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Abstract

The Java HotSpotTM Server Compiler achieves improved asymptotic performance through a combination of ob−
ject−oriented and classical−compiler optimizations. Aggressive inlining using class−hierarchy analysis reduces
function call overhead and provides opportunities for many compiler optimizations.  

1. Introduction
Performance for the JavaTM Platform has evolved in
stages. Early VM’s were interpreter−only. Later
VM’s were interpreter plus template generated code,
and finally interpreter plus optimized code. The Java
HotSpot Virtual MachineTM improves performance
through optimization of frequently executed applica−
tion code. The Client version provides very fast com−
pilation times and a small footprint with modest levels
of optimization. The Server version applies more ag−
gressive optimizations to achieve improved asymptotic
performance. These optimizations include class−hier−
archy aware inlining, fast−path/slow−path idioms,
global value−numbering, optimistic constant propaga−
tion, optimal instruction selection, graph−coloring
register allocation, and peephole optimization.

The first section describes the runtime environment
that both the compiler and generated code execute
within. Section two summarizes the structure of the
server compiler. Sections three through section sev−
enteen cover each phase of compilation in order. So−
lutions for specific language and runtime issues are
described close to the compilation phase that addresses
them. Last is a short description of phase costs and
performance of generated code. Some names that oc−
cur in the compiler’s source code are used within the
text for readers who download the source under Sun’s
Community Source License [HS2.0]. The first occur−
rence of these names is emphasized to avoid confu−
sion.

2. Runtime Environment

The server compiler generates code to execute within a
runtime environment that also supports interpreter−

only, Core, and interpreter plus client compiler exe−
cution. The runtime environment provides services
which impact the performance of both compilation and
the generated code. Several of the most significant
features are: a single native stack per running thread
for interpreting and executing compiled or native
code, accurate garbage collection using card−marks,
exception handling, efficient synchronization using a
meta−lock [ADGKRW00] [BKMS98] [B98], class−
hierarchy analysis, compilation events, on−stack re−
placement of interpreter frames with compiled−code
frames, deoptimization from compiled code back to
the interpreter, a compiler interface that supports
compilations in parallel with garbage collection, and
runtime support routines which may be generated at
system startup.

The runtime generates the interpreter at startup using
macro assembler templates for each bytecode and an
interpreter dispatch loop [G99]. This provides assem−
bly level instrumentation that collects counts at
method entry and backward branches, type−profiles at
call sites, and never−null object pointers for instanceof
or checkcast bytecodes. Additional instrumentation
has been implemented, e.g., branch frequencies, but is
not turned on by default.

The runtime environment uses adaptive optimization
to focus compilation efforts on performance critical
methods [HU96]. These methods are identified using
method−entry and backward−branch counters with
additional heuristics that investigate the caller of a
triggering method. When the combined method−entry
and backward−branch counters for a method exceed
the CompileThreshold, the runtime system determines
which method to make the root of a compilation by



examining the call stack. If the caller frequently in−
vokes the callee, the recompilation policy may decide
to start compiling at the caller. This upwards traversal
may continue multiple times relying upon the compiler
to inline the path to the triggering method. Compiled
code for the standard entry point is registered with the
method object (methodOop)in a reserved field. At
method invocation, the interpreter transfers control to
compiled code when this field is not null. A different
transition, on stack replacement, occurs when a
method’s combined counter exceeds theOnStackRe−
placeThresholdat a backward branch. The method is
compiled with an entry point at the target of the back−
wards branch. The resulting code is registered with
the methodOop, which contains a linked list of target
bytecode index and compiled−code pairs.  The runtime
transfers execution from the interpreted frame to an
on−stack−replacement frame and compiled code. The
methodOop is used to cache other information as well,
including the possibility that the compiler has refused
to generate code for a method. A non−compilable
method will always be run within the interpreter. This
is used to support porting and debugging.

3. Compiler Overview

The server compiler proceeds through the following
traditional phases: parser, machine−independent opti−
mization, instruction selection, global code motion and
scheduling, register allocation, peephole optimization,
and code generation.  

