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Abstract 
The Java Programming Language permits 
synchronization operations (lock, unlock, wait, notify) on 
any object.  Synchronization is very common in 
applications and is endemic in the library code upon 
which applications depend.  It is therefore critical that a 
monitor implementation be both space-efficient and 
time-efficient.  We present a locking protocol, the 
Relaxed-Lock, that satisfies those requirements.  The 
Relaxed-Lock is reasonably compact, using only one 
machine word in the object header.  It is fast, requiring in 
the uncontested case only one atomic compare-and-swap 
to lock a monitor and no atomic instructions to release a 
monitor.  The Relaxed-Lock protocol is unique in that it 
admits a benign data race in the monitor unlock path 
(hence its name) but detects and recovers from the race 
and thus maintains correct mutual exclusion.  We also 
introduce speculative deflation, a mechanism for 
releasing a monitor when it is no longer needed.   

1. Introduction  
The Java language [1] provides monitors [2][12] as the 
primary synchronization mechanism. Any object can be 
synchronized upon.  In practice, however, most objects 
pass their lifetimes without ever being involved in 
synchronization activities.  A Java Virtual Machine, or 
JVM, [3] must therefore provide the potential for 
synchronization but at a very low per-object space 
overhead.  Synchronization operations occur frequently 
in applications and in the Java runtime library, albeit 
limited to a small subset of extant objects.  It is thus 
critical that these operations have low latency to avoid 
degrading performance. Recent research in escape 
analysis and synchronization removal shows promise, 
but these techniques apply only to uncontended locking. 
Even though several recent papers have been published 
on JVM synchronization, the present work shows that 
substantial performance improvements can still be made. 

The goals for our monitor implementation are thus 
space-efficiency, time-efficiency and scalability.  The 

design described in this paper scales well to large 
numbers of threads and processors.  It shows low latency 
for uncontended monitor operations and provides high 
throughput for contended monitors.  It is space-efficient 
because it uses only one header word per object, and that 
header word may contain the object’s hashCode value as 
well.   

The Relaxed-Lock protocol is used to implement Java-
level monitors.  It is private to the JVM and is not visible 
to Java programs. 

The design described in this paper was implemented in 
the Sun Laboratories Virtual Machine for Research 
(ResearchVM). ResearchVM was previously known as 
EVM, ExactVM and the Java 2 SDK Production 
Release.  [4] describes another monitor implementation, 
called the Meta-Lock, based on ResearchVM.  Our 
implementation compares favorably to the Meta-Lock, 
requiring only one atomic instruction and one memory 
barrier to lock and unlock an uncontended monitor, while 
the Meta-Lock algorithm requires two atomic 
instructions.  Like the Meta-Lock, the Relaxed-Lock 
requires a word in the object header for synchronization.  
Both algorithms overload this header word to contain 
both the object’s hashCode value and the 
synchronization word.     

The Relaxed-Lock protocol has been implemented in 
ResearchVM for the Solaris Operating Environment, 
SPARC™ Platform Edition and Solaris IA32™.  We 
present details of the SPARC implementation, but the 
design is portable to other operating systems and 
processor architectures.  The protocol relies on an atomic 
compare-and-swap instruction (CAS on SPARC or 
CMPXCHG on IA32 processors). 

2. The Basic Locking Protocol 
The paper will first present a simplified form of the 
protocol and then describe optimizations and reduction to 
practice.  This paper focuses on lock and unlock 
operations (sometimes called enter and exit, respectively) 
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that provide mutual exclusion, and doesn’t discuss the 
wait-notify aspect of Java monitors.    

2.1. Overview 
Consider a thread attempting to lock an object.  In the 
Relaxed-Lock protocol each object contains a LockWord 
field, which is either empty or contains a pointer to a 
monitor record.  A Java thread locks an object with an 
empty LockWord by allocating a monitor record, writing 
its unique thread identifier value into the monitor 
record’s Owner field and finally inserting the address of 
the monitor record into the LockWord using CAS. If the 
CAS succeeds then the thread has locked the object.  We 
call this inflation.  Inflation associates a monitor record 
with an object.  If the lock attempt fails, the thread must 
block itself.  To unlock an object upon which no other 
threads are blocked we deflate the object – we store the 
empty value into the object’s LockWord and return the 
monitor record to the free pool.  We deflate to conserve 
monitor records.  Deflation breaks the relationship 
between a monitor record and an object.    

Now consider multiple threads locking and unlocking a 
single object where those operations overlap in time. A 
thread locks an object that is already inflated by applying 
CAS to try to insert its unique identifier into the monitor 
record’s Owner field. The locking thread may observe 
that the object’s LockWord field refers to a particular 
monitor record m.  Since the locking thread fetched this 
value, the LockWord may have changed – the unlocking 
thread may have deflated the object and returned m to the 
free pool. Other locking threads may have re-inflated the 

object with a different monitor record in the meantime.  
The monitor record m may have been reused and may 
now be associated with a different object.  The locking 
thread holds a stale monitor record pointer.  The 
Relaxed-Lock protocol tolerates references to the wrong 
monitor record.  The locking thread will detect the stale 
pointer and recover as needed.    

2.2. Data Structures 
The primary data structures related to synchronization 
are the Execution Environment (EE), the object header 
and the monitor record (monRec). Unless otherwise 
noted, each is initially zero-filled.  These structures are 
implementation specific and are not directly addressable 
by Java programs.   

