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ABSTRACT 
This article investigates how machine learning methods 
might enhance current garbage collection techniques in 
that they contribute to more adaptive solutions. Machine 
learning is concerned with programs that improve with 
experience. Machine learning techniques have been 
successfully applied to a number of real world problems, 
such as data mining, game playing, medical diagnosis, 
speech recognition and automated control. 
Reinforcement learning provides an approach in which 
an agent interacts with the environment and learns by 
trial and error rather than from direct training examples. 
In other words, the learning task is specified by rewards 
and penalties that indirectly tell the agent what it is 
supposed to do instead of telling it how to accomplish 
the task. In this article we outline a framework for 
applying reinforcement learning to optimize the 
performance of conventional garbage collectors. 

In this project we have researched an adaptive decision 
process that makes decisions regarding which garbage 
collector technique should be invoked and how it should 
be applied. The decision is based on information about 
the memory allocation behavior of currently running 
applications. The system learns through trial and error to 
take the optimal actions in an initially unknown 
environment. 

1 Introduction 
JRockit™, the Java™ Virtual Machine (JVM) 
constructed by Appeal Virtual Machines and now 
owned by BEA and named Weblogic JRockit, was 
designed recognizing that all applications are different 
and have different needs. Thus, a garbage collection 
technique and a garbage collection strategy that works 
well for one particular application may perform poorly 
for another. To achieve good performance over a broad 
spectrum of different applications, various garbage 
collection techniques with different characteristics have 
been implemented. However, any garbage collection 
technique requires a strategy that allows it to adapt its 
behavior to the current context of operation. Over the 
past few years, the need for better and more adaptive 
strategies has become apparent. 

Imagine that a JVM is running a program X. For this 
program, it might be best to garbage collect according 
to a rule Y. Whenever Y becomes true, the JVM 
garbage collects. However, this might not be the 
optimal strategy for another program X'. For X', rule Y' 
might be the best choice. Combining rule Y and Y' does 
not have to be complicated, but consider writing a 
combined rule that works really well for hundreds of 
programs? How does the JVM implementer know that a 
rule that works really well for many programs doesn't 
perform badly on others? Providing startup parameters 
for controlling the rule heuristics is a good start but it 
cannot adapt over time to a dynamic environment that 
has different needs at different points of time.   

The idea is to let a learning decision process decide 
which garbage collector technique to use and how to 
use it, instead of static rules making these decisions 
during run time. The learning decision process selects 
among different kinds of state of the art garbage 
collection techniques in JRockit™, the one that is best 
suitable for the current application and platform.  



  

The objective for this investigation is to find out if 
machine learning is able to contribute to improved 
performance of a commercial product. Theoretically 
machine learning could contribute to more adaptive 
solutions, but is such an approach feasible in practice? 

This paper is concerned with the question whether and, 
if so, how a learning decision process can be used for a 
more dynamic garbage collection in a modern JVM, 
such as JRockit.  

1.1 Paper Overview 
Section 2 relates the paper to previous work and in 
Section 3 we present the problem specification. Section 
4 provides a survey of the reinforcement learning 
method that has been used. Section 5 presents possible 
situations of a system that uses a garbage collector in 
which a learning decision process might perform better 
than a regular garbage collector. Section 6 handles the 
design of the prototype and is followed by a 
presentation of experimental results, discussion of 
future developments and conclusions in Section 7, 8 
and 9. 

2 Related work 
To our current best knowledge we are not aware of any 
other attempt to utilize reinforcement learning in a 
JVM.  Therefore, we are not able to provide references 
to similar approaches for that particular problem. Many 
papers on garbage collection techniques include some 
sort of heuristics on when the technique should be 
applied, but they are usually quite simple. These 
methods are usually straightforward and based on 
general rules that do not take the specific characteristics 
of the application into account. 

Brecht et al. [7] provide an analysis on when garbage 
collection should be invoked and when the heap should 
be expanded in the context of a Boehm-Demers-Weiser 
(BDW) collector. However, they do not introduce any 
adaptive learning but instead investigate the 
characteristic properties of different heuristics. 

3 Problem Specification 
The problem to solve is: how to design an automatic 
and learning decision process for more dynamic 
garbage collection in a modern JVM. 

Unlike some other garbage collection techniques, such 
as parallel garbage collection and stop-and-copy, 
concurrent garbage collection starts to garbage collect 
before the memory heap is full. A full heap would 
cause all application threads to stop, which would not 
be necessary if the concurrent garbage collector had 
started in time, since a concurrent garbage collector 
allows running applications to run concurrently with 
some phases of the garbage collection. For further 
reading about garbage collection, see references [2, 6, 
8, 9, 13, 14]. 

An important issue, when it comes to concurrent 
garbage collection in a JVM, is to decide when to 
garbage collect. Concurrent garbage collection must not 
start too late, or else the running program may run out 
of memory. Neither must it be invoked too frequently, 
since this causes more garbage collections than 
necessary and thereby disturbs the execution of the 
running program. The key idea in our approach is to 
find the optimal trade-off between time and memory 
resources by letting a learning decision process decide 
when to garbage collect [2, 6, 8, 9, 13, 14].  

