
The following paper was originally published in the

Proceedings of LISA-NT:
The 2nd Large Installation System Administration of Windows NT Conference

Seattle, Washington, USA, July 16–17, 1999

A D M I N I S T E R I N G W I N D O W S N T D O M A I N S
U S I N G A N O N – W I N D O W S N T P D C

Gerald Carter

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

Administering Windows NT Domains
Using a non-Windows NT PDC

Gerald Carter
Engineering Network Services

Auburn University
jerry@eng.auburn.edu

Abstract
The chronicles kept by an explorer as he or she jour-
neys into new territories can be invaluable for those
who come later. The writing describe successes and
failures, warning and hints to other possible solu-
tions yet unfound. The evolution of a network is not
different than the Lewis and Clark expedition of the
early 1800’s. Each day we learn something new.
Either our proposed solution worked or it did not. It
was either a dead-end or perhaps simply a detour.

In the Fall of 1997 with the release of Samba version
1.9.18alpha1, the College of Engineering at Auburn
University began to experiment with the possibility
of using a non-Windows NT machine (i.e. Samba
running on a Solaris server) as a Primary Domain
Controller for Windows NT desktop clients. This
journey has continued through the present and is still
progressing.

This paper will be a post-narrative of that journey. It
is our belief that the administrative models and tools
developed to support this environment will also be
beneficial in other integrated environments, either in
parts or as a whole.

This journey will be divided into in five topics: (1)
relevant details regarding the configuration of the
Samba PDC, (2) user account management, (3) re-
mote file and printer access, (4) remote administra-
tion of clients and servers, and (5) the remote up-
dates of systems, applications and associated set-
tings. Each section will remain distinct enough so as
to allow the reader to implement the varying por-
tions of this paper independently.

Defining the Issue at Hand
The College of Engineering network is like many
networks. We support a wide range of users each
desiring different services. Some users require ac-
cess to UNIX servers running various applications

while others find one of the various Windows plat-
forms to be their OS of choice.

When integrating heterogeneous networks, one pos-
sible solution is to maintain separate networks in
parallel. For example, each network maintains the
servers necessary for implementing services to sup-
port its associated clients even though each network
may logically exist on the same wire. Services such
as access to network printers are duplicated across
server platforms. The parallelism is made transpar-
ent to the user by synchronizing the user account
information.

The other possibility for integration is to centralize
primary services such as user authentication on one
server OS. The server must then support the func-
tionality necessary to allow clients of other operating
systems to become citizens of the network.

The College of Engineering at Auburn University
has selected the second option. Our goal has been to
provide continuity of services wherever possible
without sacrificing the stability of these services.
For example, users are able to access the same disk
space as their home directory when logging into a
PC or logging into a UNIX workstation, and network
printers can also be accessed from either client plat-
form. Perhaps the most important point in achieving
this consistency is that each user is always authenti-
cated with the same username / password pair.

Justifying the Trip
Regardless of where one is employed, any project
that involves the expenditure of effort or resources
requires some justification prior to approval.
Therefore before continuing, I will provide the ra-
tional that began the exploration of using a non-
Windows NT Domain Controller.

The first reason for entertaining this idea was the
current existence of a stable Solaris based UNIX
infrastructure. Global user authentication, as well as

ubitquous remote file access, were already imple-
mented. If possible, we wished to leverage off ex-
isting services, both hardware and software, rather
than replicate and reimplement them.

Another reason for the desire to keep primary serv-
ices on one server platform was the shortage of sup-
port staff to maintain another operating system. The
addition of another OS in the server room does not
increase support costs linearly but rather exponen-
tially. The reason for this can be accounted for in
keeping up to date with platform patches, system
tuning, and general knowledge of the workings of an
operating system.

Implementation of a Samba Controlled
Domain
Many of the services provided by the Engineering
network are based upon open source software proj-
ects. For example, BIND and Sendmail are used for
DNS and mail service respectively. Therefore, we
were comfortable with the idea of providing some of
the support for server packages ourselves. With this
in mind, Samba (www.samba.org) was selected as
the CIFS server over other packages such as the To-
talNET Advanced Server.