The compiler’s intermediate representation (IR) is a
static single assignment graph (SSA) based on the
work done by Click and Paleczny [IR95]. It is used
throughout optimization, conversion to machine in−
structions, scheduling, and register allocation. Opera−
tions are represented by nodes which have an ordered
tuple of use−def edges pointing to nodes that produce
values it requires. Both data and control flow are rep−
resented with explicit edges.  When control−flow paths
merge, e.g., after the body of an if statement, aRe−
gionNodeis built to merge the control edges. Values
modified along these control paths are merged by a
PhiNode, which has an edge to the RegionNode and a
sequence of edges for the inputs. The order of these
inputs corresponds to the order of control inputs to the
RegionNode. In practice, the parser only builds re−
gions and phis where control flow paths merge, not at
the start of each basic block. In the resulting structure,
values often flow directly from definition to use and
not through control flow. This simplifies sparse
analysis and optimization but additional structure is
required to describe information resulting from control
decisions. An example is the information that an ob−
ject reference is null on one path after an explicit null−
check and not−null on the other. To add information

to a type we insert a new definitionCheck−
CastPPNodeduring parsing. This retains the infor−
mation until the value is merged into a phi. In addi−
tion to null, not−null, and the object hierarchy, the
type system handles primitive types and the control
type. During a non−optimistic analysis phase, a
"TOP" control input immediately signals that this
control flow path is dead.

4. Parser

The parser’s first pass over the bytecodes identifies
basic blocks and their predecessors. The second pass
visits basic blocks and for each block translates each
bytecode to the compiler’s IR. The basic block pars−
ing order will visit a block whose predecessors have
been parsed before a block with unparsed predecessors
whenever possible. This makes type propagation dur−
ing parsing as beneficial as possible without requiring
backtracking. After parsing has completed, def−use
edges are constructed in a batch pass to eliminate any
useless code produced by the parser. These def−use
edges are maintained during optimization until a ma−
chine−specific representation is constructed.  

Since there are bytecodes at both low and high levels
of abstraction, the number of nodes in the IR used to
represent a bytecode varies widely. The bytecode
iload_<n> does not require any IR construction be−
cause the parser tracks the status of locals, expression
stack, and monitors in aJVMStateobject. We trans−
late this by updating an entry in the currentJVMState
object such that its top of the expression stack contains
a pointer to the indicated local. Other low−level
nodes require the construction of one or more IR
nodes. An example of this isiadd where two entries
are popped off the JVMState expression stack and
AddINodeis built. This node has a null control edge
and two inputs, pointers to the nodes that were popped
off the expression stack. Before pushing the result
onto the JVMState’s expression stack the AddINode is
optimized. The optimizations applied during parsing,
Ideal, Value, Identity, GVN, are a subset of those ap−
plied during post−parse optimization since def−use
information is not available. Ideal canonicalizes the
node structure locally and upwards along use−def
edges. It may reorder the inputs to a commutative op−
eration like AddINode to support value−numbering or
even construct replacement nodes as in the conversion
of (constant + (constant + variable)) to (variable +
(constant + constant)). Value performs abstract inter−
pretation to produce a type for the result of this node.
This transformation constant folds (constant + con−
stant) to (constant). Identity recognizes when the re−
sult is equivalent to one of its inputs and returns that
input instead. This transformation cleans up (variable
+ zero). Finally, global value numbering checks a



hash table to see if this node’s value is already re−
corded. If it is, the node that previously produced it is
returned and the newly constructed node is discarded.
For new values we record the pair
<AddINode::hash_code(), &AddINode>.  

When parsing a higher−level bytecode, instanceof, we
apply the transformations to each node in turn. The
generated IR first checks if the object is null. When
the result of this check can be determined at parse−
time, by inspecting the compiler’s type for the input,
the never taken branch will not be constructed.  For the
not−null branch, we generate a fast/slow path id−
iom. A fast/slow idiom is a diamond−shaped control
flow graph (CFG) where the expected case is to do
quick checks along the fast path to confirm a result.
When some portion of the fast path fails, control
transfers to the slow path which covers all remaining
cases. Forinstanceof, the fast path checks a two−ele−
ment class cache to see if this object’s class has re−
cently been verified as being the desired instance. If
this fails, the slow path calls a runtime routine that
checks the subtype relationship and updates the cache
as necessary. We did not implement a failure cache as
preliminary investigation did not confirm a perform−
ance improvement for common programs.  

