD 4.8 with ufs file systems, and Solaris 5.9.

The testing program’s approach is brute force at its
most brutal, and as such it treats ‘‘.’’ and ‘‘/’’ as normal
characters, even when attempting to make hard links.
This results in tests that attempt to hard link directories
together, which is flagrantly illegal. Solaris actually
allows this operation to succeed, creating an extra chal-
lenge for the programs being tested.

In a few cases, I tested other features; incremen-
tals, exclusion of file names, tables of contents, com-
parison of archives to directories. When people are
actually using backup and archive programs, they tend
to use these features, which may change results. In
particular, if you use an archive program within a
wrapper, the wrapper may rely on tables of contents to
determine what was archived; if the table of contents
doesn’t match the archive, that’s a problem. Note that
if the table of contents is fine, but the wrapper pro-
gram has difficulties of its own parsing strange charac-
ters or long file names, you still have problems; I
didn’t test any wrapper programs, but given that many
tables of contents use newline as a delimiter, and also
put unquoted newlines in filenames, I can only assume
that problems will result.

The Results

Tar

Classic tar has very clear limits, imposed by the
archive format. These limits include:

• No support for holes
• 100 character filename limit
• No support for devices and named pipes

There is a newer POSIX standard for an extended for-
mat that fixes these problems, and most versions of
‘‘tar ’’ are now capable of using it.

In my original testing, most tested systems were
using classic tar; the POSIX standard was sufficiently
new so that only a few operating systems were using
it, and as a result tar tested very badly. Even the sys-
tems that were using newer tar formats tended to have
short filename limits. GNU tar did much better.

Both RedHat and FreeBSD ship GNU tar as tar,
which defaults to using the extended format.

RedHat: GNU tar 1.13.25
tar -cSf - . |

(cd ../testrestored; tar -xpf -)

Removed every symbolic link where the target’s
last directory component + filename = 490, every file
where the last directory component + filename = 494.

10 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Zwicky Further To r t u re: More Testing of Backup and Archive Programs

Note that longer filenames were handled perfectly, up to
MAXPAT H L E N . Converted blocks of nulls to holes.

I also tested incrementals (touching every file in
the test directory and using tar’s list feature), which
worked as expected, providing the same results as
fulls. Simple exclusion of a test filename worked cor-
rectly, both with a normal character and with 8-bit
characters. Compressing with -z or -Z provided the
same result as testing without compression.

Comparing the archive to the test directory did
not work. Tar complained about header problems,
complained that the files with holes in them were too
large, complained that the archive was incorrect, and
finally dumped core.

FreeBSD: GNU tar 1.13.25
I tested only straightforward tar on FreeBSD; the

results were identical to the results under RedHat.

Solaris: GNU tar 1.13.19
I tested only straightforward GNU tar on Solaris.

Aside from the linking problems mentioned earlier, the
only problem was converting blocks of nulls to holes.

Standard Solaris tar
tar -cf - . |

(cd ../testtar; tar -xpf -)

Filled in holes. Omitted all files with names over 100
characters long. Omitted all directories with names
over 98 characters long. Omitted all symbolic links
with targets over 100 characters long.

Dealt with erroneous hardlinked directories by
linking the individual files within the directories.
tar -cEf - . |

(cd ../testtare; tar -xpf -)

This uses an extended tar format that supports
longer names. Unfortunately, it does not appear to
support 8-bit characters. It did not succeed in backing
up files with 8-bit characters in names or symbolic
link targets, and crashed when it processed too many
of them, making it difficult to complete the tests cor-
rectly. Filled in holes.

Cpio
Cpio relies on find to provide lists of filenames

for it, so some of its performance with filenames
depends on find’s abilities. In the original testing, this
presented problems, but since RedHat and FreeBSD
both ship GNU cpio and GNU find, which are capable
of using nulls instead of newlines to terminate file-
names, this problem has been significantly reduced.

Cpio’s manual page suggests using the -depth
option to find to avoid problems with directory per-
missions. It does not explain that if you actually do
this, you must also use special cpio options to get it to
create the directories on restore. I tested both depth-
first and breadth-first.