Details of the implementation of the Windows NT
Domain Control protocol can be found in [1] as well
as in documentation included with the Samba source
code distribution. Currently Samba does not “offi-
cially” support Domain Control for Windows NT
clients.

Of course this is not the same as domain control for
Windows 9x and older Windows clients. These cli-
ents use an entirely different mechanism for user
validation and are not members of a domain in the
real sense of the word.

The reason for the unofficial label is that not all of
the functionality has been implemented. For a cur-
rent list of implemented features and progress on
remaining functionality, the reader is referred to [2].

At the time of the writing, one of the major items
which has not been completed is the capability to
participate as a domain controller in inter-domain
trust relationships. For this reason, the College of
Engineering chose to run a single, global domain for
all Windows NT clients located within the College of
Engineering. Currently the number of NT clients is

around 50 with the majority of these being located in
a public workstation lab. The number of users sup-
ported in this domain is approximately 1,700 with
over half being regular users of NT clients.

It would have been just as easy to configure multiple,
isolated domains. The reason for this that replicat-
ing Samba’s account database is trivial when done
via a secured rdist or more preferably by using
scp. Future work in Samba will allow for other da-
tabase backends, such as LDAP which provide for
even easier replication, to be used.

Because this paper is more concerned with the model
used in administering a non-Windows NT Server
controlled domain, the reader is referred to [3] and
[4] for details regarding configuring Samba in this
capacity.

There is however, one detail that is pertinent to later
discussions contained within this paper. This is the
method used for storing user accounts within Samba.
I have already alluded to this when discussing repli-
cating Samba’s list of accounts.

The SMB (a.k.a. Common Internet File System)
protocol supports two levels of transmission of user
credentials, or passwords (see [5]). The first is to
transmit the password in plain text. In this mode,
Samba is able to validate user connections against
the standard UNIX password database (i.e.
/etc/password or the network equivalent such as a
NIS map).

The second method of validating user credentials is
to use a challenge-response exchange. The details of
this are explained in [6]. This mode requires the
SMB server have previous knowledge of the user's
hashed password. When SMB password encryption
support is enabled in Samba, the account password
hashes are stored in a file generally named
smbpasswd. This is not to be confused with the tool
used to manually manipulate these entries that is
also named smbpasswd.

In order to support domain logons from an NT cli-
ent, Samba must be configured to support password
encryption. It also should be mentioned that sup-
porting encrypted passwords is an “all or none”
situation on a per connection basis. The reason for
this is that the encryption capabilities of the server
are negotiated during the session setup when in user
level security (the reader is referred to [5] for a de-
scription of connection setups in the CIFS protocol).

Therefore, maintaining a Samba PDC also requires
maintaining a separate list of NT accounts which is
separate from the accounts listed in /etc/passwd.
In fact, the only joining field between the two ac-
count lists is the UNIX uid which must be valid to
control access to the underlying file system.

User Account Management
This brings up the topic of user management in a
Samba controlled Windows NT domain and how to
synchronize this information with the existing UNIX
user accounts. The first issue to be addressed was
how to initially populate Samba’s smbpasswd file
given that the College currently supported over
6,000 active user accounts. An active account is
defined as one that has been accessed in the past six
months.

In order to generate the necessary hashes, Samba
will need access to the plain text of a user’s pass-
word. In the general case, this is impossible and at
the very best impractical due to UNIX’s non-
reversible password encryption algorithm.

There are two plausible means of performing this
account population. The first is to use Samba’s up-
date encrypted parameter and require that users
connect to a Samba server that does not have pass-
word encryption enabled. Once the smbd daemon
successfully validates the user’s plain text password,
it will generate the respective password hashes and
store them in the smbpasswd file. Once all pass-
words have been captured, a site can successfully
migrate to encrypted passwords transparent to the
users.

The second solution is to develop a custom applica-
tion that will capture the user's plain text password
and then generate the hashes itself. Of course, the
most obvious chance to capture the plain text of a
password is when the user is changing his or her
password. This is the solution explored in this pa-
per. Figure 1 illustrates what occurs when a user
changes their password from an Engineering UNIX
workstation.