2.2.1. Execution Environment 
An EE is a JVM internal data structure associated with 
each Java thread.  Each EE is attached to a Solaris user-
level thread.  ResearchVM currently uses a 1:1 thread 
model – each Java-level thread runs on top of its own 
Solaris thread. There is only one field in the EE related 
to synchronization – namely, MonFree, a pointer to the 
EE’s private monitor free list.  We use the term thread 
and EE interchangeably.   We say an EE is waiting when 
it has called an object’s wait method and is awaiting 
notification.  We say an EE is blocked when the thread is 
queued (non-ready) while attempting to lock or re-lock a 
monitor.  In ResearchVM, an EE is uniquely identified 
by its address.   

monRec 

Object 

LockWord    001 

nearClass 

EE1 (Owner) 

EE2 (blocked) 

EE3 (blocked) 

rcThis 

Nest 

Candidate 

hashCode 

Fields 

 

EntryQ 

Owner 

Figure 1. Example of an inflated object.  EE1 has locked the object and EE2 and EE2 are 
blocked on entry. 



  

2.2.2. Object Header 
Objects in ResearchVM consist of an object header 
followed by the constituent fields.  The object header 
consists of a nearClass field, which is used to identify the 
object type and to implement virtual function calls, and a 
LockWord field for synchronization.  The object 
constructor initializes the LockWord field to zero.  In 
ResearchVM an object reference is simply a pointer to 
the object’s header.  

We distinguish the LockWord state by the low-order bits 
of the LockWord field.  All monRecs are allocated on 8-
byte aligned addresses. As such the low-order 3 bits of 
monRec addresses are known to be zero, allowing 
encoding of up to 8 states.  We use 2: In the empty state 
the LockWord value is zero.  All objects are created in 
the empty state.  In the inflated state the LockWord 
contains a pointer to a monRec.  

An object may be associated with at most one monRec.  
Likewise, a monRec may be associated with at most one 
object at any one time.  Many EEs, however, may block 
on a single object.  An EE may block or wait on at most 
one object at a time. We say an object is locked when the 
LockWord points to a monRec having a non-NULL 
Owner field.  We say an object is unlocked when its 
LockWord is empty or its LockWord points to a monRec 
having a NULL Owner field.  We say EE1 owns object o 
when o’s LockWord points to some monRec m and m’s 
Owner field is set to EE1.  An object must be inflated 
when it is locked or when any threads block or wait on it. 
Figure 1 shows an example: EE1 owns the object and 
EE2 and EE2 are blocked on the object.   

2.2.3. Monitor Record  
The monRec is an optional extension to the object 
header.  If space consumption weren’t critical, our design 
would simply embed all the monRec fields directly in the 
object header itself.  Instead, we extend the object on-
demand by storing a pointer to a monRec in the 
LockWord.  The monRec is only needed when the object 
is locked or when threads are waiting or blocking on the 
object.  Like the EE, the monRec is a JVM internal 
structure and is not a first-class Java object.    

A monRec is either free or in use.  It is free if it is not 
associated with any object, and, conversely, it is in use if 
it associated with an object.  Free monRecs reside on 
per-EE free lists or on a JVM global free list. When a 
locking thread needs to allocate a monRec with which to 
inflate an object, it checks its own free list and then, 
failing that, resorts to the global free list. 

The MonFree list is private to the EE.  No 
synchronization is needed to add or remove elements as 
the list is only accessed by the EE itself. Under normal 
circumstances, the maximum number of monRecs that an 

EE needs on its free list is the maximum number of 
objects that it will lock simultaneously plus one on which 
to wait.  Most EEs reach steady state early in their tenure 
and never need to grow their lists.  In the presence of 
contention, however, monRecs can migrate between EE 
free lists.  This can result in some EEs “hoarding” 
monRecs and having an undue number of monRecs in 
circulation.  Unchecked, this could result in unbounded 
monRec allocation.  To compensate, we can either trim 
and rebalance the free lists at garbage collection (GC) 
time or, alternatively, mark each monRec with the EE 
that created it.  If an EE deflates an object and observes 
that the monRec was created by some other EE, it could 
return that monRec to either the global free list or a 
special per-EE lookaside free list.  The per-EE list is 
strictly an optimization, but an important one.  The 
Relaxed-Lock protocol would still work correctly with 
only the global free list.   

The major fields in the monRec structure are as follows: 

• Owner 
The Owner field is a pointer to the EE that has 
locked the monRec.  The field is NULL if no thread 
owns the monRec – that is, if the object is unlocked.  

• Candidate 
The Candidate field is used to implement futile 
wakeup throttling.  See below. 

• rcThis 
rcThis is a reference count which indicates the 
number of threads blocked or waiting on the 
monRec.  The rcThis value does not include the 
current lock owner itself, if there is one. The rcThis 
field protects a monRec against inadvertent 
deflation.  The field is updated using atomic fetch-
and-add instructions.      

• Nest 
Java monitors permit recursive (reentrant) locking. 
A Java thread can re-lock an object that it already 
owns without blocking.  Nest, initially one after 
inflation, reflects the recursion depth. 

• EntryQ 
The EntryQ is a heavyweight Solaris system 
semaphore [9] on which we block threads 
attempting to lock the monRec.   

Our implementation requires that the monRecs reside in 
type-stable-memory, or TSM [6][7].  Simply put, once a 
memory location holds a monRec it must always hold a 
monRec; the memory is now typed. A monRec must 
tolerate references from threads that hold stale monRec 
pointers.  The referencing thread will, by examining the 
monRec and the object LockWord, discover that the 
reference is stale with respect to the object and recover 
as needed.  We can relax the strict TSM requirement 



  

somewhat in ResearchVM.  ResearchVM supports a 
stop-the-world GC model. At a stop-the-world point all 
Java threads are blocked at known safe points – no 
thread can be executing in a code path where it holds a 
stale monRec pointer.  At these points we can safely 
reclaim free monRecs and reuse the underlying memory.   