4 Reinforcement Learning 
Reinforcement learning methods solve a class of 
problems known as Markov Decision Processes (MDP). 
If it is possible to formulate the problem at hand as an 
MDP, reinforcement learning provides a suitable 
approach to its solution [3, 4, 5]. 

Decision process Environment

1. Environment ! State (st) + Reward (rt) ! Decision process

2. Decision process ! Action (at) ! Environment 

3. Environment ! new State (st+1) + new Reward (rt+1)

a

s + r 

 
Figure 1  The figure shows model of a reinforcement 
learning system. First the decision process observes the current state 
and reward then the decision process performs an action that effects 
the environment. Finally the environment returns the new state and 
the obtained reward.  

Figure 1 depicts the interaction between an agent and 
its environment in a typical reinforcement learning 
setting. The agent perceives the current state of the 
environment by means of the state signal st upon which 
it responds with a control action at.  



  

More formally, a policy is a mapping from states to 
actions π: SxA → [0, 1], in which π(s, a) denotes the 
probability with which the agent chooses action a in 
state s. As a result of the action taken by the agent in 
the previous state, the environment transitions to a new 
state st+1. Depending on the new state and the previous 
action the environment might pay a reward to the agent. 
The scalar reward signal indicates how well the agent is 
doing with respect to the task at hand. However, reward 
for desirable actions might be delayed, leaving the 
agent with the temporal credit assignment problem of 
figuring out which actions lead to desirable states of 
high rewards. The objective for the agent is to choose 
those actions that maximize the sum of future 
discounted rewards: 

R = rt + γ rt+1 + γ2 rt+2 …. 

The discount factor γ∈ [0,1] favors immediate rewards 
over equally large payoffs to be obtained in the future, 
similar to the notion of an interest rate in economics [1, 
3, 5].  

Notice, that usually the agent knows neither the state 
transition nor the reward function, neither do these 
functions need to be deterministic. In the general case 
the system behavior is determined by the transition 
probabilities P(st+1 | st, at) for ending up in state st+1 if 
the agent takes action at in state st and the reward 
probabilities P(r | st, at) for obtaining reward r for the 
state action pair st, at.  

A state signal that succeeds in retaining all relevant 
information about the environment is said to have the 
Markov property. In other words, in an MDP the 
probability of the next state of the environment only 
depends on the current state and the action chosen by 
the agent, and does not depend on the previous history 
of the system [1, 3, 5]. 

A reinforcement learning task that satisfies the Markov 
property is an MDP. More formally: if t indicates the 
time step, s is the state of the environment, a is an 
action taken by the agent and r is a reward, then the 
environment and the task have the Markov property if 
and only if [5]: 

Pr{st+1 = s’, rt+1 = r | st, at} is equal to:  

Pr{st+1 = s’, rt+1 = r | st, at, rt, st-1, at-1,…, r1, s0, a0} 

If it is possible to define a way of representing states 
such that all relevant information for making a decision 
is retained in the current state, the garbage collection 
problem becomes an MDP. Therefore, a prerequisite for 
being able to use reinforcement learning methods 
successfully is to find a way to represent states in a 
correct manner [1, 3, 5]. 

In theory it is required that the agent has complete 
information about the state of the environment in order 
to be able to guarantee asymptotic convergence to the 
optimal solution. However, often fast learning is much 
more important than a guarantee of eventually optimal 
performance. In practice, many reinforcement learning 
schemes are still able to achieve a good behavior in a 
reasonable amount of time even if the Markov property 
is violated [10]. 

Whereas dynamic programming requires a model of the 
environment for computing the optimal actions, 
reinforcement learning methods are model free and the 
agent obtains knowledge about its environment through 
interaction. The agent explores the environment in a 
trial and error fashion, observing the rewards obtained 
of taking various actions in different states. Based on 
this information the agent updates its beliefs about the 
environment and refines its policy that decides what 
action to take next [4, 5]. 

4.1 Temporal-Difference Learning 
There are mainly four different approaches to solve 
Markov decision processes: Monte Carlo, temporal-
difference, actor-critic and R-learning. For further 
discussion about these methods, see references [5, 6, 
12, 15]. 

What distinguishes temporal-difference learning 
methods from the other methods is that they update 
their beliefs at each time step. In application 
environments where the memory allocation rate varies a 
lot over time, it is important to observe the amount of 
available memory at each time step. Hence temporal-
difference learning seems to be well suited for solving 
the garbage collecting problem [3, 5, 11, 15].  

Temporal-difference learning is based on a value 
function, referred to as the Q-value function, which 
calculates the value of taking a certain action in a 
certain state. The algorithm performs an action, 
observes the new state and the achieved reward at each 
time step. Based on the observations, the algorithm 
updates its beliefs – the policy – and thereby 
theoretically improves its behavior at each time step [3, 
5, 11, 15]. 



  

There are mainly two different approaches when it 
comes to temporal-difference methods: Q-learning and 
SARSA (State, Action, Reward, new State, new 
Action). This project has investigated the SARSA 
approach, since it is an on-policy method. On-policy 
means updating the policy that is being followed, i.e. 
the policy improves while being used. Further issues 
regarding how to use this method are discussed below.  

