
Exploiting Machine Learning to Subvert Your Spam Filter

Blaine Nelson Marco Barreno Fuching Jack Chi Anthony D. Joseph
Benjamin I. P. Rubinstein Udam Saini Charles Sutton J. D. Tygar Kai Xia

University of California, Berkeley

Abstract
Using statistical machine learning for making security

decisions introduces new vulnerabilities in large scale
systems. This paper shows how an adversary can exploit
statistical machine learning, as used in the SpamBayes
spam filter, to render it useless—even if the adversary’s
access is limited to only 1% of the training messages.
We further demonstrate a new class of focused attacks
that successfully prevent victims from receiving specific
email messages. Finally, we introduce two new types of
defenses against these attacks.

1 Introduction

This paper demonstrates how attackers can exploit ma-
chine learning to subvert spam filters. Our attack strate-
gies exhibit two key differences from previous work: tra-
ditional attacks modify spam emails to evade a spam fil-
ter, whereas our attacks interfere with the training pro-
cess of the learning algorithm and modify the filter itself ;
and rather than focus only on placing spam emails in the
victim’s inbox, we subvert the spam filter to remove le-
gitimate emails from the inbox. In this paper, we explore
the implications of the contamination assumption: the
adversary can control some of the user’s training data.

An attacker may have one of two goals: expose the
victim to an advertisement or prevent the victim from
seeing a legitimate message. Potential revenue gain for
a spammer drives the first goal, while the second goal
is motivated, for example, by an organization competing
for a contract that wants to prevent competing bids from
reaching their intended recipient.

An attacker may have detailed knowledge of a specific
email the victim is likely to receive in the future, or the
attacker may know particular words or general informa-
tion about the victim’s word distribution. In many cases,
the attacker may know nothing beyond which language
the emails are likely to use.

When an attacker wants the victim to see spam emails,
a broad dictionary attack can render the spam filter unus-
able, causing the victim to disable the filter (Section 3.2).
With more information about the email distribution, the
attacker can select a smaller dictionary of high-value fea-
tures that are still effective. When an attacker wants to
prevent a victim from seeing particular emails and has
some information about those emails, the attacker can
target them with a focused attack (Section 3.3).

We demonstrate the potency of these attacks and then
present two defenses. The Reject On Negative Impact
(RONI) defense tests the impact of each email on train-
ing and doesn’t train on messages that have a large nega-
tive impact. The dynamic threshold defense dynamically
sets the spam filter’s classification thresholds based on
the data rather than using SpamBayes’ static choice of
thresholds. We show that both defenses are effective in
preventing some attacks from succeeding.

We focus on the learning algorithm underlying several
spam filters, including SpamBayes (spambayes.source-
forge.net), BogoFilter (bogofilter.sourceforge.net), and
the machine learning component of SpamAssassin
(spamassassin.apache.org).1 We target SpamBayes be-
cause it uses a pure machine learning method, it is fa-
miliar to the academic community [14], and it is popular
with over 700,000 downloads. Although we specifically
attack SpamBayes, the widespread use of its statistical
learning algorithm suggests that other filters may also be
vulnerable to similar attacks. However, some filters, such
as SpamAssassin, use the learner only as one component
of a broader filtering strategy.

Our experimental results confirm that this class of at-
tacks presents a serious concern for statistical spam fil-
ters. A dictionary attack can make a spam filter unusable
when controlling just 1% of the messages in the training
set, and a well-informed focused attack can remove the
target email from the victim’s inbox 90% of the time. Of

1The primary difference between the learning elements of these
three filters is in their tokenization methods.

our two defenses, one significantly mitigates the effect of
the dictionary attack and the other provides insight into
the strengths and limitations of threshold-based defenses.

2 Background

2.1 Training model

SpamBayes produces a classifier from labeled examples
to label future emails. The labels are spam (bad, unso-
licited email), ham (good, legitimate email), and unsure
(SpamBayes isn’t confident one way or the other). The
classifier learns from a labeled training set of ham and
spam emails.

Email clients use these labels in different ways—
some clients filter email labeled as spam and unsure into
“Spam-High” and “Spam-Low” folders, respectively,
while other clients only filter email labeled as spam into
a separate folder. Since the typical user reads most or
all email in their inbox and rarely (if ever) looks at the
spam/spam-high folder, the unsure labels can be prob-
lematic. If unsure messages are filtered into a separate
folder, users may periodically read the messages in that
folder to avoid missing important email. If instead un-
sure messages are not filtered, then the user faces those
messages when checking the email in their inbox. Too
much unsure email is almost as troublesome as too many
false positives (ham labeled as spam) or false negatives
(spam labeled as ham). In the extreme, if everything is
labeled unsure then the user obtains no time savings at
all from the filter.