2.3. Run-time support 
The following example illustrates the binding between 
Java source code, Java bytecode and the JVM internal 
service routines.  The Java compiler, javac, translates the 
Java source code into bytecode.  The just-in-time 
compiler (JIT) in the JVM translates the bytecode into 
native code at run-time. Execution of monitorenter and 
monitorexit bytecodes results in calls to monEnter and 
monExit, which are “C” routines within our JVM.  
Java provides both synchronized methods and 
synchronized statements.  The Relaxed-Lock 
protocol services both forms in the same manner. 

   

Java Source Code 
[1] synchronized (obj) { obj.Value ++ ; }  

 

Java Bytecode 
[1] push obj 
[2] monitorenter 
[3] push obj 
[4] dup 
[5] getfield #Value 
[6] iconst_1 
[7] iadd 
[8] putfield #Value 
[9] push obj 
[10] monitorexit 

 

SPARC Native Code 
[1] mov   ee, %o0 ! ee is the current thread 
[2] call  monEnter ! call monEnter (ee,obj) 
[3] mov   obj, %o1 ! delay slot, pass object  
[4] ld    [obj].Value, tmp 
[5] add   tmp,1,tmp  ! increment obj.Value 
[6] st    tmp, [obj].Value 
[7] mov   ee, %o0  ! ee is the current thread 
[8] call  monExit ! call monExit (ee,obj)   
[9] mov   obj, %o1 ! delay slot, pass object  

 

2.3.1. monEnter 
A thread can lock an object in one of two ways: 

(1) By Inflation 

A thread can lock an object that is deflated by 
successfully inflating the object.  The thread uses 
CAS to attempt to install a monRec in the object’s 
LockWord.  The monRec’s Owner field has been 

set to the thread’s EE prior to the CAS  A 
successful CAS confers ownership. 

(2) By directly locking the associated monRec. 

A thread can lock an object that is already inflated 
by using CAS to transition the Owner field from 
NULL to the thread’s own EE address.   

Under the Relaxed-Lock protocol all internal locking is 
potentially contended.  Consider a thread blocked trying 
to lock a monitor.  After waking, the thread must 
recontend for a monitor by either inflating the object or 
by attempting to CAS the Owner field in the associated 
monRec.  Waking up doesn’t imply ownership of a lock, 
but rather grants that thread an opportunity to compete 
for the lock.  Blocking and waking threads is simply a 
way to avoid spinning. 

 The Relaxed-Lock protocol uses a two-level 
synchronization model.  Java synchronization primitives 
that don’t involve blocking or waking threads are 
satisfied in the JVM itself.  We call this fast path 
synchronization.  Locking an uncontended monitor, for 
instance, requires executing an atomic CAS instruction 
in the JVM but doesn’t involve any heavyweight system 
synchronization services.  On the SPARC processor the 
fast path lock primitive is only 13 instructions long.  The 
JVM only resorts to the slow path, which uses 
heavyweight Solaris synchronization primitives [9], to 
explicitly block or wake threads.  Most synchronization 
requests are satisfied via the fast path.   

Locking proceeds as follows.  First, the monEnter 
routine fetches the object LockWord and examines the 
low-order bits, which encode the state. 

Case 1: Empty (fast path) 

The locking thread must allocate a new monRec to install 
in the object’s LockWord  [Listing 1, Line 33].  It 
checks, in the following order, the EE’s monRec free list, 
the global list and, if still unsatisfied, finally constructs a 
monRec using malloc.  A subtle but important point is 
that all monRec on a thread’s free list are known to have 
their Nest field preset to one and the Owner field preset 
to the EE.  Such monRecs are immediately ready to be 
installed in the object’s LockWord field. 

Once a monRec is allocated we try to inflate the object 
by using CAS to install the monRec’s address in the 
LockWord [Listing 1, Line 37].  If the CAS fails then 
we’ve encountered interference; another thread changed 
the LockWord between the initial load and the CAS.  In 
the case of interference, we simply restart the 
monEnter routine and retry the entire operation.  The 
algorithm is lock-free [10] as at least one thread will 
have made forward progress. Successfully installing the 
monRec confers ownership to the calling thread.  For 
uncontested locking this is the most frequently executed 



  

path and it largely determines synchronization 
performance.   

Case 2: Inflated and already locked by the calling thread 

If the LockWord is inflated then the LockWord value 
contains a pointer to a monRec.  We examine the Owner 
field in the monRec.  If it is equal to the caller’s EE then 
this is a case of reentrant locking.  We simply increment 
the monRec’s Nest field and return.  This path requires 
no atomic operations [Listing 1, Line 46].   

Case 3: Inflated and unlocked 

As above, we convert the LockWord value to a monRec 
pointer.  In this case the monRec’s Owner field is NULL, 
indicating the object is unlocked.  This can occur when 
there are threads waiting for notification on the object 
but the object is unlocked.  As there are waiting threads, 
the monRec’s rcThis value will be greater than zero.  The 
acquiring thread attempts to transition the Owner field 
from NULL to its EE via CAS.  If the CAS fails then we 
fall into the slow path (case 4).  If the CAS succeeds then 
we’ve locked a monRec, although not necessarily the 
correct monRec. 