Object allocation provides another example of a
fast/slow idiom. The fast path has an atomic test and
set of the heap top. If the new heap top is safe, fast−
path allocation is complete. If it has exceeded the up−
per limit for this memory space, execution continues to
the slow path and the thread is stopped at a safepoint
for garbage collection. Allocation of objects with fi−
nalizers is also done by the slow path since finalizer
registration is done within the runtime system. Addi−
tional fast/slow path idioms are generated for check−
cast, object array store, other types of object alloca−
tion, and division by zero.

5. Uncommon Traps

In HotSpot, we compile methods that have crossed a
threshold. In most cases any necessary class initiali−
zation or class loading has already been done by the
interpreter which handles all initialization seman−
tics. We investigated having the generated code han−
dle class initialization properly and discovered that it
is too rare. Instead the compiler generates an uncom−
mon trap, a trampoline back to interpreted mode, when
it compiles a reference to an uninitialized class. The
compiled code is then deoptimized and it is flagged as
being unusable. Threads entering the method are in−
terpreted until its recompilation is finished. As a side
effect, field offsets are always known so short−form
addressing modes can be used without backpatching.  

6. Call Sites

All invokeXbytecodes are parsed in a single function,
do_call, to keep related pieces of code together.
do_call starts by checking that the destination method
is loaded, its holder is initialized, and the return value
is loaded. Failure at this point results in generating an
uncommon trap instead of the call. After checking
these safety conditions, do_call inlines the callee or
generates one of two distinct calling mechanisms,
static or dynamic.Staticcalls dispatch directly to the
verified entry point of a method and are used for static
calls and non−inlined virtual calls that have only one
receiver. Dynamiccalls dispatch to the unverified en−
try point of a method and are preceded by an instruc−
tion that places an inline cache holder in a register.
The unverified entry point compares the dynamic re−
ceiver’s class to the class in the inline−cache. If the
unverified entry point fails then control transfers to a
runtime routine to patch the call−site. Since any non−
final virtual method may be invoked using this tech−
nique, the inline−cache register is not used for passing
normal arguments. Inline caches have been used for
dynamic object−oriented languages since Smalltalk 80
[DS84].

Virtual and interface calls are examined to determine
if there is only one receiver. First with class hierarchy
analysis (CHA) and second with receiver profiling
done during interpretation. If CHA identifies a single
receiver the callee will either be inlined or called as an
optimized virtual call using the static call mechanism.
In these cases we record that this method is dependent
upon the class hierarchy below the receiver class. A
later class load could provide another implementation
of the target method requiring deoptimization of the
compiled code [HCU92]. The mechanism is described
in the next section. Inlining recursively invokes the
parser on the target method to generate an intermedi−
ate representation of the callee with the type informa−
tion at the call−site available as context. If CHA does
not identify a single target but the receiver profiling
record only has a single class as receiver, we generate
runtime verification code and inline the target method.
Unlike the approach taken by IBM [SOTYKIKN00],
the failure path does not form a diamond containing
the inlined method on one side and a virtual call on the
other since the merge point would destroy the precise
information gained by the explicit check. Instead the
failure path generates an uncommon trap, resulting in
deoptimization and recompilation of the method if the
receiver changes. This is a modification of uncom−
mon−branch−elimination [HU96] which normally
clones the rest of the method for the infrequent path.
A CheckCastPPNode is inserted to force the type of
the receiver to the profiled type, eliminating the need
for such checks later in the method.  



Although inlining provides the most opportunity for
optimization, making a virtual call has its own re−
wards. A non−inlined virtual call does an implicit
check that the receiver is not null. After these call−
sites a CheckCastPPNode forces the callee−type to
not−null.  

Exception paths are connected after either inlining or
creating a call node. If inlined, all exceptions thrown
by the callee are checked against a list of handlers in
the caller. When a matching handler is available, the
generated code verifies correctness and jumps directly
to the handler. If the correct handler can not be iden−
tifed, e.g., caller does not have a handler, the callee’s
exception path becomes a rethrow and the runtime
system finds the handler. Since exceptions are con−
sidered infrequent, exception regions are not registered
during normal execution as in [SOTYKIKN00]. Al−
though this reduces the impact on non−exception
throwing code, the runtime may have to traverse the
stack to find a handler.  

7. Deoptimization

If class loading invalidates inlining or other optimiza−
tion decisions, the dependent methods are deoptimized
[HCU92]. Threads currently executing in the method
are rolled forward to a safepoint, at which point the
native frame is converted into an interpreter frame.
The invalidating class load is not visible to the execut−
ing thread until it has been brought to a safepoint.
Execution of the method continues in the interpreter.