4.2 Exploring vs. Exploiting 
In reinforcement learning problems the agent is 
confronted with a trade-off between exploration and 
exploitation. On the one hand it should maximize its 
reward by always choosing the action a = maxa Q(s, a’) 
that has the highest Q-value in the current state s. 
However, it is also important to explore other actions in 
order to learn more about the environment. Each time 
the agent takes an action it faces two possible 
alternatives. One is to execute the action that according 
to the current beliefs has the highest Q-value. The other 
possibility is to explore a non-optimal action with a 
lower expected Q-value of higher uncertainty. Due to 
the probabilistic nature of the environment, an uncertain 
action of lower expected Q-value might ultimately turn 
out to be superior to the current best-known action. 
Obviously there is a risk, that the taking of the sub-
optimal action diminishes the overall reward. However, 
it still contributes to the knowledge about the 
environment, and therefore allows the learning program 
to take better actions with more certainty in the future 
[4, 5, 11, 12]. 

There are three different types of exploration strategies 
for choosing actions, the greedy algorithm, the ε-greedy 
algorithm and the soft-max algorithm.  The greedy 
algorithm is not of interest to use, since the garbage 
collection problem requires exploration. Both the other 
two algorithms are well suited for the garbage 
collection problem. However, the ε-greedy algorithm 
was the choice we made. 

The ε-greedy algorithm chooses the calculated, best 
action most of the times, but with a small probability ε 
a random action is selected instead. The probability of 
choosing a random action is decreased over time and 
hence satisfies both needs for exploration and 
exploitation [1, 5]. 

4.3 Generalization 
Another common problem is environments that have 
continuous, and consequently infinitely many states. In 
this case it is not possible to store state-action values 
(Q-values) in a simple look-up table. A look-up table 
representation is only feasible when states and actions 
are discrete and few. Function approximation and 
generalization are solutions to this problem [3, 12].  

Generalization is a way of handling continuous values 
of state features. As it is the case of the garbage 
collection problem, generalization of the state is 
needed. Alternative approaches, other than 
generalization, to approximate the Q-value function are 
regression methods and neural networks [4, 6]. 
However, the approach used during this project was 
generalization. 

There are mainly four approaches for generalizing 
states and actions: coarse coding, tile coding, radial 
basis functions and Kanerva coding. For further reading 
about these methods see references [3, 5, 6]. 

Coarse coding is a generalization method using a binary 
vector, where each index of the vector represents a 
feature of the state, either present (1) or absent (0). Tile 
coding is a form of coarse coding where the state 
features are grouped together in partitions of the state 
space. These partitions are called tilings, and each 
element of a partition is called a tile. The more tilings 
you have, the more states will be affected of the reward 
achieved and share the knowledge obtained from an 
action performed. On the other hand, the system will 
get exponentially more complex depending on how 
many tilings are used [3, 5]. 

Tile coding is particularly well suited for use on 
sequential digital computers and for efficient online 
learning and is therefore used in this project [5]. 

5 State Features and Actions of the 
General Garbage Collection Problem 

In the sections below some state features, actions and 
underlying reward features, possible to apply in a 
memory management system, are presented. 
Discussions of how they may be represented are also 
provided.  

5.1 Possible State Features 
A problem in defining state features and rewards for a 
Markov decision process, is the fact that the evolution 
of the state to a large extent is governed by the running 
application as it determines which objects on the heap 
are no longer referenced and how much new memory is 
allocated. The garbage collector can only partially 
influence the amount of available memory in that it 
reduces fragmentation of the heap and frees the 
memory occupied by dead objects. Therefore, it is often 
difficult to decide whether to blame the garbage 
collecting strategy or the application itself for 
exceeding the available memory resources. 



  

In the following sections we present some suggestions 
of possible state features. Some state features might be 
difficult to calculate accurately at run time. For 
example, if the free memory were distributed across 
several lock-free caches, the number of free bytes 
would be hard to measure, or would at least take 
prohibitively long time to measure correctly. We 
therefore have to assume that approximations of these 
parameters are still accurate enough to achieve a 
reasonably good behavior. 

A fragmentation factor that indicates what fraction of 
the heap is fragmented is of interest. Fragments are 
chunks of free memory that are too small (<2kB) to 
belong to the free-list, from which new memory is 
allocated. As the heap becomes highly fragmented, 
garbage collection should be performed more 
frequently. This is desirable as it might reduce 
fragmentation by collecting dead objects adjacent to 
fragments. As a result, larger blocks of free memory 
may appear that can be reused for future memory 
allocation. In other words garbage collection should be 
performed when the heap contains a large number of 
non-referenced, small blocks of free memory. 

It is important to keep track of how much memory is 
available in the heap. Based on this information the 
reinforcement learning system is able to decide at 
which percentage of allocated memory it is most 
rewarding to perform a certain action, for instance to 
garbage collect. 

If the rate at which the running program allocates 
memory can be determined, it would be possible to 
estimate at what point in time the application will run 
out of memory, and hence when to start garbage 
collection at the latest. 

If it is possible to estimate how much processor time is 
actually spent on executing instructions of the running 
program, this factor could be used as a state feature. 
However, when using a concurrent garbage collector it 
is very difficult to measure the exact time spent on 
garbage collection versus the time used by the running 
application. Hence, this measurement will either be 
impossible to obtain or the information is highly 
inaccurate.   