Between the initial fetch of the LockWord and the 
successful CAS, there is a timing window during which 
another thread may have changed the object’s 
LockWord.  We check for this by re-fetching the 
LockWord and verifying that it is still the same [Listing 
1, Line 52].  If the LockWord is unchanged then the 
thread has successfully locked the object – monEnter 
returns.  If the LockWord has changed then the thread 
has locked the wrong monRec.  We say that the monRec 
pointer is stale with respect to the object.  In this case the 
thread releases the monRec, wakes up any threads that 
may have blocked because they observed that the 
monitor was locked, and, finally, retries the entire 
operation.  Transiently locking the wrong monRec is 
harmless. 

Case 3 is an optimization and is not strictly necessary to 
the protocol.  We encounter Case 3 when one or more 
threads are waiting on an object, the object is unlocked 
and  our thread attempts to the lock the object.  Case 3 
allows us to lock an object with only one atomic 
instruction.  The protocol would still work correctly if 
we eliminated case 3 and simply used case 4 (the slow 
path).  Case 4 can handle any inflated object but requires 
a minimum of 3 atomic instructions.  

Case 4: inflated and locked by another thread 
The object is contended and we now take the slow path 
and prepare to block the calling thread.  First, 
monEnter atomically increments the rcThis reference 
count field to indicate that another thread is blocked on 
the monRec. [Listing 1, Line 64].  While incrementing 
the reference count another thread may have broken the 

associating between the object and the monRec.  We 
check for this by re-fetching the object’s LockWord and 
insuring it still points to the expected monRec.  This is 
similar to Valois’ SAFEREAD technique [10].  Next, we 
resample the Owner field to see if the owner thread 
relinquished the object between the original fetch of the 
LockWord and this point.  This closes a timing window 
and prevents lost wakeups.  If the Owner field was 
observed to be NULL the acquiring thread applies CAS 
to replace the NULL value with its EE address [Listing 
1, Line 74].  If the CAS succeeds then the thread has 
locked the object;  we decrement the rcThis field, set the 
Nest field to one and return.  Otherwise, the thread failed 
to lock the monitor and it now blocks itself on a 
heavyweight Solaris semaphore associated with the 
monRec.  

Upon waking, the thread checks to see if has been 
flushed.  Flushing is an exceptional condition and is 
described in more detail below, in the monExit section.  
A thread can wake either because it’s been flushed or, 
normally, because the prior owner has released the 
monitor and arranged that this thread awake as the “heir 
apparent” owner of the object.  If the object’s LockWord 
still points to the expected monRec then the thread 
attempts to lock the object by using CAS to store its EE 
into the Owner field.  If the CAS succeeds the thread has 
locked the object – it then decrements the reference 
count, sets the Nest field to 1 and returns.  If the CAS 
fails, the thread simply re-blocks on the semaphore.  If 
the thread observes that the object’s LockWord has 
changed, then it has been flushed.  The pointer to the 
monRec is stale; the locking thread decrements the 
rcThis reference count and restarts the entire monEnter 
path.    

2.3.2. MonExit 
The monExit routine releases the monitor associated 
with an object [Listing 1, Line 86].  In the Relaxed-Lock 
protocol only the owner of an object may deflate it, and 
then only at unlock time.  MonExit starts by fetching 
the object’s LockWord.  If the LockWord is uninflated or 
if the current thread is not the Owner of the object then 
monExit throws an IllegalMonitorState exception as 
required by the Java Language Specification.  
monEnter then decrements the Nest field.  If the 
monitor is recursively locked, monExit simply updates 
the monRec’s Nest field and returns [Listing 1, Line 
116]. 

If decrementing the Nest field results in zero then we 
must release the object.  Note that we don’t store the zero 
value in the Nest field.  We leave the value at one to 
avoid the store – the monRec is immediately ready for its 
next incarnation and can be added to the per-EE free list 
without any further processing.  If the unlocking thread 



  

observes that the rcThis field is non-zero then it will 
leave the object inflated as there are other threads 
legitimately waiting on the monitor. The unlocking 
thread then marks the Owner field as NULL and, to 
ensure progress, wakes up one of the threads attempting 
to lock the monitor.    

If the unlocking thread observed that the rcThis field was 
zero then there appear to be no other threads referencing 
the monitor [Listing 1, Line 96].  In this case we attempt 
speculative deflation. First, we deflate the object by 
restoring the empty value into the LockWord. This 
dissociates the object and the monRec. Next, after 
restoring the LockWord, the unlocking thread re-fetches 
the rcThis field.  In the normal case, the value will still 
be zero and the thread simply adds the monRec to its free 
list and returns.  If, however, the rcThis field is non-zero 
then we’ve misspeculated and must take special action.   

We call this speculative deflation, as the unlocking 
thread previously observed that rcThis was zero, but that 
might not remain true at the actual point of deflation.  In 
the time between fetching rcThis and deflating the 
object, another thread may have arrived in monEnter, 
attempted entry and incremented rcThis. The entering 
thread may also have blocked itself on the monRec’s 
EntryQ.  Put another way, the code in monExit could 
inadvertently deflate an object while another thread was 
in the process of trying to lock that same object. The 
result of misspeculation is that a locking thread could 
block on a stale monRec with undesirable consequences 
– the thread could be stranded indefinitely or it could 
lock the wrong monRec and violate the mutual exclusion 
constraint. To recover from misspeculation we must 
flush the monRec: 

Flushing in the unlocking thread: 

The unlocking thread detects misspeculation by 
noticing that the rcThis field changed from zero to 
non-zero during deflation. This indicates that threads 
tried to lock the object while it was deflating.  The 
unlocking thread then wakes up all the threads that 
attempted to lock the object during the timing 
window. In our implementation, the flushing thread 
must wait for all the flushees (victims) to 
acknowledge the flush.  This way the monRec’s 
Owner field stays non-zero and tardy threads can’t 
inadvertently lock the wrong monRec. Once the flush 
is completed and all blocked threads are known to 
have vacated the monitor the unlocking thread adds 
the monRec to its private free list.   