Deoptimization, therefore, requires that we can regen−
erate the interpreter’s JVM state at various points in
the program. This is very much the same information
required to debug optimized code. We do this by re−
cording the exact JVM state as inputs to safepoints and
procedure calls. The entire JVM state is thus "live"
into the safepoint. We then allow the optimizer and
register allocator to do their best with this JVM state
information. Finally, during code emission we build a
table mapping the JVM state to the final resting place
of the still−alive JVM state information. The result is
well optimized (but not perfectly well optimized) code
with exact JVM semantics at specified program points.
The result of keeping JVM state around is that some
extra values remain "live" longer. These long−lived
values generally spill to the native stack frame and
have no more cost than an extra store in the final code.

8. Optimizer

Since parsing attempts to visit a block after all of its
predecessors, it is at loop headers that further progress
from the set of parse−time optimizations is possible.

To avoid revisiting nodes that are already at a fixed
point, the parser produces a worklist containing nodes
that may benefit from additional transformations. The
results of prior abstract interpretation are also provided
as input to the next phase, iterativeGVN. PhaseIt−
erGVNapplies a pessimistic sparse iterative algorithm
until it reaches a fixed point. This is done after build−
ing Def−Use edges and then forward propagating
changes from Ideal, Value, Identity, and GVN trans−
formations for all nodes on the worklist. As described,
this will only reach a fixed point for optimizations that
inspect their immediate definitions since an interme−
diate node might not change value stopping the itera−
tion. To ensure a fixed−point for transformations that
inspect a node’s grandparents, the iteration inspects
grandchildren for additional nodes that must be added
to the worklist. Optimizations that use def−use infor−
mation to inspect their children are not required for
program correctness and are not guaranteed to reach a
fixed−point.

The next phase,PhaseIdealLoop,iterates until no
"major" control−flow changes occur. Major changes
occur in the following cases: a loop becomes dead; an
’if’ is removed because it is duplicated by a dominat−
ing test; an ’if’ is cloned upward through a region.
The cloning only occurs when at least one cloned "if"
will fold away. This optimization is enabled by de−
fault starting with the Solaris Kestrel Release. During
this phase loop peeling removes null checks from in−
side the loop.

The last pair of machine−independent optimizations
re−apply constant propagation and iterative GVN until
a fixed−point to perform global dead code elimination.
The constant propagation algorithm is optimistic
sparse conditional constant [WZ85] where forward
propagation starts with each value initialized to TOP.
Constant propagation also places some grandchildren
on the worklist to support Value calls that examine
their grandparents. This occurs for aCatchNodefol−
lowing a call, which defines exception paths, since it
examines not only the value of the call node but also
the value of the receiver parameter. The standard re−
turn path following the call is not enabled until after it
is proven that the receiver input may not be null. Be−
fore a call node is pushed onto the worklist its uses are
examined to find the CatchNode and push it onto the
worklist. A similar investigation is performed before
placing a RegionNode onto the worklist since its value
might not change when a control−flow input changes,
but PhiNodes that depend upon it must update their
value if a control−flow path becomes dead.

After constant propagation has reached a fixed point,
nodes that have been identified as constant are re−
placed in a recursive use−def traversal that updates



both use−def and def−use information. During this
traversal any control dependence information main−
tained by cast−nodes, e.g., CheckCastPPNode, is
transferred to memory operations that use the address.
This allows safe removal of unnecessary cast−nodes in
the next GVN pass. In addition, a worklist is gener−
ated so the following iterative GVN pass does not ex−
amine the entire program. The worklist is initialized
with nodes that use the newly discovered constants. It
also contains "if", "region", and "loop" nodes plus
conversions from integer to boolean and pointer to
boolean. These nodes are likely to benefit from the
optimistic type information generated during constant
propagation. In particular, null checks benefit from
improved null/not−null type information.

9. Instruction Selection

Translation from machine−independent instructions to
machine instructions uses a bottom−up rewrite system,
BURS [PLG88]. This is done before placing instruc−
tions into basic blocks so that the selection is unen−
cumbered by block boundaries. Before translation the
sea−of−nodes that exists during optimization is di−
vided into possibly overlapping subtrees by labeling
each subtree’s root node. Subtree root candidates are
nodes with multiple users and nodes that may not be
duplicated because of side−effects, e.g., the atomic
add idiom for memory allocation. By convention a
root produces its result in a register so the value may
be shared without recomputation. Shared nodes that
are not labeled as roots are reached by multiple paths
producing duplicate computation. Root selection is
preferenced to only duplicate address expressions and
other idioms that the machine architecture can sub−
sume into one instruction. Nodes that are not trans−
lated to machine instructions, e.g., PhiNodes, are re−
corded in a dontcare array.  