Note that the password is only validated against the
UNIX account entry (i.e. NIS). If the change is suc-
cessful, then the new password is written to the
smbpasswd file with no questions asked.

By replacing the standard /bin/passwd with a
custom in-house script, user accounts in the
smbpasswd password file can be created using the
same means for new and already existing accounts.
This also provides a means to keep the password
entry in both /etc/passwd and smpasswd syn-
chronized.

For details on the availability of this tool, the reader
is referred to [10]. Currently, the password change
client is only available from UNIX hosts. However,
plans are to include a Win32 binary that would allow
Windows users to change their password directly
from their desktop. This customized solution is
more acceptable for us than attempting to support
Windows’ native method of changing passwords.

Remote File and Printer Access
For several years, PC's on the Engineering network
gained access to remote file systems and printers via
a locally installed NFS client. This was an accept-
able solution at the time. However, there were sev-
eral associated drawbacks.

The most prevalent one was the fact that NFS con-
nectivity had no native support in DOS / Windows
clients and therefore required an installation separate
from the operating system itself. This proved to be
problematic as systems were upgraded and incom-

user input the plain
text of the old and
new password

password client
contacts password
server daemon

call to
yppasswd()
successful?

send the plain text of the
new password to the a
server daemon running
on the Samba PDC

generate the password
hashes and write them
to a file

yes

Figure 1: Flowchart of a user password change

patibilities arose between the newer operating sys-
tems and the older NFS client software.

These circumstances led us to search for solutions
that would allow for utilizing the native networking
support within the operating system itself. The
search resulted in a decision to support a CIFS-
enabled server. Windows clients would then be able
to use built-in support for the Microsoft Networking
model.

To implement a global domain for Windows 9x and
Windows NT clients, multiple Samba servers run-
ning the latest stable release were installed to sit on
top of existing NFS and LPR servers. The Samba
PDC performed validation only. This allowed for us
leverage off the latest domain control functionality
with a minimal sacrifice of stability for file and print
services. The smbpasswd file is then distributed to
the servers using a secure method.

As can be seen in Figure 2, this allows for providing
some of the consistency in logon environments men-
tioned previously. Hardware already was in place to
support various disk configurations for home directo-

ries and network applications. Therefore, Samba
servers initially acted as a gateway to these file sys-
tems. Over time, the Samba servers themselves are
beginning to accumulate local disk space which is
used for providing applications that only need be
accessible from a PC such as the case with roaming
user profiles.

The current system for our main Samba file server is
a Sparc Ultra 170 with 384 Mb RAM running So-
laris 2.6. The file server daily supports 400 - 500
Windows clients. Of these clients, normal use in-
volves approximately 225 - 250 concurrent connec-
tions with each user having anywhere from 2 - 5
shares mounted. Statistics indicate that the load
could comfortably increase to 300 connections with
minimal detrimental effects given the current hard-
ware configuration.

Network printers are accessed through the SMB
server which then sends the spooled job to the re-
mote printer via lpr. Rather than use the Solaris
lpsched printing system, all servers are configured
to use the Solaris port of the Berkeley lpd printing
system.

Previously I mentioned that the Engineering Win-
dows NT domain contained approximately 50 cli-
ents. This is true as this number reflects the actual
Windows NT clients. However all PC’s on the En-
gineering network utilize the file and printer services
provided by various Samba servers. Domain control
for Windows 9x and older Windows clients is pro-
vided by our main Samba box, which is currently
running Samba 2.0.3.

Details of configuring Samba file and print servers
can be found in the various documentation included
with the Samba source code as well as various links
from the main Samba web site (see
http://samba.org).

