
USENIX Association

Proceedings of the
Java™ Virtual Machine Research and

Technology Symposium
(JVM '01)

Monterey, California, USA
April 23–24, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Implementing Fast Java Monitors with Relaxed-Locks

David Dice
Sun Microsystems, Inc.

Burlington, MA
dice@computer.org

Abstract
The Java Programming Language permits
synchronization operations (lock, unlock, wait, notify) on
any object. Synchronization is very common in
applications and is endemic in the library code upon
which applications depend. It is therefore critical that a
monitor implementation be both space-efficient and
time-efficient. We present a locking protocol, the
Relaxed-Lock, that satisfies those requirements. The
Relaxed-Lock is reasonably compact, using only one
machine word in the object header. It is fast, requiring in
the uncontested case only one atomic compare-and-swap
to lock a monitor and no atomic instructions to release a
monitor. The Relaxed-Lock protocol is unique in that it
admits a benign data race in the monitor unlock path
(hence its name) but detects and recovers from the race
and thus maintains correct mutual exclusion. We also
introduce speculative deflation, a mechanism for
releasing a monitor when it is no longer needed.

1. Introduction
The Java language [1] provides monitors [2][12] as the
primary synchronization mechanism. Any object can be
synchronized upon. In practice, however, most objects
pass their lifetimes without ever being involved in
synchronization activities. A Java Virtual Machine, or
JVM, [3] must therefore provide the potential for
synchronization but at a very low per-object space
overhead. Synchronization operations occur frequently
in applications and in the Java runtime library, albeit
limited to a small subset of extant objects. It is thus
critical that these operations have low latency to avoid
degrading performance. Recent research in escape
analysis and synchronization removal shows promise,
but these techniques apply only to uncontended locking.
Even though several recent papers have been published
on JVM synchronization, the present work shows that
substantial performance improvements can still be made.

The goals for our monitor implementation are thus
space-efficiency, time-efficiency and scalability. The

design described in this paper scales well to large
numbers of threads and processors. It shows low latency
for uncontended monitor operations and provides high
throughput for contended monitors. It is space-efficient
because it uses only one header word per object, and that
header word may contain the object’s hashCode value as
well.

The Relaxed-Lock protocol is used to implement Java-
level monitors. It is private to the JVM and is not visible
to Java programs.

The design described in this paper was implemented in
the Sun Laboratories Virtual Machine for Research
(ResearchVM). ResearchVM was previously known as
EVM, ExactVM and the Java 2 SDK Production
Release. [4] describes another monitor implementation,
called the Meta-Lock, based on ResearchVM. Our
implementation compares favorably to the Meta-Lock,
requiring only one atomic instruction and one memory
barrier to lock and unlock an uncontended monitor, while
the Meta-Lock algorithm requires two atomic
instructions. Like the Meta-Lock, the Relaxed-Lock
requires a word in the object header for synchronization.
Both algorithms overload this header word to contain
both the object’s hashCode value and the
synchronization word.

The Relaxed-Lock protocol has been implemented in
ResearchVM for the Solaris Operating Environment,
SPARC™ Platform Edition and Solaris IA32™. We
present details of the SPARC implementation, but the
design is portable to other operating systems and
processor architectures. The protocol relies on an atomic
compare-and-swap instruction (CAS on SPARC or
CMPXCHG on IA32 processors).

2. The Basic Locking Protocol
The paper will first present a simplified form of the
protocol and then describe optimizations and reduction to
practice. This paper focuses on lock and unlock
operations (sometimes called enter and exit, respectively)

mailto:dice@computer.org

that provide mutual exclusion, and doesn’t discuss the
wait-notify aspect of Java monitors.

2.1. Overview
Consider a thread attempting to lock an object. In the
Relaxed-Lock protocol each object contains a LockWord
field, which is either empty or contains a pointer to a
monitor record. A Java thread locks an object with an
empty LockWord by allocating a monitor record, writing
its unique thread identifier value into the monitor
record’s Owner field and finally inserting the address of
the monitor record into the LockWord using CAS. If the
CAS succeeds then the thread has locked the object. We
call this inflation. Inflation associates a monitor record
with an object. If the lock attempt fails, the thread must
block itself. To unlock an object upon which no other
threads are blocked we deflate the object – we store the
empty value into the object’s LockWord and return the
monitor record to the free pool. We deflate to conserve
monitor records. Deflation breaks the relationship
between a monitor record and an object.