In our scenarios, an organization uses SpamBayes to
filter multiple users’ incoming email2 and trains on ev-
eryone’s received email. SpamBayes may also be used
as a personal email filter, in which case the presented at-
tacks and defenses are likely to be equally effective.

To keep up with changing trends in the statistical char-
acteristics of both legitimate and spam email, we as-
sume that the organization retrains SpamBayes period-
ically (e.g., weekly). Our attacks are not limited to any
particular retraining process; they only require that the
attacker can introduce attack data into the training set
somehow (the contamination assumption).

2.2 The contamination assumption

We assume that the attacker can send emails that the
victim will use for training—the contamination assump-
tion—but incorporate two significant restrictions: attack-
ers may specify arbitrary email bodies but not headers,
and attack emails are always trained as spam and not

2We use the terms user and victim interchangeably for either orga-
nization or individual; the meaning will be clear from context.

ham. We examine the implications of the contamination
assumption in the remainder of this paper.

How can an attacker contaminate the training set?
Consider the following alternatives. If the victim period-
ically retrains on all email, any email the attacker sends
will be used for training. If the victim manually labels a
training set, the attack emails will be included as spam
because they genuinely are spam. Even if the victim re-
trains only on mistakes made by the filter, the attacker
may be able to design emails that both perform our at-
tacks and are also misclassified by the victim’s current
filter. We do not address the possibility that a user might
inspect training data to remove attack emails; our attacks
could be adjusted to evade detection strategies such as
email size or word distributions, but we avoid pursuing
this arms race here.

Our focus on spam-labeled attack emails should be
viewed as a restriction and not a necessary condition
for the success of the attacks—using ham-labeled attack
emails could enable more powerful attacks that place
spam in a user’s inbox.

2.3 SpamBayes learning method

SpamBayes classifies using token scores based on a sim-
ple model of spam status proposed by Robinson [14, 17],
based on ideas by Graham [7] together with Fisher’s
method for combining independent significance tests [6].

SpamBayes tokenizes the header and body of each
email before constructing token spam scores. Robinson’s
method assumes that the presence or absence of tokens
in an email affect its spam status independently. For each
token w, the raw token spam score

PS(w) =
NHNS(w)

NHNS(w) +NSNH(w)
(1)

is computed from the counts NS , NH , NS(w), and
NH(w)—the number of spam emails, ham emails, spam
emails that include w and ham emails that include w.

Robinson smooths PS(w) through a convex combina-
tion with a prior belief x, weighting the quantities by
N(w) (the number of training emails withw) and s (cho-
sen for strength of prior), respectively:

f(w) =
s

s+N(w)
x+

N(w)
s+N(w)

PS(w) . (2)

For a new message E, Robinson uses Fisher’s method
to combine the spam scores of the most significant to-

kens3 into a message score

I(E) =
1 +H(E)− S(E)

2
∈ [0, 1] , (3)

H(E) = 1− χ2
2n

−2
∑

w∈δ(E)

log f(w)

 , (4)

where χ2
2n (·) denotes the cumulative distribution func-

tion of the chi-square distribution with 2n degrees of
freedom. S(E) is defined like H(E) but with f(w) re-
placed by 1 − f(w). SpamBayes predicts by threshold-
ing against two user-tunable thresholds θ0 and θ1, with
defaults θ0 = 0.15 and θ1 = 0.9: SpamBayes predicts
ham, unsure, or spam if I falls into the interval [0, θ0],
(θ0, θ1], or (θ1, 1], respectively.

The inclusion of an unsure category spam and ham
prevents us from purely using misclassification rates
(false positives and false negatives) for evaluation. We
must also consider spam-as-unsure and ham-as-unsure
emails. Because of the considerations in Section 2.1, un-
sure misclassifications of ham emails are nearly as bad
for the user as false positives.