I did not test cpio under Solaris, because of time
constraints.

RedHat: GNU cpio 2.4.2
find . -true -print0 |

cpio -0 -o --sparse -H newc |
(cd ../testcpio; cpio -i)

‘‘-H newc’’ uses newcpio format; this is neces-
sary because as it happens the test filesystem is on a
large disk and has large inode numbers, and the
default format could not dump any data from it.

Cpio could not handle the larger files with holes
in them, claiming they were too large for the archive
format, and converted blocks of nulls to holes. (This
test run was missing the large file without holes in it.)
Otherwise, handled all tests correctly up to MAX-
PATHLEN.
find . -depth -true -print0 |

cpio -0 -o --sparse -H newc |
(cd ../testcpio; cpio -i -d)

Exactly the same results as without -depth, sug-
gesting that -depth is not in fact important in current
versions of cpio if you’re running as root.
find . -depth -true -print0 |

cpio -0 --sparse \
-d -p ../testcpioio

Exactly the same results as running a separate
cpio to archive and to restore.

FreeBSD: GNU cpio 2.4.2
find . -print0 |

cpio -0 -o --sparse -H newc |
(cd ../testcpio; cpio -i)

The underlying filesystem would not allow cre-
ation of the largest files with holes, so those weren’t
tested. The four gigabyte file was truncated to four
blocks, and all holes were filled in. Otherwise, han-
dled all tests correctly up to MAXPATHLEN. Note
that although this is the same cpio version tested on
RedHat, it did not return the same results! On RedHat,
holes were handled correctly.
find . -depth -print0 |

cpio -0 -o --sparse -H newc |
(cd ../testcpiodepth; cpio -i -d)

The same as without the -depth option.
find . -depth -print0 |

cpio -0 --sparse -d -p ˜zwicky/testcpioio

Omitted paths over 990 characters (MAX-
PATHLEN is 1024). Correctly handled holes, aside
from converting the block of nulls to a hole. Truncated
the large file from four gigabytes to four blocks.

Star
Star is an archiver which uses the new extended

tar format. It isn’t particularly well-known, but it ships
with RedHat. It was not tested in my original tests.

RedHat: star 1.5a04
star -c -sparse . |

(cd ../teststar; star -x)

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 11

Further Torture: More Testing of Backup and Archive Programs Zwicky

Reports 14 files with names too long, one file it
cannot stat. Passes all tests up to MAXPATHLEN
except that blocks of nulls are converted to holes.
Pax

Pax is an archiver which will use tar or cpio for-
mats; it was one of the first implementations of the
POSIX extended tar formats. It doesn’t appear to be
particularly well-known, despite the fact that it’s
widely available. Unfortunately, it defaults to the old
tar format.

In my original testing, pax did relatively well,
correctly handling devices and named pipes, handling
holes (but converting blocks of nulls to holes), and
correctly handling all file names. It had unfortunate
length problems, at different places depending on the
format, and bad permissions on directories made it
core dump (regardless of format).
RedHat
pax -w . |

(cd ../testrestored; pax -r -p -e)

Removed every file with filename at or over 100
characters, every symbolic link with target at or over
100 characters, every directory with a name at or over
139 characters. Turned blocks of nulls into holes.
pax -w -x cpio . |

(cd ../testpaxcpio; pax -r -p -e)

Truncated all symbolic link targets to 3072 char-
acters (this is 3 * 1024, which is probably not a coinci-
dence). Returned error messages saying that filenames
with length 4095 and 4096 are too long for the format,
but in fact it also fails to archive all paths over 3072
characters. Blocks of nulls become holes. The largest
files are missing, with a correct error message.
pax -r -w -p e . ../testpax3

The same results as with cpio format, except that
large files are now present.
FreeBSD

MAXPATHLEN on ufs is only 1024 characters,
and the large files with holes are not created, so there
are no problems with symbolic link targets, long
paths, or large holes in files. Otherwise, the results are
identical to the results on RedHat; the net effect is that
using read-write or cpio mode, all tests are passed up
to MAXPATHLEN, except that blocks of nulls are
converted to holes.
Solaris
pax -w . |

(cd ../testpax2; pax -r -p e)

Removed every file with a filename over 100
characters. Pax then exited after the long filename
tests; long hard links, pathnames, and symbolic links
were not tested. Changed blocks of nulls to holes;
shrank holes (all files with holes larger than one block
in them still had holes but were larger on disk than in
the original).