The average size of newly allocated objects might 
provide valuable information about the application 
running that can be utilized by the garbage collector. 
Another feature of the same category is the average age 
of newly allocated objects, if measurable. The amount 
of newly allocated objects is another possible feature. 

5.2 State Representation 
Each observable system parameter, described in the 
previous section, constitutes a feature of the current 
state. Tile coding, see Section 4.3, is used to map the 
continuous feature values to discrete states. Each tiling 
partitions the domain of a continuous feature into tiles, 
where each tile corresponds to an interval of the 
continuous feature.   

The entire state is represented by a string of bits, with 
one bit per tile. If the continuous state value falls within 
the interval that constitutes the tile, the corresponding 
bit is set to ‘one’, otherwise it is set to ‘zero’: 

• The tile contains the current state feature value ! 
1 

• The tile does not contain the current state feature 
value ! 0 

For example, a particular state is represented by a 
vector s = [1, 1, 0, …, 1, 0, 1], where each bit denotes 
the absence or presence of the state feature value in the 
corresponding tile. 

5.3 Possible Rewards 
To evaluate the current performance of the system, 
quantifiable values of the goals of the garbage collector 
are desired. The objectives of a garbage collector (see 
references [6, 9, 13 14]) concern maximization of the 
end-to-end performance and minimization of long 
interruptions of the running application, caused by 
garbage collection. These goals provide the basis for 
defining the appropriate scalar rewards and penalties.  

A necessity when deciding the reward function is to 
decide what are good and bad states or events. In a 
garbage-collecting environment there are a lot of 
situations that are neither bad nor good per se but might 
ultimately lead to a bad (or good) situation. This 
dynamic aspect adds another level of complexity to the 
environment. It is in the nature of the problem that 
garbage collection always intrudes on the process time 
of the running program and always constitutes extra 
costs. Therefore, no positive rewards are given but all 
reinforcement signals are penalties for consuming 
computational resources for garbage collection or even 
worse: running of out of memory. The objective of the 
learning process is to minimize the discounted 
accumulated penalties incurred over time. 

A fundamental rule for imposing penalty is to punish all 
activities that consume processing time from the 
running program. For instance a punishment is imposed 
every time the system performs a garbage collection. 
An alternative is to impose a penalty proportional to the 
fraction of time spent on garbage collection compared 
to the total run time of the program.  



  

Another penalty criterion is to punish the system when 
the average pause time exceeds an upper limit that is 
considered still tolerable by the user. It is also important 
to assure that the number of pauses does not exceed the 
maximum allowed number of pauses. If the average 
pause time is high and the number of pauses is low, the 
situation may be balanced by taking less time-
consuming actions more frequently. If they are both 
high, a penalty might be in order. 

When using a concurrent collector, a severe penalty 
must be imposed if the running program runs out of 
memory and as a result has to wait until a garbage 
collection is completed, since this is the worst possible 
situation to arise. 

At first, it seems like a good idea to impose a penalty 
proportional to the amount of occupied memory. 
However, even if the memory is occupied up to 99 % 
this does not cause a problem, as long as the running 
application terminates without exceeding the available 
memory resources. In fact, this is the most desirable 
case, namely that the program terminates requiring no 
garbage collection but still never runs out of memory. 
Therefore, directly imposing penalties for the 
occupation of memory is not a good idea. 

The ratio of freed memory after completed garbage 
collection compared to the ratio allocated memory in 
the heap prior to garbage collection provides another 
possible performance metric. This parameter gives an 
estimate of how much memory has been freed. If the 
amount is large there is nothing to worry about, as 
illustrated to the left in Figure 2. If the amount freed 
memory is low and the size of the free-list is low as 
well, problems may occur and hence the garbage 
collector should be penalized. The latter situation, 
illustrated to the right in Figure 2, might occur if a 
running program has a lot of long-living objects and 
runs for a long time, so that most of the heap will be 
occupied. 
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Figure 2  A good situation with a high freeing rate is 
illustrated to the left. A worse situation is illustrated to the right, 
where there is little memory left in the heap although a garbage 
collection has just occurred. This last situation may cause problems. 

When using compacting garbage collectors, it is 
interesting to observe the success rate of allocated 
memory in the most fragmented area of the heap. The 
actual amount of new memory allocated in the 
fragmented area of the heap is compared to the 
theoretical limit of available memory in case of no 
fragmentation at all. An illustration of some possible 
situations is shown in Figure 3. It is desirable that 100 
% of the newly allocated memory is allocated in the 
most fragmented area of the heap, in order to reduce 
fragmentation. A penalty is imposed that is inversely 
proportional to the ratio of actual allocated memory and 
its theoretical limit in the best possible case. 