3 Attacks

3.1 Attack framework
In a previous paper, we categorize attacks against ma-
chine learning systems along three axes [1]. For con-
creteness, we will describe the taxonomy in the context
of spam filtering, but it applies readily to other security
applications. The axes of the taxonomy are:

Influence: Causative or Exploratory
Security violation: Integrity or Availability
Specificity: Targeted or Indiscriminate

The first axis of the taxonomy describes the capability
of the attacker: whether (a) the attacker has the ability
to influence the training data that is used to construct the
classifier (a Causative attack) or (b) the attacker does not
influence the learned classifier, but can send new emails
to the classifier, and observe its decisions on these care-
fully crafted emails (an Exploratory attack).

The second axis indicates the type of security viola-
tion caused: (a) to create false negatives, in which spam
messages slip through the filter (an Integrity violation);
or (b) to create false positives, in which ham messages
are incorrectly filtered (an Availability violation).

The third axis refers to how specific the attacker’s in-
tention is: whether (a) the attack is Targeted to degrade

3SpamBayes uses at most 150 tokens from E with scores furthest
from 0.5 and outside the interval [0.4, 0.6]. We call this set δ(E).

the classifier’s performance on one particular type of
email or (b) the attack aims to cause the classifier to fail
in an Indiscriminate fashion on a broad class of email.

Our focus is on Causative Availability attacks, which
manipulate the filter’s training data to increase false pos-
itives. We consider both Indiscriminate and Targeted at-
tacks. In Indiscriminate attacks, enough false positives
force the victim to disable the spam filter, or at least fre-
quently search through spam/unsure folders to find legiti-
mate messages that were filtered away. In either case, the
victim is forced to view more spam. In Targeted attacks,
the attacker does not disable the filter but surreptitiously
prevents the victim from receiving certain types of email.
For example, a company may wish to prevent its com-
petitors from receiving email about a bidding process in
which they are all competing.

3.2 Dictionary attacks
Our first attack is an Indiscriminate attack. The idea is
to send attack emails that contain many words likely
to occur in legitimate email. When the victim trains
SpamBayes with these attack emails marked as spam, the
words in the attack emails will have higher spam score.
Future legitimate email is more likely to be marked as
spam if it contains words from the attack email.

When the attacker lacks knowledge about the victim’s
email, one simple attack is to include an entire dictio-
nary of the English language. This technique is the basic
dictionary attack. We use the GNU aspell English
dictionary version 6.0-0, containing 98,568 words.

A further refinement uses a word source with distri-
bution closer to the victim’s email distribution. For ex-
ample, a large pool of Usenet newsgroup postings may
have colloquialisms, misspellings, and other “words” not
found in a dictionary; furthermore, using the most fre-
quent words in such a corpus may allow the attacker to
send smaller emails without losing much effectiveness.

3.3 Focused attack
Our second attack—the focused attack—assumes knowl-
edge of a specific legitimate email or type of email the at-
tacker wants blocked by the victim’s spam filter. This is
a Causative Targeted Availability attack. In the focused
attack, the attacker sends attack emails to the victim con-
taining words likely to occur in the target email. When
SpamBayes trains on this attack email, the spam scores
of the targeted tokens increase, so the target message is
more likely to be filtered as spam. For example, consider
a malicious contractor wishing to prevent the victim from
receiving messages with competing bids. The attacker
sends spam emails to the victim with words such as the
names of competing companies, their products, and their

Parameter Dictionary Attack Focused Attack RONI Defense Threshold Defense
Training set size 2,000, 10,000 5,000 20 2,000, 10,000
Test set size 200, 1,000 N/A 50 200, 1,000
Spam prevalence 0.50, 0.75 0.50 0.50 0.50
Attack fraction 0.001, 0.005, 0.01,

0.02, 0.05, 0.10
0.02 to 0.50 increment-
ing by 0.02

0.05 0.001, 0.01, 0.05, 0.10

Folds of validation 10 5 repetitions 5 repetitions 5
Target Emails N/A 20 N/A N/A

Table 1: Parameters used in our experiments.

employees. The bid messages may even follow a com-
mon template, making the attack easier to craft.

The attacker may have different levels of knowledge
about the target email. In the extreme case, the attacker
might know the exact content of the target email and
use all of its words. More realistically, the attacker only
guesses a fraction of the email’s content. In either case,
the attack email may include additional words as well.

The focused attack is more concise than the dictionary
attack because the attacker has detailed knowledge of the
target and need not affect other messages.