Now consider multiple threads locking and unlocking a
single object where those operations overlap in time. A
thread locks an object that is already inflated by applying
CAS to try to insert its unique identifier into the monitor
record’s Owner field. The locking thread may observe
that the object’s LockWord field refers to a particular
monitor record m. Since the locking thread fetched this
value, the LockWord may have changed – the unlocking
thread may have deflated the object and returned m to the
free pool. Other locking threads may have re-inflated the

object with a different monitor record in the meantime.
The monitor record m may have been reused and may
now be associated with a different object. The locking
thread holds a stale monitor record pointer. The
Relaxed-Lock protocol tolerates references to the wrong
monitor record. The locking thread will detect the stale
pointer and recover as needed.

2.2. Data Structures
The primary data structures related to synchronization
are the Execution Environment (EE), the object header
and the monitor record (monRec). Unless otherwise
noted, each is initially zero-filled. These structures are
implementation specific and are not directly addressable
by Java programs.

2.2.1. Execution Environment
An EE is a JVM internal data structure associated with
each Java thread. Each EE is attached to a Solaris user-
level thread. ResearchVM currently uses a 1:1 thread
model – each Java-level thread runs on top of its own
Solaris thread. There is only one field in the EE related
to synchronization – namely, MonFree, a pointer to the
EE’s private monitor free list. We use the term thread
and EE interchangeably. We say an EE is waiting when
it has called an object’s wait method and is awaiting
notification. We say an EE is blocked when the thread is
queued (non-ready) while attempting to lock or re-lock a
monitor. In ResearchVM, an EE is uniquely identified
by its address.

monRec

Object

LockWord 001

nearClass

EE1 (Owner)

EE2 (blocked)

EE3 (blocked)

rcThis

Nest

Candidate

hashCode

Fields

EntryQ

Owner

Figure 1. Example of an inflated object. EE1 has locked the object and EE2 and EE2 are
blocked on entry.

2.2.2. Object Header
Objects in ResearchVM consist of an object header
followed by the constituent fields. The object header
consists of a nearClass field, which is used to identify the
object type and to implement virtual function calls, and a
LockWord field for synchronization. The object
constructor initializes the LockWord field to zero. In
ResearchVM an object reference is simply a pointer to
the object’s header.

We distinguish the LockWord state by the low-order bits
of the LockWord field. All monRecs are allocated on 8-
byte aligned addresses. As such the low-order 3 bits of
monRec addresses are known to be zero, allowing
encoding of up to 8 states. We use 2: In the empty state
the LockWord value is zero. All objects are created in
the empty state. In the inflated state the LockWord
contains a pointer to a monRec.

An object may be associated with at most one monRec.
Likewise, a monRec may be associated with at most one
object at any one time. Many EEs, however, may block
on a single object. An EE may block or wait on at most
one object at a time. We say an object is locked when the
LockWord points to a monRec having a non-NULL
Owner field. We say an object is unlocked when its
LockWord is empty or its LockWord points to a monRec
having a NULL Owner field. We say EE1 owns object o
when o’s LockWord points to some monRec m and m’s
Owner field is set to EE1. An object must be inflated
when it is locked or when any threads block or wait on it.
Figure 1 shows an example: EE1 owns the object and
EE2 and EE2 are blocked on the object.

2.2.3. Monitor Record
The monRec is an optional extension to the object
header. If space consumption weren’t critical, our design
would simply embed all the monRec fields directly in the
object header itself. Instead, we extend the object on-
demand by storing a pointer to a monRec in the
LockWord. The monRec is only needed when the object
is locked or when threads are waiting or blocking on the
object. Like the EE, the monRec is a JVM internal
structure and is not a first-class Java object.

A monRec is either free or in use. It is free if it is not
associated with any object, and, conversely, it is in use if
it associated with an object. Free monRecs reside on
per-EE free lists or on a JVM global free list. When a
locking thread needs to allocate a monRec with which to
inflate an object, it checks its own free list and then,
failing that, resorts to the global free list.