Flushing in the locking thread: 
The locking thread wakes up and notices that the 
object’s LockWord field is not the expected value.  
This indicates that the thread has been flushed.  
When a thread recognizes that it has been flushed, it 

decrements the monRec’s reference count field and 
retries the entire monEnter operation. 

Misspeculation occurs rarely as the window of 
vulnerability is short. [Listing 1, Lines 96-97].  On 
SPARC, the window – in monExit, between the fetch 
of the rcThis field and the deflating store into the 
object’s LockWord field – is only 6 instructions long.  
By tolerating this timing window we are able to remove 
all atomic instructions from the uncontested unlock path.  
Instead of preventing references to stale monRecs we 
detect and recover as needed.  Misspeculation can’t 
occur when only one thread is accessing an object (no 
contention) or when the many threads block on an object, 
in which case the object remains inflated (heavy 
contention).      

The protocol deflates monitors in order to limit the 
number of monRecs in circulation.  An alternative to 
speculative deflation is to defer deflation until GC-time.  
The collector could scan and deflate as needed.  
Deflating at GC-time also makes for a very slightly faster 
unlock path as we don’t need to check reference counts 
or to deflate. Our implementation uses speculative 
deflation, however, as it is less coupled to the garbage 
collection subsystem.  In addition, speculative deflation 
is aggressive, and deflates an object as soon as possible.  
This minimizes the number of monRec in circulation. 
Contrast this to Bacon’s Thin Lock scheme [8][15] where 
objects, once inflated, stay inflated for their lifetime. 

The rcThis field is a hint used to guide deflation. If the 
rcThis is value is non-zero in monExit [Listing 1, Line 
96], then the monRec is in use and is not eligible for 
deflation. It is safe to sample rcThis before releasing the 
object – while the object is locked rcThis can only 
increase; it can never transition to zero.  We are not at 
risk of missing deflation and leaking monRecs. If rcThis 
is zero then the monRec is idle and is eligible for 
deflation.  

2.3.3. Wait-Notify 
The wait-notify-notifyAll portion of the 
monitor subsystem isn’t described in this paper.  We 
should note, however, that the monRec’s rcThis includes 
the number of threads waiting on the monitor.   If there 
are any threads waiting on an object then the object 
must be inflated.  The wait-notify subsystem is largely 
decoupled from the lock-unlock portion of the 
synchronization protocol.  

3.   Augmenting the Basic Protocol 
3.1. Safely incrementing rcThis. 
As described above the Relaxed-Lock protocol suffers a 
timing window that permits monRecs to leak.  Consider 



  

a monEnter call that encounters an inflated and locked 
monitor.  The locking thread must increment the 
monRec’s rcThis reference counter.  It may, however, 
have incremented the rcThis value of a stale monRec 
pointer.  The locking thread recognizes that the pointer is 
stale and compensates by decrementing the rcThis field.  
Unfortunately an exiting thread could have observed the 
rcThis field when it was temporarily (and improperly) 
non-zero.  This, in turn, could cause monExit to miss 
the deflation of the object currently associated with the 
monRec.  Missed deflation would result in leaking 
monRecs.  

To compensate for this timing window monEnter puts 
the potentially leaked monRecs onto a special 
SuspectList [Listing 1, Line 67].  A monRec is suspect if 
it may have missed being speculatively deflated. The GC 
thread scans and cleans the SuspectList at GC-time.  
Specifically, the GC thread will examine the monRec 
and the associated object and perform any deflation that 
may have been missed.  The GC thread is able to safely 
perform the recovery because at GC-time all the Java 
threads will be stopped at known locations.  Because we 
use a stop-the-world GC mechanism, when the GC 
thread executes we know that no normal Java threads 
will be holding stale monRec pointers or executing in a 
vulnerable region. 

The SuspectList allows us to detect and recover from the 
timing window in monEnter.  In the full-length paper we 
describe another technique that prevents a thread holding 
a stale monRec pointer from incrementing the rcThis 
field.  The idea is based on word-tearing; we use mixed-
size load, store and CAS operations to access collocated 
fields in the monRec. Briefly, we define a composite 
field in the monRec structure.  The composite field 
contains two subfields, rcThis and the Guard, that are 
separately addressable with load and store instructions. 
The composite field is addressable with atomic load, 
store and CAS instructions.  The basic idea is the Guard 
changes when the monRec recycles (deflates).  To 
increment the rcThis subfield we use CAS on the 
composite field.  The CAS will fail if the monRec is 
stale.  The CAS simultaneously validates that the 
monRec has not recycled and conditionally increments 
the reference count.  Word-tearing is processor and 
memory-model dependent.  It is not portable but is 
known to work on current SPARC and Pentium 
processors.   

 

3.2. hashCode multiplexing 
We now provide a brief sketch of the changes needed to 
let the LockWord and the object’s hashCode cohabit in 
one header word. 