3.4 Optimal attack function

The dictionary and focused attacks can be seen as two
instances of a common attack in which the attacker has
different amounts of knowledge about the victim’s email.
Without loss of generality, suppose the attacker generates
only a single attack message a. The victim adds it to the
training set, trains, and classifies a new message m. Both
a and m are indicator vectors, where the ith component is
true if word i appears in the email. The attacker also has
some (perhaps limited) knowledge of the next email the
victim will receive. This knowledge can be represented
as a distribution p—the vector of probabilities that each
word appears in the next message.

The goal of the attacker is to choose an attack email a
that maximizes the expected spam score Ia (Equation 3
with the attack message a in the spam training set) of the
next legitimate email m drawn from distribution p; that
is, maxa Em∼p [Ia(m)] . In order to describe the optimal
attacks under this criterion, we make two observations.
First, the spam scores of distinct words do not interact;
that is, adding a word w to the attack does not change the
score f(u) of some different word u 6= w. Second, it can
be shown that I is monotonically non-decreasing in each
f(w). Therefore the best way to increase Ia is to include
additional words in the attack message.

Now let us consider specific choices for the next
email’s distribution p. First, if the attacker has little
knowledge about the words in target emails, we model
this by setting p to be uniform over all vectors m rep-

resenting emails. We can optimize the expected spam
score by including all possible words in the attack email.
This optimal attack is infeasible in practice but can be
simulated: one approximation includes all words in the
victim’s primary language, such as an English dictionary.
This yields the dictionary attack.

Second, if the attacker has specific knowledge of a tar-
get email, we can represent this by setting pi to 1 if and
only if the ith word is in the target email. The optimal at-
tack still maximizes the expected spam score, but a more
compact attack that is also optimal is to include all of the
words in the target email. This is the focused attack.

The attacker’s knowledge usually falls between these
extremes. For example, the attacker may use information
about the distribution of words in English text to make
the attack more efficient, such as characteristic vocabu-
lary or jargon typical of the victim. Either of these results
in a distribution p over words in the victim’s email. From
this it should be possible to derive an optimal constrained
attack, but we leave this to future work.

4 Experiments

4.1 Experimental method

In our experiments we use the Text Retrieval Confer-
ence (TREC) 2005 spam corpus [4], which is based on
the Enron email corpus [11] and contains 92,189 emails
(52,790 spam and 39,399 ham). This corpus has sev-
eral strengths: it comes from a real-world source, it has
a large number of emails, and its creators took care that
the added spam does not have obvious artifacts to dif-
ferentiate it. We also use a corpus constructed from a
subset of Usenet English postings to generate words for
our attacks [18].

We restrict the attacker to have limited control over
the headers of attack emails. We implement this assump-
tion either by using the entire header from a randomly
selected spam email from TREC (focused attack) or by
using an empty header (all other attacks).

We measure the effect of each attack by comparing
classification performance of the control and compro-

mised filters using K-fold cross-validation (or K repe-
titions with new random dataset samples in the case of
the focused attack). In cross-validation, we partition the
dataset into K subsets and perform K train-test epochs.
During the ith epoch, the ith subset is set aside as a test
set and the remaining (K − 1) subsets are used for train-
ing. Each email from our original dataset serves inde-
pendently as both training and test data.

In the following sections, we show the effect of our
attacks on test sets of held-out messages. Because our
attacks are designed to cause ham to be misclassified,
we only show their effect on ham messages; their effect
on spam is marginal. Our graphs do not include error
bars since we observed that the variation on our tests was
small. See Table 1 for our experimental parameters.

4.2 Dictionary attack results

We examined dictionary attacks as a function of the
percent of attack messages in the training set (see Fig-
ure 1). It shows the misclassification rates of three
dictionary attack variants averaging over ten-fold cross-
validation. The optimal attack quickly causes the filter
to label all ham emails as spam. The Usenet dictionary
attack (90,000 top ranked words from the Usenet corpus)
causes significantly more ham emails to be misclassified
than the Aspell dictionary attack, since it contains com-
mon misspellings and slang terms that are not present in
the Aspell dictionary (the overlap between the Aspell and
Usenet dictionaries is around 61,000 words). These vari-
ations of the attack require relatively few attack emails to
significantly degrade the SpamBayes accuracy. By 101
attack emails (1% of 10,000), the accuracy falls signifi-
cantly for each attack variation; at this point most users
will gain no advantage from continued use of the filter.