1

3

A B C

= f r e e   m e m o r y
= o c c u p i e d   m e m o r y

2

4

A   i s   o f   s i z e   2
B   i s   o f   s i z e   1
C   i s   o f   s i z e   3

T h e   h e a p AB C

5 0 %   w a s   s u c c e s s f u l l y   a l l o c a t e d   
i n   t h e   f r a g m e n t e d   h e a p

8 3 %   c o u l d   t h e o r e t i c a l l y   b e   
a l l o c a t e d i n   t h e   f r a g m e n t e d   h e a p

AB C AB C

= n o n –f r a g m e n t e d   h e a p

5 0 %   w a s   s u c c e s s f u l l y   a l l o c a t e d   
i n   t h e   f r a g m e n t e d   h e a p

1 0 0 %   c o u l d   t h e o r e t i c a l l y   b e   
a l l o c a t e d i n   t h e   f r a g m e n t e d   h e a p

1 0 0 %   w a s   s u c c e s s f u l l y   a l l o c a t e d   
i n   t h e   f r a g m e n t e d   h e a p

1 0 0 %   c o u l d   t h e o r e t i c a l l y   b e   
a l l o c a t e d i n   t h e   f r a g m e n t e d   h e a p

 
Figure 3  To the upper right (2) half of the new allocated 
memory was successfully allocated in the fragmented heap. To the 
lower left (3) the same percentage was successfully allocated in the 
fragmented heap although space for all new allocated objects exists 
in the fragmented area. To the lower right (4) all new allocated 
objects were successfully allocated in the fragmented heap. 

If the memory relies on global structures that need a 
lock to be accessed, taking the lock ought to be 
punished. This might be the case for memory free-lists, 
caches etc. 

The more time a compacting garbage collector spends 
on iterating over the free-list (for explanation see 
references [13, 14]) the more it should be penalized. A 
long garbage collection cycle is an indicator for a 
fragmented heap. High fragmentation in itself is not 
necessarily bad, but the iteration consumes time 
otherwise available to the running application, which is 
why such a situation should be punished. 



  

When it comes to compacting garbage collectors a 
measurement of the effectiveness of a compaction 
provides a possible basis for assigning a reward or a 
penalty. If there was no need for compacting, the 
section in question must have been non-fragmented. 
Accordingly a situation like this should be assigned a 
reward. 

There is one possible desirable configuration to which a 
reward, rather than a penalty, should be assigned, 
namely if a compacting collector frees large, connected 
chunks of memory. The opposite, if the garbage 
collector frees a small amount of memory and the 
running program is still allocating objects, could 
possibly be punished in a linear way, as some of the 
other reward situations described above. 

5.4 Possible Actions 
Whether to invoke garbage collection or not at a certain 
point of time is the most important decision for the 
garbage collecting strategy to take. Therefore, the set of 
possible actions taken by the prototype discussed in the 
later section is reduced to this binary decision. 

When the free memory is not large enough and the 
garbage collection fails to free a sufficiently large 
amount of memory, a possible remedy is to increase the 
size of the heap. It is also of interest to be able to 
decrease the heap size, if a large area of the heap never 
becomes allocated. To decide whether to increase or 
decrease the heap size can constitute an action. If a 
change is needed a complementary decision is to decide 
the new size of the heap.  

To save heap space or rather to use the available heap 
more effectively, a decision to compact the heap or not, 
could also be of interest. In addition the action could 
specify how much and which section of the heap to 
compact. 

To handle synchronization between allocating threads 
of the running program, a technique of using lock-free 
Thread Local Areas (TLAs) is usually used. Each 
allocating thread is allowed to allocate memory within 
only one TLA at a time and vice versa there is only one 
thread permitted to allocate memory in a particular 
TLA. The garbage collection strategy could determine 
the size of each TLA and how to distribute the TLAs 
between the threads. 

When allocating large objects often a Large Object 
Space (LOS) is used, especially in cases where 
generational garbage collectors are considered, in order 
to avoid moving large objects. Deciding the size of the 
LOS and how large an object has to be, to be 
considered a large object, are additional issues for the 
reinforcement learning decision process to consider.  

To reduce garbage collection time, smaller free blocks 
might not be added to a free list during a sweep-phase. 
The memory block size is the minimum size of a free 
memory block for being added to the free list. Different 
applications may have different needs with respect to 
this parameter. 

How many generations are optimal for a generational 
garbage collector? With the current implementation it is 
only possible to decide prior to starting the garbage 
collector if it operates with either one or two 
generations. It might be possible, even today, to reduce 
the number of generations from two to one, but not to 
increase them during run-time. When it comes to future 
generational garbage collectors it would be of interest 
to let the system vary the size of the different 
generations. If there is a promotion rate available, this 
is a factor that might be interesting for the system to 
vary as well. 

If the garbage collector uses an incremental approach, 
deciding the size of the heap area that is collected at a 
time might be an interesting aspect to consider. The 
same applies to deciding whether to use the concurrent 
approach, in conjunction with the factors of how many 
garbage collection steps to perform at a time and how 
long a time the system should pre-clean (for 
explanation see references [14]). 

6 The Prototype 
The state features used in the prototype are the current 
amount of available memory s1 and the change in 
available memory s2, calculated as the difference 
between s1 at the previous time step - s1 at the current 
time step. 

There is only one binary decision to make, namely 
whether to garbage collect or not. Hence, the action set 
contains only two actions {0, 1}, where 1 represents 
performing a garbage collection and 0 represents not 
performing a garbage collection. 

The tile coding representation of the state in the 
prototype was chosen to be one 10x2-tiling in the case 
where only s1 was used. In the case where both state 
features were used the tile coding representation was 
chosen to be one 10x7x2-tiling, one 10-tiling, one 7-
tiling and one 10x7-tiling. A non-uniform tiling was 
chosen, in which the tile resolution is increased for 
states of low available memory, and a coarser 
resolution for states in which memory occupancy is still 
low. The tiles for feature s1 correspond to the intervals 
[0, 4], [4, 8], [8, 10], [10, 12], [12, 14], [14, 16], [16, 
18], [18, 20], [22, 26] and [30, 100]. The tiles for 
feature s2 are at a resolution: [<0], [0-2], [3-4], [5-6], 
[7-8], [9-10] and [>10]. 