The MonFree list is private to the EE. No
synchronization is needed to add or remove elements as
the list is only accessed by the EE itself. Under normal
circumstances, the maximum number of monRecs that an

EE needs on its free list is the maximum number of
objects that it will lock simultaneously plus one on which
to wait. Most EEs reach steady state early in their tenure
and never need to grow their lists. In the presence of
contention, however, monRecs can migrate between EE
free lists. This can result in some EEs “hoarding”
monRecs and having an undue number of monRecs in
circulation. Unchecked, this could result in unbounded
monRec allocation. To compensate, we can either trim
and rebalance the free lists at garbage collection (GC)
time or, alternatively, mark each monRec with the EE
that created it. If an EE deflates an object and observes
that the monRec was created by some other EE, it could
return that monRec to either the global free list or a
special per-EE lookaside free list. The per-EE list is
strictly an optimization, but an important one. The
Relaxed-Lock protocol would still work correctly with
only the global free list.

The major fields in the monRec structure are as follows:

• Owner
The Owner field is a pointer to the EE that has
locked the monRec. The field is NULL if no thread
owns the monRec – that is, if the object is unlocked.

• Candidate
The Candidate field is used to implement futile
wakeup throttling. See below.

• rcThis
rcThis is a reference count which indicates the
number of threads blocked or waiting on the
monRec. The rcThis value does not include the
current lock owner itself, if there is one. The rcThis
field protects a monRec against inadvertent
deflation. The field is updated using atomic fetch-
and-add instructions.

• Nest
Java monitors permit recursive (reentrant) locking.
A Java thread can re-lock an object that it already
owns without blocking. Nest, initially one after
inflation, reflects the recursion depth.

• EntryQ
The EntryQ is a heavyweight Solaris system
semaphore [9] on which we block threads
attempting to lock the monRec.

Our implementation requires that the monRecs reside in
type-stable-memory, or TSM [6][7]. Simply put, once a
memory location holds a monRec it must always hold a
monRec; the memory is now typed. A monRec must
tolerate references from threads that hold stale monRec
pointers. The referencing thread will, by examining the
monRec and the object LockWord, discover that the
reference is stale with respect to the object and recover
as needed. We can relax the strict TSM requirement

somewhat in ResearchVM. ResearchVM supports a
stop-the-world GC model. At a stop-the-world point all
Java threads are blocked at known safe points – no
thread can be executing in a code path where it holds a
stale monRec pointer. At these points we can safely
reclaim free monRecs and reuse the underlying memory.

2.3. Run-time support
The following example illustrates the binding between
Java source code, Java bytecode and the JVM internal
service routines. The Java compiler, javac, translates the
Java source code into bytecode. The just-in-time
compiler (JIT) in the JVM translates the bytecode into
native code at run-time. Execution of monitorenter and
monitorexit bytecodes results in calls to monEnter and
monExit, which are “C” routines within our JVM.
Java provides both synchronized methods and
synchronized statements. The Relaxed-Lock
protocol services both forms in the same manner.

Java Source Code
[1] synchronized (obj) { obj.Value ++ ; }

Java Bytecode
[1] push obj
[2] monitorenter
[3] push obj
[4] dup
[5] getfield #Value
[6] iconst_1
[7] iadd
[8] putfield #Value
[9] push obj
[10] monitorexit

SPARC Native Code
[1] mov ee, %o0 ! ee is the current thread
[2] call monEnter ! call monEnter (ee,obj)
[3] mov obj, %o1 ! delay slot, pass object
[4] ld [obj].Value, tmp
[5] add tmp,1,tmp ! increment obj.Value
[6] st tmp, [obj].Value
[7] mov ee, %o0 ! ee is the current thread
[8] call monExit ! call monExit (ee,obj)
[9] mov obj, %o1 ! delay slot, pass object

2.3.1. monEnter
A thread can lock an object in one of two ways:

(1) By Inflation

A thread can lock an object that is deflated by
successfully inflating the object. The thread uses
CAS to attempt to install a monRec in the object’s
LockWord. The monRec’s Owner field has been

set to the thread’s EE prior to the CAS A
successful CAS confers ownership.

(2) By directly locking the associated monRec.

A thread can lock an object that is already inflated
by using CAS to transition the Owner field from
NULL to the thread’s own EE address.

Under the Relaxed-Lock protocol all internal locking is
potentially contended. Consider a thread blocked trying
to lock a monitor. After waking, the thread must
recontend for a monitor by either inflating the object or
by attempting to CAS the Owner field in the associated
monRec. Waking up doesn’t imply ownership of a lock,
but rather grants that thread an opportunity to compete
for the lock. Blocking and waking threads is simply a
way to avoid spinning.