To be fair, although the attack emails make up a small
percentage of the number of messages in a poisoned in-
box, they make up a large percentage of the number of
tokens. For example, at 204 attack emails (2% of the
messages), the Usenet attack includes approximately 6.4
times as many tokens as the original dataset and the As-
pell attack includes 7 times. An attack with fewer tokens
likely would be harder to detect; however, the number
of messages is a more visible feature. It is of signifi-
cant interest that so few attack messages can degrade a
widely-deployed filtering algorithm to such a degree.

4.3 Focused attack results

We run each repetition of the focused attack as follows.
First we randomly select a ham email from the TREC
corpus to serve as the target of the attack. We use a clean,
non-malicious 5,000-message inbox with 50% spam. We

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Percent Control of Training Set

P
e
rc

e
n
t
o
f
T

e
s
t
H

a
m

 M
is

c
la

s
s
if
ie

d

Optimal Usenet Dictionary

Figure 1: Three dictionary attacks on initial training set
of 10,000 messages (50% spam). We plot percent of ham
classified as spam (dashed lines) and as spam or unsure
(solid lines) against the attack as percent of the training
set. We show the optimal attack (black 4), the Usenet
dictionary attack (blue �), and the Aspell dictionary at-
tack (green ©). Each attack renders the filter unusable
with as little as 1% control (101 messages).

0.1 0.3 0.5 0.9

0
20

40
60

80
10

0

Probability of guessing target tokens

P
er

ce
nt

ag
e

of
 a

tta
ck

 s
uc

ce
ss

ham

spam

unsure

Figure 2: Effect of the targeted attack as a function of the
probability of guessing target tokens. Each bar depicts
the fraction of target emails classified as spam, ham, and
unsure after the attack. The initial inbox contains 5,000
emails (50% spam).

0 2 4 6 8 10
0

20

40

60

80

100

Percent Control of Training Set

 P
er

ce
n
t

o
f

T
ar

g
et

 H
am

 M
is

cl
as

si
fi

ed

Figure 3: Effect of the focused attack as a function of the
number of attack emails with a fixed probability (p=0.5)
that the attacker guesses each token. The dashed line
shows the percentage of target ham messages misclas-
sified as spam after the attack, and the solid line the
percentage of targets that are misclassified as unsure or
spam after the attack. The initial inbox contains 5,000
emails (50% spam).

repeat the entire attack procedure independently for 20
randomly-selected target emails.

In Figure 2, we examine the effectiveness of the attack
when the attacker has increasing knowledge of the target
email by simulating the process of the attacker guess-
ing tokens from the target email. For this figure, there
are 300 attack emails—16% of the original number of
training emails. We assume that the attacker correctly
guesses each word in the target with probability p in
{0.1, 0.3, 0.5, 0.9}—the x-axis of Figure 2. The y-axis
shows the proportion of the 20 targets classified as ham,
unsure and spam. As expected, the attack is increasingly
effective as p increases. If the attacker guesses only 30%
of the tokens in the target, classification changes on 60%
of the target emails.

In Figure 3, we examine the attack’s effect on misclas-
sifications of the targeted emails as the number of attack
messages increases. In this figure, we fix the probabil-
ity of guessing each target token at 0.5. The x-axis is
the number of messages in the attack and the y-axis is
the percent of messages misclassified. With 100 attack
emails, out of a initial mailbox size of 5,000, the target
email is misclassified 32% of the time.

We find more insight by examining the attack’s effect
on three representative emails (see Figure 4). Each of the
panels in the figure represents a single target email from
each of three attack results: ham misclassified as spam
(Left), ham misclassified as unsure (Middle), and ham
correctly classified as ham (Right). Each point in the

graph represents the before/after score of a token; any
point above the line y = x increased due to the attack
and any point below is a decrease. From these graphs it is
clear that tokens included in the attack typically increase
significantly while those not included decrease slightly.
Since the increase in score is more significant for in-
cluded tokens than the decrease in score for excluded
tokens, the attack has substantial impact even when the
attacker has a low probability of guessing tokens as seen
in Figure 2. Further, the before/after histograms in Fig-
ure 4 provide a direct indicator of the attack’s success.

5 Defenses

5.1 RONI defense
Our Causative attacks work because training on attack
emails causes the filter to learn incorrectly and misclas-
sify emails. Each attack email contributes towards the
degradation of the filter’s performance; if we can mea-
sure each email’s impact, then we can remove deleterious
messages from the training set.