  

The reward function of the prototype imposes a penalty 
(-10) for performing a garbage collection. The penalty 
for running out of memory is set to -500. It is difficult 
to specify the quantitative trade-off between using time 
for garbage collection and running out of memory. In 
principle the later situation should be avoided at all 
costs, but a too large penalty in that case might bias the 
decision process towards too frequent garbage 
collection. Running out of memory is not desirable 
since a concurrent garbage collector is used. A 
concurrent garbage collector must stop all threads if the 
system runs out of memory, which is the major purpose 
of using a concurrent garbage collector in the first 
place. 

The probability p that determines whether to pick the 
action with the highest Q-value or a random action for 
exploration evolves over time according to the formula:  

p =  p0 * e -(t / C) 

where p0 = 0.5 and C = 5000 in the prototype, which 
means that random actions are chosen with decreasing 
probability until approximately 25000 time steps 
elapsed. A time step t corresponds to about 50ms of real 
time between two decisions of the reinforcement 
learning system.  

The learning rate α decreases over time according to 
the formula stated below: 

α   = α0 * e -(t / D) 

where α0 = 0.1 and D = 30000 in the prototype. The 
discount factor γ is set to 0.9. 

The test application used for evaluation is designed to 
demonstrate a very dynamic memory allocation 
behavior. The memory allocation rate of the test 
application alternates randomly between different 
behavior cycles. A behavior cycle consists of either 
10000 iterations or 20000 iterations of either low or 
high memory allocation rate. The time performance of 
the RLS is measured during a behavior cycle as the 
number of milliseconds required to complete the cycle. 

6.1 Interesting Comparative Measurements  
The performance of the garbage collector in JRockit 
ought to be compared to the performance when using 
the reinforcement system for deciding when to garbage 
collect not only in terms of time performance but also 
in terms of the reward function. The reward function is 
based on the throughput and the latency of a garbage 
collector and the underlying features of the reward 
function are hence suitable for extracting comparable 
results of the two systems. 

However, learning a proper garbage collection policy 
should take a reasonable amount of time, as otherwise 
the reinforcement learning system would be of little 
practical value. The first step of an evaluation of RLS is 
to verify that learning and adaptation actually occur at 
all, namely that the system improves its performance 
over time. The learning success is measured by the 
average reward per time step. Analyzing the time 
evolution of the Q-function provides additional insight 
into the learning progress. 

7 Results 
One of the main objectives of this project is the 
identification of suitable state features, underlying 
reward features and action features for the dynamic 
garbage-collection learning problem. An additional 
objective is the implementation of a simple prototype 
and the evaluation of its performance on a restricted set 
of benchmarks in order to investigate whether the 
proposed machine learning approach is feasible in 
practice. 

This section compares the performance of a 
conventional JVM with a JVM using reinforcement 
learning for making the decision: when to garbage 
collect. The JVM using reinforcement learning is 
referred to as the RLS (Reinforcement Learning 
System) and the conventional JVM is JRockit.  

Since JRockit is optimized for environments in which 
the allocation behavior changes slowly, environments 
where the allocation behavior changes more rapidly 
might cause a degraded performance of JRockit. In 
these environments it is of special interest to investigate 
if an adaptive system, such as an RLS, is able to 
perform equally well or even better than JRockit.  

Figure 4 shows the results of using the RLS and JRockit 
for the test application described in Section 6. Due to 
the random distribution of behavior cycles a direct 
cycle-to-cycle comparison of these two different runs is 
not meaningful. Instead, the accumulated time 
performances, illustrated in Figure 4, are used for 
comparison. As may be seen in the lower chart, the 
RLS performs better than JRockit in this dynamic 
environment. This confirms the hypothesis of an RLS 
being able to outperform an ordinary JVM in a dynamic 
environment. 
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Figure 4  The figure illustrates the accumulated time 
performance of the RLS and JRockit when running the application 
with behavior cycles of random duration and memory allocation rate. 
The upper chart shows the performances during the first 20 behavior 
cycles and the lower chart shows the performances during 20 
behavior cycles after approximately 50000 time steps. Notice that 
lower values correspond to better performance. 

Figure 5 illustrates the accumulated penalty for the RLS 
compared to JRockit. In the beginning the RLS runs out 
of memory a few times, as shown in the graph labeled 
penalty RLS for running out of memory, but after about 
15000 time steps it learns to avoid running out of 
memory. The lower chart shows the current average 
penalty of the RLS and JRockit. After about 20000 time 
steps the RLS has adapted its policy and achieves the 
same performance as JRockit. The results show that the 
RLS in principle is able to learn a policy that can 
compete with the performance of JRockit. The test 
session only takes about an hour, which is a reasonable 
learning time for offline learning (i.e. following one 
policy while updating another) of long running 
applications. Also, no attempt has been made to 
optimize the parameters of the RLS, such as exploration 
and learning rate, in order to minimize learning time 
within this project. 
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Figure 5  The upper chart illustrates the accumulated 
penalty for the RLS compared to JRockit. The lower chart illustrates 
the average penalty as a function of time. For RLS the penalty due to 
garbage collection and due to running out of memory is shown 
separately.     