Remote Administration of Clients and
Servers
When administering a network, is it imperative to be
able to automate common tasks such as process con-
trol, system reboots, and managing disk space.
Maintaining a Samba controlled domain is, in many
ways, identical to managing a true Windows NT
domain. However, while some tools such as the
Server Manager and User Manager for Domains
allow access to information on the Samba PDC,

Existing NFS
Servers

Samba
PDC

Samba
2.0.3

Windows
Client

NFS

domain
logon

file & print
access via

CIFS

various
departmental

Samba servers CIFS

Figure 2: Overview of the College of Engi-
neering network topology for PC's

these applications are very inefficient for managing a
large number of domain clients. When attempting to
perform these duties on a mass scale, network ad-
ministrators can turn to scriptable solutions such as
Perl, Python, or one of the Windows based pro-
gramming languages. The advantage of using a
cross platform scripting solution is the ability to lev-
erage off current programming knowledge and the
reuse of existing scripts.

There are many possibilities for remotely accessing
NT clients from another NT box. However, remotely
administering NT clients from a UNIX terminal
window takes a little bit of creativity. Through the
use of free RSHD service for Windows NT
(home.us.net/~silviu), UNIX network managers are
able to perform basic NT administrative tasks with-
out leaving their desktop.

The service does have some caveats that must be
mentioned. The first is that the service provides no
user authentication whatsoever. Therefore all com-
mands executed by the rshd daemon will be done
within the context of the account under which it is
currently running. By default this would the Local-
System account. However, we have reconfigured the
service to run as a local administrative account.

It is a requirement that it can be guaranteed, and
with a great degree of certainty, who can possess the
ability to rsh into a NT client. This is done by cre-
ating %SystemRoot%\rhosts and editing it to
contain a single entry referring to the network NIS+
master. The file is then locked down with the ap-
propriate file permissions to disallow viewing or
modification by any account other than a local ad-
ministrator. Figure 3 illustrates access control to
these machines.

It is the belief that if anyone was able to gain unau-
thorized access to our NIS+ master, the NT clients
will become small potatoes. While not entirely cor-
rect, it is simply another example of leveraging off
the existing UNIX infrastructure, in this case secu-
rity. Also we have modified the rshd source to
perform forward and reverse DNS lookups so as to
ensure that the machine from which the rsh com-
mand is arriving from is actually who it says it is.

With the addition of the capability to execute com-
mands remotely, the quest then becomes to build up
a sufficient toolbox of command line tools to be able

to perform necessary tasks. Many possibilities have
been outlined in [7].

Here is an example of granting a Samba domain user
named toby full permission to a share named share1
on a Windows NT 4.0 domain member named
peeps. The sharegrant utility is part of Pedestal
Software’s NT Security tools
(www.pedestalsoftware.com).

$ rsh peeps ’sharegrant share1 toby:full’
Granting permissions to: ENG-NT\toby

Although the share ACL could be changed from an-
other Windows NT machine, it cannot be guaranteed
that one is always nearby. It is possible to always
guarantee that telnet access to a UNIX workstation is
available.

Perl has often been described as the kitchen sink of
scripting languages and the Win32 port of the lan-
guage is no exception. ActiveState’s Win32 version
of Perl5 (www.ActiveState.com) provides modules
for managing NT user accounts, querying and

Windows NT
Clients

NIS+
Master

Restricted Access
Sysadmin Machines

Engineering netgroup

rsh as
admin

ssh

restricted access
by account

Figure 3: Restricting rsh access to Windows
NT clients.

modifying registry values, retrieving information
from the NT EventLog, as well as the traditional
capabilities such as sockets and regular expressions.

The combination of an RSHD service and Perl pro-
vides a means for doing just about anything one
could wish. To illustrate this point, I have made
available several scripts that perform such things as
configuring a machine in a public computing lab by
setting common registry values. Again the reader is
referred to [10] regarding the availability of these
scripts as well as updates. Listing 1 contains the
output from a perl script that queries the local
EventLog and displays information similar to the
UNIX last command. Remember that all of this
information is gained from a UNIX terminal win-
dow.

Listing 1: Using a perl script to determine the list of
recently logged on users on a Windows NT worksta-
tion.