Each Java object may have a hashCode value associated 
with it [5].  The hashCode, once assigned, is persistent 
with respect to that object.  The hashCode values for a 
set of objects should have a reasonable distribution as 
they are often used as keys for hash tables.    

ResearchVM realizes hashCode values on-demand.  As 
such, an object’s LockWord may be empty, contain the 
hashCode value or be inflated.  We use the low order bits 
to distinguish the contents.  At inflation time, in 
monEnter, the locking thread copies the hashCode 
from the LockWord and stores it in the monRec [Listing 
1, Line 35].  At deflation time the unlocking thread 
copies the hashCode back into the LockWord [Listing 1, 
Line 97].  [4] attributes the idea of the displaced header 
words to Lars Bak in the HotSpot VM.  To avoid timing 
hazards, the first time we inflate an object, if a hashCode 
has not been assigned, we generate a hashCode and 
associate it with an object.  An inflated object always has 
a hashCode value.  

We compute the hashCode as the XOR of the object’s 
current address and a global gcHash value.  This 
calculation is extremely fast and doesn’t impact 
synchronization performance.  The gcHash value is 
recomputed using a Park-Miller [16] random number 
generator at each GC-point.  In a sense, the address 
provides a spatial component to the hashCode and the 
gcHash value contributes a temporal component.  The 
gcHash component is particularly important as, when 
using a copying garbage collector, heap addresses tend to 
be reused and don’t have a good distribution.   

3.3. Futile wakeup throttling 
Consider the following policies used to activate a 
successor thread when a thread unlocks an object.  In 
directed handoff the unlocking thread explicitly picks a 
successor from the list of blocked threads, marks that 
thread as the owner of the object and then wakes it. The 
distinguished successor, by virtue of waking, knows that 
it owns the object.  Directed handoff is strictly fair, 
assuming a LIFO list.  When multiple threads repeatedly 
contend for the same object, however, the directed 
handoff policy results in high levels of context switching.   
Assume a typical parallel program that executes the 
following loop: lock a shared object, execute serial work, 
unlock the object, execute parallel work.  If multiple 
threads execute the loop they will contend for the shared 
lock. If the locking is fine-grained and duration of the 
“execute parallel work” and “execute serial work” phases 
is short then cost of the context switching will dominate 
performance 

In competitive handoff, when a thread unlocks an object, 
it marks the object as available and then makes a 
potential successor thread (sometimes called the heir 
apparent) ready.  The successor, upon waking up, must 



  

compete for the object like other threads.  Waking a 
successor ensures progress.  Competitive handoff is 
inherently unfair as one thread may dominate the lock.  
By avoiding excessive context switching and by keeping 
“hot” threads running it usually provides the best system 
throughput. Competitive handoff relies on system-level 
thread preemption to provide a coarse level of fairness.  
The ResearchVM Meta-Lock and the Relaxed-Lock 
protocol both use competitive handoff.   

Competitive handoff suffers from the futile wakeup 
problem.  When multiple threads repeatedly compete for 
the same lock, one thread tends to dominate and the 
remaining threads tend to migrate back and forth 
between the monitor’s EntryQ and the system ready 
queue.  In particular, the successor threads will often 
wake up, fail to grab the lock and re-block on the 
monitor. It fails to acquire the lock because the previous 
owner, which made the successor ready, has reacquired 
the lock in the interim. This is a futile wakeup.  The 
threads eventually make progress, but suffer from 
degraded performance because of the excessive context 
switching.  To avoid this effect the Relaxed-Lock 
protocol uses futile wakeup throttling. Instead of 
permitting an unbounded number of successors to be 
ready, we permit at most one. At any one time, we only 
need one heir apparent to ensure that the computation 
makes forward progress. Having more than one heir 
apparent is unnecessary and inefficient.  Throttling 
greatly reduces the futile wakeup rate.     

 To implement throttling we use a field in the monRec 
called Candidate. Candidate is set to one to indicate that 
the next time the thread releases the monitor it should 
also wakeup a successor.  The field is set to zero to 
indicate that no wakeup is needed. To be precise, zero 
means that either no threads are blocked on the monitor 
or that a successor has been make ready but has not yet 

come awake.  Throttling greatly improves the 
performance of Java applications that have many threads 
contending heavily for a single object.  [Listing 1, Lines 
19 and 72].  Throttling is an optimization and is not 
fundamental to the Relaxed-Lock scheme.  

To demonstrate the utility of throttling consider a Java 
program, RandBash, that has 24 threads, running in 
parallel, each of which loops calling the 
java.util.Random.nextInt method for a shared 
object 1000000 times.  The nextInt method calls a 
worker routine that is synchronized. On an 8-way 333 
MHz SPARC system running Solaris 2.8 we have the 
following results: 

 

JVM seconds 
ResearchVM with Meta-Lock 141 

ResearchVM with Relaxed-Lock, throttling 
enabled 

40 

ResearchVM with Relaxed-Lock, throttling 
disabled 

119 

Table 1 Throttling Results. 

 

3.4. Fast Assembly Language Paths 
In order to improve performance, our implementation, 
like Meta-Lock, uses fast, specialized forms of 
monEnter and monExit to handle uncontested 
locking.  These routines are written in assembly 
language.  Space permits us from describing these 
further.  

4. Results 
 
 

JVM 

Benchmark  Meta-Lock  Relaxed-Lock 

VolanoMark 2.1.2  -- The VolanoMark benchmark, created by 
Volano LLC, predicts the performance of an internet chat server.  
We tested it with the rooms parameter set to 10 and the message 
count parameter set to 100. VolanoMark executes a large number 
of uncontended synchronization operations.   