The accumulated penalty over a time period between 
time step 30000 and 50000 after RLS   completed 
learning, has been calculated to -8400. The 
corresponding accumulated penalty for JRockit for the 
same period of time was calculated to -8550. This 
shows that the results of the RLS are comparable to the 
results of JRockit. The values verify the results 
presented above: that the RLS performs equally well or 
even slightly better than JRockit in an intentionally 
dynamic environment.  



  

In the following we analyze the learning process in 
more detail by looking at the time evolution of the Q-
function for the single feature case that only considers 
the amount of free memory. The upper chart in Figure 6 
compares the Q-function for both actions, namely to 
garbage collect or not to garbage collect, after 
approximately 2500 time steps. Notice, that the RLS 
always prefers the action of higher Q-value. The 
probability p of choosing a random action is still very 
high and garbage collection is randomly invoked 
frequently enough to prevent the system from running 
out of memory. On the other hand the high frequency of 
random actions during the first 5000 time steps leads 
the system to avoid deliberate garbage collection action 
at all. In other words it always favors not to garbage 
collect in order to avoid the penalty of -10 units for the 
alternative action.  

Initially, the system does not run out of memory due to 
the high frequency of randomly performed garbage 
collections. The only thing the system has learned so far 
is that it is better not to garbage collect than to garbage 
collect. Notice, that the system did not learn for states 
of low free memory, as those did not occur yet. The 
difference of the Q-value between the two actions is -
10, which corresponds exactly to the penalty for 
performing a garbage collection. This makes sense 
insofar as the successor state after performing a garbage 
collection is similar to the state prior to garbage 
collection, namely a state for which the amount of 
memory available is still high.  

The middle chart in Figure 6 shows the Q-function after 
approximately 10000 time steps. The probability of 
choosing a random action has now decreased to the 
extent, that the system actually runs out of memory. 
Once that happens the RLS incurs a large penalty, and 
thereby learns to deliberately take the alternative action, 
namely to garbage collect at states of low available 
memory.  

The lower chart in Figure 6 illustrates the Q-function 
after approximately 50000 time steps. At this point the 
Q-values for the different states has already converged. 
Garbage collection is invoked once the amount of 
available memory becomes lower than approximately 
12%. This policy is optimal considering the limited 
state information available to RLS, the particular test 
application and the specific reward function.  
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Figure 6  The figure shows the development of the state-
action value function, the Q-function, over time. The upper chart 
shows the Q-function after approximately 2500 time steps. The middle 
chart shows the Q-function after approximately 10000 time steps and 
the lower chart shows the Q-function after approximately 50000 time 
steps and is then constant. 

The performance comparison between the RLS and 
JRockit suggests further investigation of reinforcement 
learning for dynamic memory management. Regarding 
the fact that this first version of the prototype only 
considers a single state feature, it would be interesting 
to investigate the performance of an RLS that takes 
additional and possibly more complex state features 
into consideration. Additional state features might 
enable the RLS to take more informed decisions and 
thereby achieve even better performance. 

In Figure 7 the accumulated time performance of the 
RLS using one (1F2T) and two state features (2F5T), 
and JRockit (JR) is compared. In the case of two state 
features, five (instead of only two) tilings were used in 
order to achieve better generalization across the higher 
dimensional state space. In order to illustrate the effect 
of five tilings, the time performance of an RLS using 
two state features but only two tilings (2F2T) is also 
shown in the charts of Figure 7. The upper chart 
illustrates the performance of the four systems in the 
initial stage at which the RLS is adapting its policy. The 
lower chart shows the performance after approximately 
50000 decisions (time steps). The graphs show that the 
RLS using two state features and five tilings does not 
perform better than the RLS using only one state 
feature or JRockit. However, the system using five 
tilings is significantly better than the RLS using two 
state features and two tilings.  



  

The main reason for the inferior behavior is probably 
that the new feature increases the number of states and 
that therefore converging to the correct Q-values and 
optimal policy requires more time. The decision 
boundary is more complex than in the case of only a 
single state feature. The number of states for which the 
RLS has to learn that it runs out of memory, if it does 
not perform a garbage collection, has increased and 
thereby also the complexity of the learning task.  
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Figure 7 The figure shows the accumulated time performance of 
JRockit compared to the RLS using one state feature and two RLS 
using two state features but different tilings. 

Another consequence of the increased number of states 
is that the system runs out of memory more often. To 
some extent Q-function approximation (i.e. tile coding, 
function approximation) provides a remedy to this 
problem. Further investigation regarding this aspect is 
needed, see the discussion in Section 8. 

To provide some standard measurement results the best 
RLS, i.e. the RLS using only one state feature, is 
compared to the JRockit version used in previous test 
sessions due to SPECjbb2000 scores. In Figure 8 the 
results of a test session with full occupancy from the 
beginning are presented. As mentioned before, the RLS 
is learning until the 30000th time step (decision).  
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Figure 8 The figure illustrates the performance of the RLS using 
one state feature compared to JRockit of a SPECjbb2000 session with 
full occupancy from the beginning. 