 The Relaxed-Lock protocol uses a two-level
synchronization model. Java synchronization primitives
that don’t involve blocking or waking threads are
satisfied in the JVM itself. We call this fast path
synchronization. Locking an uncontended monitor, for
instance, requires executing an atomic CAS instruction
in the JVM but doesn’t involve any heavyweight system
synchronization services. On the SPARC processor the
fast path lock primitive is only 13 instructions long. The
JVM only resorts to the slow path, which uses
heavyweight Solaris synchronization primitives [9], to
explicitly block or wake threads. Most synchronization
requests are satisfied via the fast path.

Locking proceeds as follows. First, the monEnter
routine fetches the object LockWord and examines the
low-order bits, which encode the state.

Case 1: Empty (fast path)

The locking thread must allocate a new monRec to install
in the object’s LockWord [Listing 1, Line 33]. It
checks, in the following order, the EE’s monRec free list,
the global list and, if still unsatisfied, finally constructs a
monRec using malloc. A subtle but important point is
that all monRec on a thread’s free list are known to have
their Nest field preset to one and the Owner field preset
to the EE. Such monRecs are immediately ready to be
installed in the object’s LockWord field.

Once a monRec is allocated we try to inflate the object
by using CAS to install the monRec’s address in the
LockWord [Listing 1, Line 37]. If the CAS fails then
we’ve encountered interference; another thread changed
the LockWord between the initial load and the CAS. In
the case of interference, we simply restart the
monEnter routine and retry the entire operation. The
algorithm is lock-free [10] as at least one thread will
have made forward progress. Successfully installing the
monRec confers ownership to the calling thread. For
uncontested locking this is the most frequently executed

path and it largely determines synchronization
performance.

Case 2: Inflated and already locked by the calling thread

If the LockWord is inflated then the LockWord value
contains a pointer to a monRec. We examine the Owner
field in the monRec. If it is equal to the caller’s EE then
this is a case of reentrant locking. We simply increment
the monRec’s Nest field and return. This path requires
no atomic operations [Listing 1, Line 46].

Case 3: Inflated and unlocked

As above, we convert the LockWord value to a monRec
pointer. In this case the monRec’s Owner field is NULL,
indicating the object is unlocked. This can occur when
there are threads waiting for notification on the object
but the object is unlocked. As there are waiting threads,
the monRec’s rcThis value will be greater than zero. The
acquiring thread attempts to transition the Owner field
from NULL to its EE via CAS. If the CAS fails then we
fall into the slow path (case 4). If the CAS succeeds then
we’ve locked a monRec, although not necessarily the
correct monRec.

Between the initial fetch of the LockWord and the
successful CAS, there is a timing window during which
another thread may have changed the object’s
LockWord. We check for this by re-fetching the
LockWord and verifying that it is still the same [Listing
1, Line 52]. If the LockWord is unchanged then the
thread has successfully locked the object – monEnter
returns. If the LockWord has changed then the thread
has locked the wrong monRec. We say that the monRec
pointer is stale with respect to the object. In this case the
thread releases the monRec, wakes up any threads that
may have blocked because they observed that the
monitor was locked, and, finally, retries the entire
operation. Transiently locking the wrong monRec is
harmless.

Case 3 is an optimization and is not strictly necessary to
the protocol. We encounter Case 3 when one or more
threads are waiting on an object, the object is unlocked
and our thread attempts to the lock the object. Case 3
allows us to lock an object with only one atomic
instruction. The protocol would still work correctly if
we eliminated case 3 and simply used case 4 (the slow
path). Case 4 can handle any inflated object but requires
a minimum of 3 atomic instructions.

Case 4: inflated and locked by another thread
The object is contended and we now take the slow path
and prepare to block the calling thread. First,
monEnter atomically increments the rcThis reference
count field to indicate that another thread is blocked on
the monRec. [Listing 1, Line 64]. While incrementing
the reference count another thread may have broken the

associating between the object and the monRec. We
check for this by re-fetching the object’s LockWord and
insuring it still points to the expected monRec. This is
similar to Valois’ SAFEREAD technique [10]. Next, we
resample the Owner field to see if the owner thread
relinquished the object between the original fetch of the
LockWord and this point. This closes a timing window
and prevents lost wakeups. If the Owner field was
observed to be NULL the acquiring thread applies CAS
to replace the NULL value with its EE address [Listing
1, Line 74]. If the CAS succeeds then the thread has
locked the object; we decrement the rcThis field, set the
Nest field to one and return. Otherwise, the thread failed
to lock the monitor and it now blocks itself on a
heavyweight Solaris semaphore associated with the
monRec.