In the Reject On Negative Impact (RONI) defense, we
measure the incremental effect of each query email Q by
testing the performance difference with and without that
email. We independently sample a 20-message training
set T and a 50-message validation set V five times from
the initial pool of emails given to SpamBayes for train-
ing. We train on both T and T ∪ {Q} and measure the
impact of each query email as the average change in in-
correct classifications on V over the five trials. We elim-
inate Q from training if the impact is significantly nega-
tive. We test with 120 random non-attack spam messages
and 15 repetitions each of seven variants of the dictionary
attacks in Section 3.2.

Preliminary experiments show that the RONI de-
fense is extremely successful against dictionary attacks,
identifying 100% of the attack emails without flagging
any non-attack emails. Each dictionary attack message
causes at least an average decrease of 6.8 ham-as-ham
messages. In sharp contrast, non-attack spam messages
cause at most an average decrease of 4.4 ham-as-ham
messages. This clear region of separability means a sim-
ple threshold on this statistic is effective at separating
dictionary attack emails from non-attack spam.

We plan to extend our initial experiments for the RONI
defense with larger test sets along with a larger varia-
tion in the number of attack emails. Our initial small ex-
periment, however, gives us confidence that this defense
would work given a larger test set due to the large impact
a small number of attack emails have on performance.

However, the RONI defense fails to differentiate fo-
cused attack emails from non-attack emails. The expla-
nation is simple: the dictionary attack broadly affects

●

●

●
●●

●

●

●●

●

●

●

●●
●

●

0.
0

 0
.2

0.

4

0.

6

 0

.8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

T
ok

en
 s

co
re

 a
fte

r
at

ta
ck

Token score before attack

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●
●

0.
0

 0
.2

 0
.4

 0
.6

 0
.8

 1
.0

0.0 0.2 0.4 0.6 0.8 1.0

T
ok

en
 s

co
re

 a
fte

r
at

ta
ck

Token score before attack

●
●●

●

●

●
●

●●●●●●●●

●
●

●
●

●●●
●●

●●

●

●

●

●

●●●●●

●

●

0.
0

0.
2

0.
4

 0
.6

 0
.8

 1
.0

0.0 0.2 0.4 0.6 0.8 1.0

T
ok

en
 s

co
re

 a
fte

r
at

ta
ck

Token score before attack

Figure 4: Effect of the focused attack on three representative emails— one graph for each target. Each point is a token
in the email. The x-axis is the token spam score in Equation (2) before the attack (0 means ham and 1 means spam).
The y-axis is the spam score after the attack. The red ×’s are tokens that were included in the attack and the blue
©’s are tokens that were not in the attack. The histograms show the distribution of spam scores before the attack (at
bottom) and after the attack (at right).

emails, including training emails, while the focused at-
tack is targeted at a future email, so its effects may not
be evident on the training set alone.

5.2 Dynamic threshold defense
Distribution-based attacks increase the spam score of
ham email but they also tend to increase the spam score
of spam. Thus with new θ0, θ1 thresholds, it may still
be possible to accurately distinguish between these kinds
of messages after an attack. Based on this hypothesis,
we propose and test a dynamic threshold defense, which
dynamically adjusts θ0, θ1. With an adaptive threshold
scheme, attacks that shift all scores will not be effective
since rankings are invariant to such shifts.

To determine dynamic values of θ0 and θ1, we split
the full training set in half. We use one half to train a
SpamBayes filter F and the other half as a validation
set V . Using F , we obtain a score for each email in
V . From this information, we can pick threshold values
that more accurately separate ham and spam emails. We
define a utility function for choosing threshold t, g(t) =
NS,<(t) (NS,<(t) +NH,>(t))−1, where NS,<(t) is the
number of spam emails with scores less than t and
NH,>(t) is the number of ham emails with scores greater
than t. We select θ0 so that g(θ0) is 0.05 or 0.10, and we
select θ1 so that g(θ1) is 0.95 or 0.90, respectively.

This defense shows some promise against the dictio-
nary attacks in a preliminary experiment. As shown in
Figure 5, the misclassification of ham emails is signif-
icantly reduced compared to SpamBayes alone. At all
stages of the attack, ham emails are never classified as

spam and only a moderate amount of them are labeled
as unsure. However, while ham messages are often clas-
sified properly, the dynamic threshold causes almost all
spam messages to be classified as unsure even when the
attack is only 1% of the inbox. This shows that the dy-
namic threshold defense failed to adequately separate
ham and spam given the number of spam also classi-
fied as unsure; we are exploring this defense under other
choices of the thresholds.