14925  15346 msgs/sec 

pBOB 1.2 (Portable BOB)  -- pBOB was created by IBM to model 
the performance of object databases.  It uses a random number 
generator to create the synthetic workload.  The random number 
generator class is protected by a static monitor and is highly 
contended.  pBOB scores reflect the throughput of a large number 
of threads passing through a single critical section.  

49282 137349 tpmBOB 



  

Contend – Contend, like pBOB, tests the ability of a JVM to handle 
high levels of contention on a single monitor.  It uses 24 threads 
executing concurrently, each of which iterates 100000 time over a 
loop.  The loop body consists of a parallel portion, which takes 
1.55 µsecs to complete and a serial portion, protected by a global 
monitor, which also requires 1.55 µsecs to complete.   

23.771 8.993 secs 

SPECjvm98    

    _201_compress LZW compress and decompress 39.205 39.209 secs 

    _202_jess Java Expert Systems Shell 18.278 17.316 secs 

    _209_db Simulates a database – search and update 60.931 59.045 secs 

    _213_javac Java source to bytecode compiler 32.659 31.867 secs 

    _222_mpegaudio Compress an audio file 42.916 41.602 secs 

    _227_mtrt Multithreaded ray tracer 11.466 10.288 secs 

    _228_jack Self-generating parser generator 23.643 22.456 secs 

Java Grande Forum Benchmark, Version 2.0. 

 Section1:Method:Same:SynchronizedInstance 

5027309 6727437 calls/sec 

Sync – Sync is a single-threaded micorbenchmark that times the 
execution of uncontested synchronization operations.  The 
synchronized statements and methods are empty.   

   

    1M normal calls to an empty method 30 30 msecs 

    No waiting threads, 1M synchronized method calls 251 179 msecs 

    No waiting threads, 1M synchronized method calls – nested 125 114 msecs 

    No waiting threads, 1M synchronized statements 244 207 msecs 

    One waiting thread, 1M synchronized method calls 451 246 msecs 

    One waiting thread, 1M synchronized method calls – nested 296 114 msecs 

    One waiting thread, 1M synchronized statements  462 212 msecs 

CHashMapTest – CHashMapTest, written by Doug Lea, exercises 
his mostly-concurrent reading, exclusive writing HashMap 
package.  As run, it has 4 threads concurrently applying 1000000 
updates each to a HashMap having 100000 elements.   

19.249 5.733 secs 

Table 2 Benchmark Results. 

 
All tests were run on an 8-Way 333MHz SPARC 
system running Solaris 2.8 in the Interactive 
Scheduling class.  The Relaxed-Lock JVM used fast 
assembly language paths, speculative deflation, 
hashCode multiplexing and futile wakeup throttling.  

As shown above, the Relaxed-lock protocol takes 179 
milliseconds to complete 1 million calls to an empty 
synchronized method.  For comparison, optimized “C” 
code runs 1 million mutex_lock-mutex_unlock 
pairs in 236 milliseconds.   We should note, however, 
that for “C” code a large component of the cost is the 
control transfer through the procedure linkage table. 

5. Conclusions 
5.1. Recap 
We have presented the Relaxed-Lock protocol that 
supports Java monitor semantics.  It has been validated 
in the context of ResearchVM.  It is time-efficient, 
reasonably space-efficient and holds up well under 
contention.  For uncontended locking it requires only 
one atomic CAS to lock an object and only a memory 
barrier to unlock and object.  On most processors 
atomic instructions are very expensive so the number 
of atomic instructions in the lock-unlock code path 
determines synchronization performance.  
ResearchVM with Relaxed-Lock actually has a longer 
lock-unlock path in terms of instruction count than the 
Meta-Lock form, but the Relaxed form has lower 
latency and can sustain a higher throughput because it 



  

has one less atomic instruction. As we use fewer 
atomic instructions, The Relaxed-Lock protocol incurs 
less memory bus traffic and scales better on 
multiprocessor systems. It also provides predictable 
performance and is free of pathologies. The 
synchronization portion of the JVM stands alone and is 
largely independent of the rest of the JVM, and in 
particular the garbage collector.  

5.2. Future work 
In the future we may investigate using model checkers 
to formally validate the Relaxed-Lock protocol.  Also 
of interest is making the monRec a first-class Java 
object.  This would greatly simplify management of the 
monRec pool.  In the current implementation the 
monRec contains a Solaris semaphore, and therefore 
can’t be moved by the garbage collector.  To avoid this 
problem we’d put a system semaphore in each EE and 
do away with the semaphore in the monRec.  An EE 
would always block on its own semaphore.  The 
monRec EntryQ would then become a pointer to an 
explicit list of EEs blocked on an object. Meta-Lock 
uses an explicit linked list of EEs. This would also give 
the JVM considerable control over short term 
scheduling policy.   We would also be able to eliminate 
the rcThis field and use the explicit linked list pointer 
as indication that the monRec was idle. 