Upon waking, the thread checks to see if has been
flushed. Flushing is an exceptional condition and is
described in more detail below, in the monExit section.
A thread can wake either because it’s been flushed or,
normally, because the prior owner has released the
monitor and arranged that this thread awake as the “heir
apparent” owner of the object. If the object’s LockWord
still points to the expected monRec then the thread
attempts to lock the object by using CAS to store its EE
into the Owner field. If the CAS succeeds the thread has
locked the object – it then decrements the reference
count, sets the Nest field to 1 and returns. If the CAS
fails, the thread simply re-blocks on the semaphore. If
the thread observes that the object’s LockWord has
changed, then it has been flushed. The pointer to the
monRec is stale; the locking thread decrements the
rcThis reference count and restarts the entire monEnter
path.

2.3.2. MonExit
The monExit routine releases the monitor associated
with an object [Listing 1, Line 86]. In the Relaxed-Lock
protocol only the owner of an object may deflate it, and
then only at unlock time. MonExit starts by fetching
the object’s LockWord. If the LockWord is uninflated or
if the current thread is not the Owner of the object then
monExit throws an IllegalMonitorState exception as
required by the Java Language Specification.
monEnter then decrements the Nest field. If the
monitor is recursively locked, monExit simply updates
the monRec’s Nest field and returns [Listing 1, Line
116].

If decrementing the Nest field results in zero then we
must release the object. Note that we don’t store the zero
value in the Nest field. We leave the value at one to
avoid the store – the monRec is immediately ready for its
next incarnation and can be added to the per-EE free list
without any further processing. If the unlocking thread

observes that the rcThis field is non-zero then it will
leave the object inflated as there are other threads
legitimately waiting on the monitor. The unlocking
thread then marks the Owner field as NULL and, to
ensure progress, wakes up one of the threads attempting
to lock the monitor.

If the unlocking thread observed that the rcThis field was
zero then there appear to be no other threads referencing
the monitor [Listing 1, Line 96]. In this case we attempt
speculative deflation. First, we deflate the object by
restoring the empty value into the LockWord. This
dissociates the object and the monRec. Next, after
restoring the LockWord, the unlocking thread re-fetches
the rcThis field. In the normal case, the value will still
be zero and the thread simply adds the monRec to its free
list and returns. If, however, the rcThis field is non-zero
then we’ve misspeculated and must take special action.

We call this speculative deflation, as the unlocking
thread previously observed that rcThis was zero, but that
might not remain true at the actual point of deflation. In
the time between fetching rcThis and deflating the
object, another thread may have arrived in monEnter,
attempted entry and incremented rcThis. The entering
thread may also have blocked itself on the monRec’s
EntryQ. Put another way, the code in monExit could
inadvertently deflate an object while another thread was
in the process of trying to lock that same object. The
result of misspeculation is that a locking thread could
block on a stale monRec with undesirable consequences
– the thread could be stranded indefinitely or it could
lock the wrong monRec and violate the mutual exclusion
constraint. To recover from misspeculation we must
flush the monRec:

Flushing in the unlocking thread:

The unlocking thread detects misspeculation by
noticing that the rcThis field changed from zero to
non-zero during deflation. This indicates that threads
tried to lock the object while it was deflating. The
unlocking thread then wakes up all the threads that
attempted to lock the object during the timing
window. In our implementation, the flushing thread
must wait for all the flushees (victims) to
acknowledge the flush. This way the monRec’s
Owner field stays non-zero and tardy threads can’t
inadvertently lock the wrong monRec. Once the flush
is completed and all blocked threads are known to
have vacated the monitor the unlocking thread adds
the monRec to its private free list.

Flushing in the locking thread:
The locking thread wakes up and notices that the
object’s LockWord field is not the expected value.
This indicates that the thread has been flushed.
When a thread recognizes that it has been flushed, it

decrements the monRec’s reference count field and
retries the entire monEnter operation.