Machine specific nodes for each subtree are generated
in two steps. First a postorder walk along use−def
edges starts from a selected root and visits all children
recursively unless the child is a root, is not matchable,
or has a different control input than the walk. When
visited, the node and the possible translations of its
children, recorded in aState object, are passed to a
deterministic finite automata (DFA). The DFA rec−
ords the lowest cost instruction for each possible result
in a new state vector for use when the node’s parent is
visited. This process provides optimal instruction se−
lection within the constraints of subtree selection, ac−
curate costs for machine instructions and operands,
and available instructions in the architecture descrip−
tion. The result of the postorder walk is a binary state
tree identifying the least−cost instruction to generate at
each level. Recursively traversing a state tree, the
preorder visit generates the lowest execution−cost ma−

chine instruction for that level. The postorder visit at−
taches the instructions generated for its inputs. Addi−
tional edges are inserted for machine−independent in−
formation including memory and control.  

10.Global Code Motion

The framework used to place instructions into basic
blocks is a modified version of that described in
[C95]. Our first step is to build a control flow graph
skeleton of basic blocks. Virtual calls for
is_block_startand is_block_proj identify nodes that
start and end blocks respectively. Since the sea−of−
nodes representation does not contain a block start or
region node for each block, one is constructed where
necessary. Next we compute dominator information
for each block using the algorithm by Lengaur and
Tarjan [LT79]. Block frequency estimates are gener−
ated using two forward passes. The first does forward
propagation from method−start in reverse postorder
scaling loop header frequency upwards by ten and
splitting frequency at ifs using the probabilities re−
corded during parsing. The second pass updates block
frequencies using information from all predecessors
instead of only the depth first path from start. This
propagates information around loops. An additional
update done during the second pass sets the block fre−
quency of any block ending with a halt instruction to
medium−rare.

We assign instructions to blocks in three stages. The
first stage identifies the earliest legal block for each
instruction. This is done recursively by examining the
earliest legal block for each input and finding the one
which is deepest in the dominator tree. The base cases
are provided by the nodes pinned into the basic block
skeleton which include: Start, Region, Phi, Goto, and
Return. The second stage identifies the latest legal
block for each instruction during a depth−first walk
over def−use edges. The def−use information used
during optimization was lost when new machine−spe−
cific nodes were generated so it is rebuilt at the start of
scheduling. The depth−first walk’s postorder visit to a
node computes its latest legal placement as the least
common ancestor of all uses. If the node is a store to
memory we insert any required anti−dependence
edges, an edge from the store to a load that must pre−
cede it. Control−flow and memory alias analysis are
used to identify loads and stores that are independent,
known to access distinct memory locations, allowing
more scheduling freedom. This late insertion of anti−
dependence edges requires that the depth−first walk
visit all children which may be loads after their sib−
lings. A store can fail to schedule if a load that must
precede it has been placed into too late a block. Stage
three selects a block between the earliest and the latest
legal location by walking up the dominator tree and



identifying the block with least frequency. This is
done during the postorder visit after computing the
latest−legal block and inserting required anti−depend−
ence edges.

11.Local Scheduler

The local scheduler orders instructions internal to a
basic−block by selecting from a worklist of ready
nodes and placing the selected instruction at the next
available position. An instruction is placed on the
ready list when all of its inputs within the block have
been selected. Inputs from instructions in different
blocks are not considered. The select routine com−
putes a score for each ready instruction and returns the
one with the highest score. The initial score is deter−
mined by several heuristics (e.g., nodes that only have
uses outside the current block start with a lower score
to encourage scheduling them late.) An instruction
that stores to memory or the stack is given a higher
initial score to free any registers its inputs may be us−
ing. The initial score is biased to delay loads and pre−
fer instructions with many inputs.