6 Related work

Many authors have examined adversarial learning from
a more theoretical perspective. For example, within the
Probably Approximately Correct framework, Kearns and
Li bound the classification error an adversary that has
control over a fraction β of the training set can cause [9].
Dalvi et al. apply game theory to the classification prob-
lem [5]. They model interactions between the classifier
and attacker as a game and find the optimal counter-
strategy for the classifier against an optimal opponent.

In this paper we focus on Causative attacks. Most ex-
isting attacks against content-based spam filters are Ex-
ploratory attacks that do not influence training but engi-
neer spam messages so they pass through the filter. For
example, Lowd and Meek explore reverse-engineering a
spam classifier to find high-value messages that the filter
does not block [12, 13], Karlberger et al. study the effect
of replacing strong spam words with synonyms [8], and
Wittel and Wu study the effect of adding common words
to spam to get it through a spam filter [19].

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Percent Control of Training Set

P
e
rc

e
n
t
o
f
T

e
s
t
H

a
m

 M
is

c
la

s
s
if
e
d

No Defense

Threshold!.05

Threshold!.10

Figure 5: Effect of the threshold defense on the classi-
fication of ham messages with the dictionary based at-
tacks. We use a 10, 000 inbox training set of which 50%
are spam. The solid lines represent ham messages clas-
sified as spam or unsure while the dashed lines show the
classification rate of ham messages as spam. Threshold-
.05 has a wider range for unsure messages than the
Threshold-.10 variation.

Several others have recently developed Causative at-
tacks against machine learning systems. Chung and
Mok [2, 3] present a Causative Availability attack against
the Autograph worm signature generation system [10],
which infers blocking rules based on patterns observed
in traffic from suspicious nodes. The main idea is that
the attack node first sends traffic that causes Autograph
to mark it suspicious, then sends traffic similar to legiti-
mate traffic, resulting in rules that cause denial of service.

Newsome, Karp, and Song [16] present attacks against
Polygraph [15], a polymorphic virus detector that uses
machine learning. They primarily focus on conjunction
learners, presenting Causative Integrity attacks that ex-
ploit certain weaknesses not present in other learning al-
gorithms (such as that used by SpamBayes). They also
suggest a correlated outlier attack, which attacks a naive-
Bayes-like learner by adding spurious features to positive
training instances, causing the filter to block benign traf-
fic with those features (a Causative Availability attack).
They speculate briefly about applying such an attack to
spam filters; however, several of their assumptions about
the learner are not appropriate in the case of SpamBayes,
such as that the learner uses only features indicative of
the positive class. Furthermore, although they present
insightful analysis, they do not evaluate the correlated
outlier attack against a real system. Our attacks use sim-
ilar ideas, but we develop and test them on a real system.
We also explore the value of information to an attacker,
and we present and test defenses against the attacks.

7 Conclusion

In this paper, we show that an adversary can effectively
disable the SpamBayes spam filter with relatively lit-
tle system state information and relatively limited con-
trol over training data. Our Usenet dictionary attack
causes misclassification of 36% of ham messages with
only 1% control over the training messages, rendering
SpamBayes unusable. Our focused attack changes the
classification of the target message 60% of the time with
knowledge of only 30% of the target’s tokens.

We also explore two successful defenses. The RONI
defense filters out dictionary attack messages with com-
plete success. The dynamic threshold defense also mit-
igates the effect of the dictionary attacks. Focused at-
tacks are especially difficult to defend against because of
the attacker’s extra knowledge; developing effective de-
fenses is an important open problem. In future work, we
intend to continue refining our defenses.

Our attacks and defenses should also apply to other
spam filtering systems based on similar learning algo-
rithms, such as BogoFilter and the Bayesian component
of SpamAssassin although their effect may vary. Similar
techniques may also be effective against other learning
systems, such as worm or intrusion detection.

Acknowledgments

We would like to thank Satish Rao, Carla Brodley, and
our anonymous reviewers for their useful comments and
suggestions on this research.