$ rsh beeps 'perl last.pl' | head –10
username machine domain logon - logoff
gaoyun1 DRACO ENG-NT May 31 10:46 1999 - still logged on

jingcai DRACO ENG-NT May 30 17:51 - May 31 00:30 1999

yizhou DRACO ENG-NT May 30 01:13 - May 30 01:18 1999

jingcai DRACO ENG-NT May 29 18:56 - May 29 23:01 1999

millean DRACO ENG-NT May 29 18:13 - May 29 18:40 1999

If we then wanted to find out which processes were
currently running on beeps, we could use the pu-
list.exe command included with the Windows
NT 4.0 Server Resource Kit [8]. Note that some of
the output has been deleted for brevity.

Listing 2: Retrieving the list of running process
from a Windows NT machine using the pulists.exe
command.

$ rsh beeps '\\ivy\bin\ntreskit\pulist'

Process PID User
Idle 0
System 2
 ……
rshd.exe 124 BEEPS\admin
NDDEAGNT.EXE 157
EXPLORER.EXE 130
systray.exe 59
F-AGENT.exe 191
OSA.EXE 188
xwin32.exe 190

CMD.EXE 194 BEEPS\admin
pulist.exe 88 BEEPS\admin

Then if we need to kill the X Windows Server proc-
ess (pid 190), we could use the kill command, also
include with the Windows NT 4.0, Server Resource
Kit.

$ rsh beeps '\\ivy\bin\ntreskit\kill 190 '
process #190 killed

One final example of utilizing command line tools
for monitoring purposes is given in Appendix A.
This batch file is run on a Windows NT client at
boot time via the AutoexNT service included in [8] .
Each client has been configured to save the memory
dump in the case of a system crash (“Blue Screen of
Death”). The script, among other things, checks for
the existence of the %SystemRoot%\memory.dmp
file. If the file is located, an appropriate message is
emailed to the network administrators indicating that
the machine crashed. If the file does not exist, then
it must have been power cycled.

Remote Updates of Systems, Applications
and Associated Settings
Without the existence of a true Windows NT PDC,
certain tools provided for remote updates of clients,
such as Microsoft's System Management Server
(SMS), become unavailable. The reason is that such
tools often only run under Windows NT and must be
installed on an NT PDC or BDC. Alternative solu-
tions for automatically updating remote systems had
to be developed. The solution was to utilize a
method that had previously been developed for up-
dating UNIX machines. The mechanism is fully
explained in [9]. Since the publishing of the original
Patch32 system, the method has been expanded to
deploy applications such as anti-virus software, Net-
scape Communicator 4.08, and various network con-
nectivity applications.

In addition to deploying updates and applications,
the main Perl script was modified to email the logfile
of any changes that were applied. In this way, sys-
tem changes can be logged and monitored (see
Listing 3).

Listing 3: E-mail message that acts as a log for
monitor remote system updates.

Subject : Machine Patched [WinNT] : mepc47
 Date : Thu, 27 May 1999 17:07:06 –0500
 From : admin@eng.auburn.edu
 To : pcpatch@eng.auburn.edu

Installing hostex4...
 \\ivy\patch32\winnt\1381\hostex4\install.inf

Installing the_net...
 \\ivy\patch32\winnt\1381\the_net\install.inf

The details of deploying applications via the Patch32
script are beyond the scope of this paper. However,
the point of interest are identical to deploying oper-
ating system updates and can be gleaned from the
previously mentioned paper.

What Have we Learned?
The success with which we have been able to imple-
ment a Windows NT domain without a true Win-
dows NT Server acts as proof of concept. It is possi-
ble to provide a Windows NT environment for users
without great sacrifices to the services that a true
Windows NT domain would offer. Of course there
are differences, but from the user’s point of view
these are minimal. After all, it is the user we are
attempting to best serve, is it not?

These results are obviously due primarily to the de-
velopment of Samba and its associated functionality.
There are, however, other issues that are not solved
simply by the ability to support a domain logon.
Other issues such as user management, remote ad-
ministration and remote updates must be addressed
as well. Just as all of these topics can not always be
addressed solely by the Windows NT operating sys-
tem, neither can Samba be the end all be all of an
NT domain. Other tools do exist or can be devel-
oped with some effort to supply the necessary func-
tionality to completely manage a Windows NT do-
main. Whether this is the best solution for your net-
work, the reader is advised to consider all the costs
and benefits.