12.Global Register Allocator

The register allocator is structured in three phases.
The first phase converts the SSA based CFG into non−
SSA form (SSA structure is also retained at this point
for use in the allocator.) The second phase is the main
allocation loop, which is fundamentally a Briggs−
Chaitin Graph Coloring Global Register Allocator with
a number of refinements for both allocation speed and
code quality.  The third phase is a cleanup phase which
manifests and cleans up the instructions generated by
the allocator, and records Garbage Collection infor−
mation.

Our allocator has a number of special features. We
use our allocator to perform the normal duties of a
calling convention module. That is, our calling con−
vention merely specifies the legal registers for values
which flow into calls, and we allow the allocator to
generate any necessary instructions to move the values
to the appropriate locations prior to the call. In addi−
tion, we use the allocator to allocate locations on the
hardware stack frame as if they were registers, thus
minimizing frame size. We also replace standard
stack based spilling for live ranges which fail to color,
with a special form of live range splitting. Finally, we
use the allocator to generate the information necessary
to perform garbage collection during execution of the
compiled code.

13.Reverse SSA Transform

Since our IR uses an SSA based structure, we must

have a phase in the compiler which converts from the
SSA form of the program to the non−SSA form. We
have chosen to integrate this phase with the Register
Allocator.  We perform a pass over the CFG which in−
serts "virtual copies" at phi node sites. These "virtual
copies" are virtual in the sense that we do not fully in−
sert the nodes into the graph until later. We then per−
form global live analysis on the annotated CFG, and
gather information about the legal set of registers for
each live range. Using that information, we construct
an "interference graph" (IFG) for the method. The
IFG represents the analysis of which live ranges "in−
terfere", that is, could compete for the same registers.

We then use the IFG to perform a pass of copy coa−
lescing. This pass is aggressive in the sense that it
could remove a copy which we will later have to rein−
sert, but it is pessimistic in the sense that it assumes
that copies are necessary, and attempts to prove that
they are not. This special coalescing pass only works
on the virtual copies inserted during the reverse SSA
transform. Any virtual copies which remain after the
aggressive coalescing pass are then converted to actual
copy instructions in the CFG. The CFG then contains
the non−SSA version of the method, while the normal
IR version of the method is also retained with its SSA
form and phi nodes. This dual representation allows
us to perform SSA based analysis and optimizations
while ensuring that we allocate all the copies neces−
sary to restore normal naming. Finally, we execute a
pass over the CFG which inserts extra uses of object
pointers which serve as the base of a derived pointer.
These extra uses are added at safepoints in order to
ensure that the base object pointer values are still live
and available at the safepoint location so that the gar−
bage collector can inspect and relocate them.

14.Main Allocation Loop

The principal work of register allocation is performed
in an iterative loop. We perform live analysis, gather
the legal register sets for the live ranges, and build an
IFG for the method. Then we perform a conservative
pass of copy coalescing (i.e., we only coalesce where
we can prove that removing the copy will not force
another interfering live range to fail to color.) This
pass is followed by the standard simplification and
color selection phases of a graph coloring alloca−
tor [BCT94]. Finally, if we fail to color all live
ranges, we perform a transform which splits any live
range which failed to get a color into a series of
smaller live ranges connected by copies. Then the
process repeats until a complete coloring is found.

Our implementation of a graph coloring allocator has a
few special features designed to improve the speed of
the allocator as well as to improve the quality of the



code generated. During the construction of the IFG,
we transform the legal register set for live ranges
which interfere with what we call "bound" live ranges.
Bound live ranges are those which are restricted to a
single predefined register. A typical example of this is
found in the arguments to a call which are passed in a
register specified by the calling convention. Since
these live ranges must color into that particular regis−
ter, we remove that register from the legal register set
of all live ranges which interfere with the bound live
range, and which are not also bound. This signifi−
cantly reduces the number of interferences in the IFG,
and speeds the computation of the IFG.

In addition, we also track a metric of "register pres−
sure" during IFG construction. Each basic block is
tagged with a value which indicates that the block has
either high or low register pressure, and where in the
block a transition from low to high pressure takes
place. We use this information during our live range
splitting pass. This pass performs a reaching defini−
tions data flow propagation, inserting copies into any
live range which failed to color at any point where that
live range crosses a high register pressure boundary.
The copies are tagged with a special legal register set
which allows them to color onto the stack rather than
in the hardware registers. This splitting has two bene−
fits. It inserts fewer copies than splitting at every use
and definition which speeds up copy coalescing and
live analysis. In addition, since we split with a copy,
the new live ranges could still color into registers even
though the original unified range could not. This col−
oring would include some register to register copies,
which are far less expensive than loads and stores.
These special features are more completely described
in [CPV01].