Flushing, while rare, victimizes the unlocking thread. 
To keep the monRec out of circulation the exiting 
thread must wait until all flushees rendezvous.  
Intuitively, this seems unfair.  One remedy would be to 
hand off the monRec to a special thread dedicated to 
flushing.     
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7. Appendix – Listing 
 

[1] typedef struct _monRec {                // monitor record 
[2]     struct _ExecEnv * volatile Owner ;  // EE, NULL iff free 
[3]     volatile int Candidate ;            // wait indicator -- futile wakeup throttle 
[4]     volatile int rcThis ;               // ref count -- holds monRec persistent  
[5]     int Nest ;                          // recursive locking     
[6]     int hashCode ;                      // hoisted from object.LockWord 
[7]     struct _monRec * MonNext ;          // LL chain: next free monRec 
[8]     lwp_sema_t EntryQ ;                 // heavy system sync object used for entry 
[9]     // Other fields elided … 
[10] } monRec ;  
[11]      
[12] typedef struct _ExecEnv {               // EE  
[13]     monRec * volatile MonFree ;         // Linked list of free monitors 
[14]     // Other fields elided ... 
[15] } ExecEnv ;  
[16]  
[17] void monWakeup (ExecEnv * ee, monRec * m) 
[18] { 
[19]     if (m->Candidate == 1 && CAS(&m->Candidate, 1, 0) == 1) {  
[20]         _lwp_sema_post (&m->EntryQ) ;  
[21]     } 
[22] } 
[23]  
[24] int monEnter (ExecEnv * ee, Object * obj)  
[25] { 
[26]     monRec * m ;  
[27]     monRec * nxt ;  
[28]     intptr_t raw; 
[29]       
[30]   retry: 
[31]     raw = obj->LockWord ;  
[32]     if (!INFLATED(raw)) {           // Case 1: Empyt – fast path 
[33]         m = ee->MonFree ;  
[34]         if (m == NULL) m = ExtendFreeList (ee);   
[35]         m ->hashCode = raw ; 
[36]         nxt = m->MonNext ;           
[37]         if (CAS(&obj->LockWord, raw, MKMON(m)) == raw) {         
[38]             ee->MonFree = nxt ;     // successfully installing "m" confers ownership     
[39]             return OK;  
[40]         } 
[41]         goto retry ;                // CAS failed: interference – retry 
[42]     } 
[43]  
[44]     m = MONREC(raw) ;  
[45]     if (m->Owner == ee) {           // Case 2: Inflated and locked by calling thread 
[46]         m->Nest ++ ;  
[47]         return OK ;  
[48]     } 
[49]  
[50]     // Case 3: inflated and unlocked. optimization – not strictly necessary.   
[51]     if (m->Owner == NULL && CAS(&m->Owner, NULL, ee) == NULL) {  
[52]         if (obj->LockWord == raw)  { 
[53]             m->Nest = 1 ;                
[54]             return OK ;  
[55]         } 
[56]         m->Owner = NULL ;       // "m" is stale wrt obj. Recover as needed 
[57]         MEMBAR(StoreLoad) ;  
[58]         monWakeup (ee, m) ;  
[59]         goto retry ;  
[60]     } 



  

[61]    
[62]     // Case 4: inflated and locked by another thread. 
[63]     // Slow path ... apparent contention: do this the hard way 
[64]     Adjust (&m->rcThis, 1) ;        // atomic fetch-and-add  
[65]     if (obj->LockWord != raw) {     // Similar to Valois’ SAFEREAD  
[66]         Adjust (&m->rcThis, -1) ;   // "m" is stale wrt obj 
[67]         MarkSuspect (ee, m) ;  
[68]         goto retry ;  
[69]     } 
[70]  
[71]     while (obj->LockWord == raw) {  
[72]         m->Candidate = 1 ;  
[73]         MEMBAR(StoreLoad) ;  
[74]         if (m->Owner == NULL && CAS(&m->Owner, NULL, ee) == NULL) {  
[75]             Adjust (&m->rcThis, -1) ;  
[76]             m->Nest = 1 ;  
[77]             return OK ;  
[78]         } 
[79]         _lwp_sema_wait (&m->EntryQ) ; 
[80]         // We’re awake – recontend for the object 
[81]     } 
[82]     FlushAcknowledge (ee, m) ;  // we've been flushed 
[83]     goto retry ;     
[84] } 
[85]  
[86] int monExit (ExecEnv * ee, Object * obj) 
[87] { 
[88]     monRec * m ;  
[89]     intptr_t raw ;  
[90]     int nn ;  
[91]     raw = obj->LockWord ;  
[92]     m = MONREC(raw) ;  
[93]     if (INFLATED(raw) && m->Owner == ee) {  
[94]         nn = m->Nest – 1 ;  
[95]         if (nn == 0) {  
[96]             if (m->rcThis == 0) {  
[97]                 obj->LockWord = m->hashCode ;   // attempt speculative deflate 
[98]                 MEMBAR(StoreLoad) ;             // publish store 
[99]                 if (m->rcThis == 0) {           // resample ref count 
[100]                     ReturnToFreeList (ee, m) ;  // recycle m 
[101]                     return OK ;                 // fast path exit 
[102]                 } else {  
[103]                     FlushAndFree (ee, m) ;      // misspeculated - expel blocked threads 
[104]                     return OK ;  
[105]                 } 
[106]             } else {  
[107]                 m->Owner = NULL ;  
[108]                 MEMBAR(StoreLoad) ;  
[109]                 monWakeup (ee, m) ;  
[110]                 return OK ;  
[111]             } 
[112]         } 
[113]         // The following memory barrier is unrelated to the Relaxed-Lock protocol. 
[114]         // The Java Memory Model promises release consistency.  
[115]         MEMBAR(StoreLoad);                       
[116]         m->Nest = nn ;  
[117]         return OK ;  
[118]     } 
[119]     return THROW(ILLEGAL_MONITOR_STATE) ;  
[120] } 
[121]  

Listing 1 "C" Code for monEnter() and monExit() 
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