Of the five topics covered, only two are tied to
Samba and its implementation as a Primary Domain
Controller. File and Printer service, remote admini-

stration, and remote updates of systems could all be
implemented in a pure Windows NT environment
using the techniques presented in here.

References and Resources
[1] Leighton, Luke Kenneth Casson, "NT
3.5/4.0 Domains for UNIX", Conference proceedings
from the First Annual Large Installation System
Administration of Windows NT, 1998.

[2] "Samba FAQ for NT Domain PDC Sup-
port", Available at all mirrors of the Samba web site
(http://samba.org)

[3] Carter, G., "Linux Rules the Domain", Li-
nuxworld,
http://www.linuxworld.com/linuxworld/lw-1999-
05/lw-05-thereandback.html, May 1999.

[4] Carter, Sharpe, Sams Teach Yourself
Samba in 24 Hours, Sams Publishing, 1999.

[5] Carter, G., “How to cross the sometimes
tenuous bridge between Linux and NT”, Linux-
World, http://www.linuxworld.com/linuxworld/lw-
1998-10/lw-10-thereandback.html, October 1998.

[6] Visser, J., "On NT Password Security",
Open Solution Providers,
http://www.osp.nl/infobase/ntpass.html

[7] Carter, G. "Command-line NT: It does ex-
ist!", LinuxWorld,
http://www.linuxworld.com/linuxworld/lw-1999-
04/lw-04-thereandback.html, April 1999.

[8] Microsoft Windows NT Server Resource
Kit, Microsoft Press, 1996.

 [9] Carter, G., "Patch32 : An System for Auto-
mated Client OS Updates", Conference proceedings
from the First Annual Large Installation System
Administration of Windows NT, 1998.

 [10] Web page for this paper,
http://www.eng.aubun.edu/users/cartegw/non-
NT_PDC

Appendix
%SystemRoot%\Systemr32\Autoexnt.bat script
rem ***
rem ** Environment variables **
set LOGFILE=%SYSTEMROOT%\local\log\autoexnt.log
set LOCAL=%SYSTEMROOT%\local
set ADMINMAIL=cartegw@eng.auburn.edu
set SUBJECT=host %COMPUTERNAME% rebooted

rem ** Timestamp the log file **
echo :::::::::::::::::: > %LOCAL%\temp.log
date /t >> %LOCAL%\temp.log
time /t >> %LOCAL%\temp.log
echo :::::::::::::::::: >> %LOCAL%\temp.log

rem ****** Start the Workstation service ******
%SYSTEMROOT%\system32\net start LanManWorkstation >> %LOGFILE%

rem ****** Update the system clock ******
%SYSTEMROOT%\system32\net time \\ivy /set /yes >> %LOGFILE%

rem ****** Apply any necessary patches ******
if not exist %SYSTEMROOT%\memory.dmp goto patch_os

 if exist %SYSTEMROOT%\local\memory.dmp del %SYSTEMROOT%\local\memory.dmp
 move %SYSTEMROOT%\memory.dmp %SYSTEMROOT%\local\etc\memory.dmp
 echo [%COMPUTERNAME%] : Blue screen! >> %LOCAL%\temp.log
 set SUBJECT=[%COMPUTERNAME%] : Blue screen!
 echo. >> %LOCAL%\temp.log

:patch_os
 \\ivy\perl5\bin\perl \\ivy\patch32\patch32.pl >> %LOCAL%\temp.log
 type %LOCAL%\temp.log >> %LOGFILE%
 echo. >> %LOCAL%\temp.log

type %LOCAL%\temp.log | \\ivy\bin\blat\blat - -t %ADMINMAIL% -f
 roundup@eng.auburn.edu -s "%SUBJECT%" -server mailhost.eng.auburn.edu
del %LOCAL%\temp.log

rem ****** set the chkdsk flag to check the hard disk on reboot
echo y| chkdsk c: /f