15.Cleanup

The third phase of the allocator performs several
cleanup and bookkeeping functions. We remove un−
necessary copies using a variant of register tracking to
determine that a value that was split can actually live
in a single location given the actual coloring assigned
to the method. Then we gather and output the infor−
mation necessary for garbage collection. This includes
the location of all object pointers which are alive
across a safepoint, as well as the location of all values
which are callee saves in the method, and all necessary
computation information for derived pointers which
have an object pointer as their base. Finally, we per−
form a pass which transforms our special copies which
were inserted during live range splitting and which
failed to be colored into a hardware register (i.e., they
were colored onto the hardware stack frame), with the
appropriate load or store instruction. This pass also
performs a special optimization on CISC architectures

which attempts to combine these loads or stores into a
direct memory reference with either a user or definer
of the value being copied, which we refer to as "CISC
spilling". This process produces the final version of
the CFG which we use for output in the final phase of
compilation.

16.Peephole Optimizer

This optimization inspects each sequence of adjacent
instructions to determine if the instructions may be re−
placed by a better sequence [ASU86]. The machine
independent portion of this optimization visits every
instruction, and invokes its machine−dependent peep−
hole optimization. This is a virtual call built by our
portability framework from information in the archi−
tecture description. The operands of instructions in
the original sequence can be required to satisfy
equality constraints to ensure the safety of the trans−
formation. A commonly applied peephole on the
IA32TM platform is replacement of "MOV dest_reg,
src_reg" followed by "INC dest_reg" with the single
instruction "LEAL dest_reg, dest_reg + 1". The
equality constraint requires that the destination of the
move and the register being incremented are identical.
The current implementation restricts the replacement
to a single instruction.

17.Code Generation

In addition to executable machine code, the code gen−
erator also provides oopmaps, debug info, exception
tables, relocation information, and an implicit−null
check table for use by the runtime system. All of this
information is associated with one or more native−
code offsets from method entry. Oopmaps and debug
info are associated with the offset to their safepoint.
Oopmaps are generated during register allocation and
the code generator simply packages this information
for the runtime. Safepoints at which a deoptimization
may occur also record debug info describing either the
constant value or native storage location for monitors,
locals, and expression stack entries. The storage loca−
tion may be a register or a stack frame offset. An ex−
ception handler table at each call−site maps the byte−
code index for each handler to its handler’s offset.
This table is used by the runtime system to vector ex−
ceptions to the correct handler in generated code when
the transition can not be determined at compile−time.
Relocation information supports movement of the
generated code from the buffer in which it is generated
to its installed location in theCodeCache. The
method’s implicit null check table contains each offset
at which an implicit null check may occur, paired with
the corrsponding handler’s offset.



As a preliminary step to generating code and runtime−
system tables, we calculate the size of the executable
by sizing each instruction. While this is straightfor−
ward on RISC architectures, time pressure and engi−
neering simplicity led us to generate size information

for CISC architectures by doing code generation twice.
The first pass generates code for every instruction in a
temporary buffer to calculate instruction size, basic
block start/end, relocation size, reserve space for con−
stants, and the return address for calls.  

With all sizes and offsets computed, we give branch
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instructions their offsets. If the target architecture
provides a shorter branch instruction format for local
displacements, a replacement can be generated using
the virtual methodshort_branch_versionprovided by
the portability framework. Final code emission is
done using the sameMachNode::emitvirtual used for
the earlier size calculations, which emits raw machine
object code into a buffer which is returned to the run−
time system as the primary result of the compila−
tion. The compiler interface relocates the generated
code to the CodeCache and registers it with the meth−
odOop.  

18.Floating Point Precision

On the IA32TM architecture HotSpot normally executes
with the FPU control word set for 53−bit precision and
round to nearest. This means that when executing a
non−strict method the result of each float operation
must be restricted to 24−bit precision, generally by
spilling to memory or the stack. Before performing
instruction selection, we count the number of float,
double, and invoke actions. When the following heu−
ristic is satisfied we switch to 24−bit floating point
mode: ( #doubles == 0 && #floats > 32 && #floats >
10 * #calls ). This mode modifies instruction selection
such that individual floating point operations do not
have to be spilled to the stack until assigned. In addi−
tion, at method entry and upon return from any outgo−
ing call the FPU control word will be set to 24−bit
precision. Before every method exit point and every
outgoing call the FPU control word is returned to the
system’s default 53−bit precision.  