Dealt with the erroneous hard-linked directories
by unlinking them. However, the second copy of the
file encountered became 0 length.
pax -w -x cpio . |

(cd ../testpaxcpio; pax -r -p e)

Changed blocks of nulls to holes; shrank holes.
Otherwise, passed all tests up to MAXPATHLEN;
however, MAXPATHLEN was 1024, not long enough
to reveal the length problems shown on Linux.

Dealt with the erroneous hard-linked directories
by unlinking them. However, the second copy of the
file encountered became 0 length.
pax -r -w -p e . ../testpaxrw

Pax again crashed, this time during the long
pathname tests. This time, I repeated the test on the
remaining directories with success. Permissions were
not preserved.

Dealt with the erroneous hard-linked directories
by linking the individual files within the directories.
Blocks of nulls were changed to holes, but all holes
were transferred correctly.

Dump/Restore

Dump and restore performed almost perfectly in
the original testing, only showing problems with file-
names at or near MAXPATHLEN.

RedHat: dump and restore 0.4b28
/sbin/dump -0 -f ./dump -A \

./dumptoc /dev/hda2
/sbin/restore -if ../dump

The symbolic link tests were dramatic failures;
several long symbolic links (3 of the 15 links where
the filename component was 236 characters long) had
content from other files appended to the symbolic link
target. The most boring of these changed
‘‘236aaa...aaa’’ to ‘‘236aaaa...aaaaized’’, while a more
dramatic one finishes up its a’s and continues on with
‘‘ b l e X M L \ v e r b a t i m X M L readfile{\truefilename{#1}
{}{}\endgraf ’’ and so on for another screenfull. This
was so peculiar that I repeated the test, with the test
directory on a different filesystem; on the second try,
only two of the links where the filename component
was 236 characters long were affected, and the filesys-
tem had fewer files with interesting content, so the
additional text was boring test content from other files
in the test directory.

Aside from that, dump/restore passed all tests up
to MAXPATHLEN and appeared to produce a correct
table of contents. Running its test of the archive pro-
duced the unedifying and incorrect result ‘‘Some files
were modified!’’ Even if this had been correct, there is
no way that it could ever be useful, since it does not
tell you which files it believes were modified.

FreeBSD

Passed all tests up to MAXPATHLEN.

12 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Zwicky Further Torture: More Testing of Backup and Archive Programs

Solaris

Restore crashed and dumped core when attempt-
ing to add the files that were over MAXPATHLEN to
the restore list. Aside from that, passed all tests up to
MAXPATHLEN.

Dealt with the erroneous hardlinked directories
by restoring the second link encountered as a file.
Dar and Rat

Dar and rat are Linux archive programs I picked
up to see whether the improvements in test results
were fundamental changes, or just reflected the
increased age and stability of the programs under test.
It would appear that the latter is the case.

In general, I test archive programs by running
them in the test directory, and archiving the current
directory ‘‘.’’ . (This gives the most possible path-
length.) Neither dar nor rat would archive ‘‘.’’ success-
fully, and neither one would run with an archive piped
to a restore.

I did not end up testing rat, due to its habit of
exiting the writing process before actually writing any
data when it hit files over MAXPATHLEN. Although
this is certainly one approach to error handling (it
ensures that you are never surprised by an archive that
appears good but is missing files), I didn’t have time
to weed the testing directory down until I could actu-
ally get some testing done.