This work was supported in part by the Team for
Research in Ubiquitous Secure Technology (TRUST),
which receives support from the National Science Foun-
dation (NSF award #CCF-0424422), the Air Force Office
of Scientific Research (AFOSR #FA9550-06-1-0244),
Cisco, British Telecom, ESCHER, Hewlett-Packard,
IBM, iCAST, Intel, Microsoft, ORNL, Pirelli, Qual-
comm, Sun, Symantec, Telecom Italia, and United Tech-
nologies; in part by California state Microelectronics In-
novation and Computer Research Opportunities grants
(MICRO ID#06-148 and #07-012) and Siemens; and
in part by the cyber-DEfense Technology Experimen-
tal Research laboratory (DETERlab), which receives
support from the Department of Homeland Security
Homeland Security Advanced Research Projects Agency
(HSARPA award #022412) and AFOSR (#FA9550-07-
1-0501). The opinions expressed in this paper are solely
those of the authors and do not necessarily reflect the
opinions of any funding agency, the State of California,
or the U.S. government.

References

[1] Marco Barreno, Blaine Nelson, Russell Sears, An-
thony D. Joseph, and J. D. Tygar. Can machine learn-
ing be secure? In Proceedings of the ACM Symposium
on InformAtion, Computer, and Communications Security
(ASIACCS’06), March 2006.

[2] Simon P. Chung and Aloysius K. Mok. Allergy attack
against automatic signature generation. In Recent Ad-
vances in Intrusion Detection (RAID), pages 61–80, 2006.

[3] Simon P. Chung and Aloysius K. Mok. Advanced allergy
attacks: Does a corpus really help? In Recent Advances
in Intrusion Detection (RAID), pages 236–255, 2007.

[4] Gordon Cormack and Thomas Lynam. Spam corpus cre-
ation for TREC. In Proceedings of the Second Conference
on Email and Anti-Spam (CEAS 2005), July 2005.

[5] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai,
and Deepak Verma. Adversarial classification. In Pro-
ceedings of the Tenth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages
99–108, Seattle, WA, 2004. ACM Press.

[6] Ronald A. Fisher. Question 14: Combining independent
tests of significance. American Statistician, 2(5):30–30J,
1948.

[7] Paul Graham. A plan for spam. http://www.
paulgraham.com/spam.html, August 2002.

[8] Christoph Karlberger, Günther Bayler, Christopher
Kruegel, and Engin Kirda. Exploiting redundancy in
natural language to penetrate Bayesian spam filters. In
WOOT’07: Proceedings of the first conference on First
USENIX Workshop on Offensive Technologies, 2007.

[9] Michael Kearns and Ming Li. Learning in the pres-
ence of malicious errors. SIAM Journal on Computing,
22(4):807–837, 1993.

[10] Hyang-Ah Kim and Brad Karp. Autograph: Toward auto-
mated, distributed worm signature detection. In USENIX
Security Symposium, August 2004.

[11] Bryan Klimt and Yiming Yang. Introducing the Enron
corpus. In Proceedings of the First Conference on Email
and Anti-Spam (CEAS), July 2004.

[12] Daniel Lowd and Christopher Meek. Adversarial learn-
ing. In Proceedings of the Eleventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 641–647, 2005.

[13] Daniel Lowd and Christopher Meek. Good word attacks
on statistical spam filters. In Proceedings of the Second
Conference on Email and Anti-Spam (CEAS), 2005.

[14] Tony Meyer and Brendon Whateley. SpamBayes: Ef-
fective open-source, Bayesian based, email classification
system. In Proceedings of the First Conference on Email
and Anti-Spam (CEAS), July 2004.

[15] James Newsome, Brad Karp, and Dawn Song. Poly-
graph: Automatically generating signatures for polymor-
phic worms. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 226–241, May 2005.

[16] James Newsome, Brad Karp, and Dawn Song. Para-
graph: Thwarting signature learning by training mali-
ciously. In Proceedings of the 9th International Sympo-
sium on Recent Advances in Intrusion Detection (RAID
2006), September 2006.

[17] Gary Robinson. A statistical approach to the spam prob-
lem. Linux Journal, March 2003.

[18] Cyrus Shaoul and Chris Westbury. A USENET
corpus (2005-2007), October 2007. http:
//www.psych.ualberta.ca/˜westburylab/
downloads/usenetcorpus.download.html.

[19] Gregory L. Wittel and S. Felix Wu. On attacking statis-
tical spam filters. In Proceedings of the First Conference
on Email and Anti-Spam (CEAS), 2004.