The average performance scores of both systems are 
presented in Table 1. As may be observed, the use of 
the RLS for the decision of when to garbage collect 
improves the average performance by 2%. That number 
already includes the learning period. If the learning 
period of the RLS is excluded (i.e. measured after 
approximately 30000 decisions), the average 
improvement when using the RLS is 6%.  
Table 1 The table illustrates the average performance results of 
the RLS using one state feature and JRockit, when running 
SPECjbb2000 with full occupancy. 

System Average score 
(learning incl.) 

Average score
(learning 
excl.) 

JRockit 22642,86 23293,98 

RLS 23093,08 24775,43 

Improvement (%) 1,98832 6,359799 

 

8 Discussion and Future Developments 
The preliminary results of our study indicate that 
reinforcement learning might improve existing garbage 
collection techniques. However, a more thorough 
analysis and extended benchmark tests are required for 
an objective evaluation of the potential of 
reinforcement learning techniques for dynamic memory 
management.  

The most important task of future investigation is to 
systematically investigate the effect of using additional 
state features for the decision process and to investigate 
their usefulness for making better decisions.  



  

The second important aspect is to investigate more 
complex scenarios of memory allocation, in which the 
memory allocation behavior switches more rapidly and 
less regularly. It is also of interest to investigate other 
dimensions of the garbage-collection problem such as 
object size and levels of references between objects, 
among others. It is important to emphasize that the 
results above are derived from a limited set of test 
applications that cannot adequately represent the range 
of all possible applications.  

The issue of selecting proper test application environ-
ments also relates to the problem of generalization. The 
question is: how much does training on one particular 
application or a set of multiple applications help to 
perform well on unseen applications? It would be 
interesting to investigate how long it takes to learn from 
scratch or how fast an RLS can adapt when the 
application changes dynamically.  

Another suggestion for improving the system is to 
decrease the learning rate more slowly. The same 
suggestion applies to the probability of choosing a 
random action in order to achieve a better balance 
between exploitation and exploration. The optimal 
parameters are best determined by cross-validation.  

An approach for achieving better results when more 
state features are taken into account might be to 
represent the state features in a different way. For 
instance, radial basis functions, mentioned earlier in 
this report, might be of interest for generalization of 
continuous state features. An even better approach 
would be to represent the state features with continuous 
values and to use a gradient-descent method for 
approximating the Q-function. 

It seems that that the total number of state features is a 
crucial factor. JRockit considers only one parameter for 
the decision of when to garbage collect. The 
performance of the RLS was not improved using two 
state features, likely due to the enlarged state space. 
The question remains, whether the performance of the 
RLS improves if additional state information is 
available and the time for exploration is increased. The 
potential strength of the RLS might reveal itself better 
if the decision is based on more state features than 
JRockit uses currently.  

Another important aspect is online vs. offline 
performance. How much learning can be afforded, or 
shall only online-performance be considered? That of 
course is also a design issue for JRockit, which relies 
on a more precise definition of the concrete objectives 
and requirements of a dynamic Java Virtual Machine.  

Once a real system has been developed from the 
prototype, it can be used to handle some of the other 
decisions related to garbage collection proposed in this 
report.  

It is recommended to investigate this research area 
further, since it is far from exhausted. Considering that 
the results were achieved using a prototype that is 
poorly adjusted in several aspects, further development 
might lead to interesting and even better results than 
obtained within the restricted scope of this project.    

9 Conclusions 
The trade-off that every garbage collecting system faces 
is that garbage collection in itself is undesirable, as it 
consumes time from the running program. However, if 
garbage collection is not performed the system runs the 
risk of running out of memory, which is far worse than 
slowing down the application. The motivation for using 
a reinforcement learning system is to optimize this 
trade-off between saving CPU time and avoiding 
exhaustion of the memory. 

This report has investigated how to design and 
implement a learning decision process for a more 
dynamic garbage collection in a modern JVM. The 
results of this thesis show that it is in principle possible 
for a reinforcement learning system to learn when to 
garbage collect. It has also been demonstrated that on 
simple test cases the performance of the RLS after 
training in terms of the reward function is comparable 
with the heuristics of a modern JVM, such as JRockit. 

The time it takes for the RLS to learn also seems 
reasonable since the system only runs out of memory 5-
10 times during the learning period. Whether this cost 
of learning a garbage collecting policy is acceptable in 
real applications depends on the environment and the 
requirements on the JVM. 

From the results in the case of two state features, it 
becomes clear that using multiple state features 
potentially results in more complex decision surfaces 
than simple standard heuristics. Observations have also 
been made that there exists an evident trade-off 
between using more state features, in order to make 
more optimal decisions, and the increased time required 
for learning due to an enlarged state space. 

From the above results one can learn that the use of a 
reinforcement learning system is particularly useful if 
an application has a complex dynamic memory 
allocation behavior, which is why a dynamic garbage 
collector was proposed in the first place. It is 
noteworthy to observe that machine learning through an 
adaptive and optimizing decision process can replace a 
human designed heuristic such as JRockit that operates 
with a dynamic threshold. 



  

This article is an excerpt of the project report 
Reinforcement Learning for a Dynamic JVM [6], which 
may be obtained by contacting the author at: 
eva.andreasson@appeal.se. 
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