Dar did somewhat better. On the first attempt,
when it reached the largest file with holes, it increased
memory usage until the operating system killed the
process for lack of memory (unfortunately, at this
point my entire login session was also dead, but that
could be considered RedHat’s fault.) Most annoyingly,
although this happens to be one of the last files to be
written, so that there was quite a large archive file at
that point, no data was recoverable from the archive
file (apparently it has to finish in order to be willing to
read any data from the archive). In this case, since
there was one clearly identifiable offending file, I was
able to remove it and re-run the tests, and while dar
filled in holes, it otherwise passed all tests up to
MAXPATHLEN.
Cross-compatibility

Given that a large number of programs support
the same formats, it’s reasonable to be curious about
compatibility between them. There are far too many
possible combinations to test exhaustively, but I tested
a few to see what would happen. All of these tests
were on RedHat.
Star to Tar
star -c -sparse . |

(cd ../teststar; tar -xp)

Removed every symbolic link where the target’s
last directory component + filename = 490, every file
where the last directory component + filename = 494.
Note that longer filenames were handled perfectly, up

to MAXPATHLEN. Many of the files with holes were
deleted; in fact, every other file in the archive. There
were error messages complaining about header prob-
lems. It is impossible to tell whether blocks of nulls
were converted to holes, since that file is one of the
missing ones, but it seems safe to assume that they
would have been.

Tar to Star
tar -cSf - . |

(cd ../testtartostar; star -xp)

Correctly backed up all files up to MAXPATHLEN,
except that the block of nulls was converted to a hole.

Conclusions

Archive and backup programs have considerably
improved in the last 10 years, apparently due to
increased maturity in the programs being distributed.
There are still unfortunate and peculiar problems, but
compared to the frequent core dumps in the previous
testing, they are relatively mild.

It is important to note that you cannot draw con-
clusions about programs based on their names. As the
results show, it’s simply inappropriate to make gener-
alizations like ‘‘dump is better than tar.’’ This is true
on Solaris (where the dump is a reasonably mature
version, but tar is merely elderly) but false on RedHat
(where the dump has not yet reached version 1, but the
tar is the reasonably solid GNU tar). In fact, there
were significantly different results for GNU cpio run-
ning exactly the same version on exactly the same
hardware, using different operating systems and
filesystem types. It is simply not safe to generalize
about the behavior of programs without looking at
how the particular version you are using works with
the particular operating system, filesystem, and usage
pattern at your site.

For the best results in backups and archiving:
• Use a mature program. Treat people who write

their own archive programs like people who
write their own encryption algorithms; they
might have come up with an exciting new
advance, but it’s extremely unlikely.

• Test the program you are using in exactly the
configuration you need it to run in. Apparently
minor changes in configuration may cause large
changes in behavior.

• Avoid directories at or near MAXPATHLEN.
• Be sure to use options to handle sparse (holey)

files, but be aware that this may create extra holes.

Availability

The test programs were written in a spirit of
experimentation, rather than with the intention of pro-
ducing software for other people to use. I strongly
encourage people who are interested in testing backup
and archive programs to produce their own tests that
cover the cases they are most interested in. However,

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 13

Further Torture: More Testing of Backup and Archive Programs Zwicky

if you insist on using my programs, or just want to
snicker at my programming, they are available from
http://www.greatcircle.com/˜zwicky

Biography

Elizabeth Zwicky is a consultant with Great Cir-
cle Associates, and one of the authors of ‘‘Building
Internet Firewalls,’’ published by O’Reilly and Asso-
ciates. She has been involved in system administration
for an embarrassingly long time, and is finding it
increasingly difficult to avoid saying horrible things
like ‘‘Why, I remember when we could run an entire
university department on a machine a tenth the size of
that laptop.’’ Reach her electronically at zwicky@
greatcircle.com .

References

[1] Shumway, Steve, ‘‘Issues in On-Line Backup,’’
Proceedings of the Fifth LISA Conference,
USENIX, 1991,.

[2] Zwicky, Elizabeth, ‘‘Torture-testing Backup and
Archive Programs: Things You Ought to Know
But Probably Would Rather Not,’’ Proceedings
of the Fifth LISA Conference, USENIX, 1991.

14 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