19.Experimental Results

The server compiler applies both object−oriented op−
timizations, such as class hierarchy based inlining, and
traditional compiler optimizations, such as memory
alias analysis and global value numbering. The results
for two target platforms are presented in bar charts
with one column for each optimization per benchmark.
Each column is normalized to the performance of the
downloaded sources. The first pair of charts illustrates
four variations in inlining; the second pair illustrates
two compiler optimizations. These benchmarks are
from the SPECjvm98 client suite [SPEC98]. The re−
sults are from test mode execution, the benchmarks are
run as a group from the command line, not in SPEC−
compliant mode. TheSPARC platform is a Sun Ultra
60 with the process bound to one of the 450MHz.
UltraSPARC−II processors. The IA32 platform is a
Dell Dimension XPS B866r with 256 MB memory. 

The inlining tests cover four variations. The first, no
inlining, turns off all inlining during compilation. It
also turns off the possibility of starting a compile at

the caller when a method’s counter reaches the acti−
vating threshold. The second only allows inlining of
accessor methods. The third uses the default inlining
heruristics but does not inline virtuals since there may
be multiple receivers. In addition, it does not inline a
virtual call when the interpreter’s call−site profile has
seen only one receiver. The results of these three tests
are normalized to the performance of the default pa−
rameters in the sources. All of the tests use inline
caches to improve the efficiency of non−inlined vir−
tual calls.  

The compiler optimization tests illustrate the applica−
tion of two different optimizations, memory alias
analysis and global value numbering. The first test,
Alias0, does not use memory alias analysis to deter−
mine when field accesses are made to distinct memory
locations. In addition, accesses to the heap are serial−
ized with respect to accesses to internal data struc−
tures. The second, Alias1, distinguishes between ac−
cesses to an object field, an array length, a class
pointer in the object header, and a VM private mem−
ory space. The default analysis further partitions
memory using the class holder and offset for a field,
the element type for an array, and additional distinc−
tions for internal data. The fourth column for each
benchmark uses the default alias analysis but disables
global value numbering except for control structures
and comparisons (which is required by implementation
constraints).

Inlining accessors shows a small improvement on all
benchmarks except compress and db where the differ−
ences are not significant. Larger improvements occur
from more extensive inlining even without inlining
virtual calls. OnSPARC this provides a 20% im−
provement for JESS while on IA32 it provides a 12%
improvement for JACK. Inlining based on class hier−
archy analysis almost doubles the performance of
MTRT, but provides only minor imprevements to four
benchmarks on SPARC and five on IA32. On most of
the benchmarks, enabling inlining helps SPARC more
than IA32. The heuristics that control this optimiza−
tion are tuned for each platform, and the larger register
set on SPARCallows additional inlining without hurt−
ing register allocation.

The compiler optimization results show that memory
alias analysis improves performance by up to 17%.
On both architectures the largest improvements occur
in COMPRESS and MPEGAUDIO while three of the
benchmarks are unchanged on both platforms. The
intermediate level of alias analysis, Alias1, provides
small improvements for those benchmarks which vary.
The last column for each benchmark shows the per−
formance when not using global value numbering, an
optimization which commons together equivalent



subexpressions. One common source for these ex−
pressions is array accesses. The largest benefit on both
platforms is from MPEGAUDIO which does have fre−
quent array accesses. Global value numbering pro−
vides significant performance improvements on
SPARC, it has less impact on IA32. While the dupli−
cate expressions are present after optimization on both
platforms, but simple array access expressions can be
folded into a CISC load or store when converting to

machine instructions.

20.Experiences

The server compiler emphasizes the quality of gener−
ated code, relying upon the 80/20 rule to spend more
time optimizing frequently executed code. This costs
compilation time with the approximate breakdown be−
ing 14% parser, 20% optimizer, 6% instruction selec−
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tor, 7% scheduler, 49% allocator, 4% code generator.
However, the resulting performance helps achieve a
SPECjvm98 score of 81.4 on a Dell Dimension XPS
B866r with 256MB memory [Spec98]. Source code
for  the Java HotSpotTM Virtual Machine is available for
download under terms of Sun’s Community Source
License [HS2.0].
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