Misspeculation occurs rarely as the window of
vulnerability is short. [Listing 1, Lines 96-97]. On
SPARC, the window – in monExit, between the fetch
of the rcThis field and the deflating store into the
object’s LockWord field – is only 6 instructions long.
By tolerating this timing window we are able to remove
all atomic instructions from the uncontested unlock path.
Instead of preventing references to stale monRecs we
detect and recover as needed. Misspeculation can’t
occur when only one thread is accessing an object (no
contention) or when the many threads block on an object,
in which case the object remains inflated (heavy
contention).

The protocol deflates monitors in order to limit the
number of monRecs in circulation. An alternative to
speculative deflation is to defer deflation until GC-time.
The collector could scan and deflate as needed.
Deflating at GC-time also makes for a very slightly faster
unlock path as we don’t need to check reference counts
or to deflate. Our implementation uses speculative
deflation, however, as it is less coupled to the garbage
collection subsystem. In addition, speculative deflation
is aggressive, and deflates an object as soon as possible.
This minimizes the number of monRec in circulation.
Contrast this to Bacon’s Thin Lock scheme [8][15] where
objects, once inflated, stay inflated for their lifetime.

The rcThis field is a hint used to guide deflation. If the
rcThis is value is non-zero in monExit [Listing 1, Line
96], then the monRec is in use and is not eligible for
deflation. It is safe to sample rcThis before releasing the
object – while the object is locked rcThis can only
increase; it can never transition to zero. We are not at
risk of missing deflation and leaking monRecs. If rcThis
is zero then the monRec is idle and is eligible for
deflation.

2.3.3. Wait-Notify
The wait-notify-notifyAll portion of the
monitor subsystem isn’t described in this paper. We
should note, however, that the monRec’s rcThis includes
the number of threads waiting on the monitor. If there
are any threads waiting on an object then the object
must be inflated. The wait-notify subsystem is largely
decoupled from the lock-unlock portion of the
synchronization protocol.

3. Augmenting the Basic Protocol
3.1. Safely incrementing rcThis.
As described above the Relaxed-Lock protocol suffers a
timing window that permits monRecs to leak. Consider

a monEnter call that encounters an inflated and locked
monitor. The locking thread must increment the
monRec’s rcThis reference counter. It may, however,
have incremented the rcThis value of a stale monRec
pointer. The locking thread recognizes that the pointer is
stale and compensates by decrementing the rcThis field.
Unfortunately an exiting thread could have observed the
rcThis field when it was temporarily (and improperly)
non-zero. This, in turn, could cause monExit to miss
the deflation of the object currently associated with the
monRec. Missed deflation would result in leaking
monRecs.

To compensate for this timing window monEnter puts
the potentially leaked monRecs onto a special
SuspectList [Listing 1, Line 67]. A monRec is suspect if
it may have missed being speculatively deflated. The GC
thread scans and cleans the SuspectList at GC-time.
Specifically, the GC thread will examine the monRec
and the associated object and perform any deflation that
may have been missed. The GC thread is able to safely
perform the recovery because at GC-time all the Java
threads will be stopped at known locations. Because we
use a stop-the-world GC mechanism, when the GC
thread executes we know that no normal Java threads
will be holding stale monRec pointers or executing in a
vulnerable region.

The SuspectList allows us to detect and recover from the
timing window in monEnter. In the full-length paper we
describe another technique that prevents a thread holding
a stale monRec pointer from incrementing the rcThis
field. The idea is based on word-tearing; we use mixed-
size load, store and CAS operations to access collocated
fields in the monRec. Briefly, we define a composite
field in the monRec structure. The composite field
contains two subfields, rcThis and the Guard, that are
separately addressable with load and store instructions.
The composite field is addressable with atomic load,
store and CAS instructions. The basic idea is the Guard
changes when the monRec recycles (deflates). To
increment the rcThis subfield we use CAS on the
composite field. The CAS will fail if the monRec is
stale. The CAS simultaneously validates that the
monRec has not recycled and conditionally increments
the reference count. Word-tearing is processor and
memory-model dependent. It is not portable but is
known to work on current SPARC and Pentium
processors.

3.2. hashCode multiplexing
We now provide a brief sketch of the changes needed to
let the LockWord and the object’s hashCode cohabit in
one header word.

Each Java object may have a hashCode value associated
with it [5]. The hashCode, once assigned, is persistent
with respect to that object. The hashCode values for a
set of objects should have a reasonable distribution as
they are often used as keys for hash tables.

ResearchVM realizes hashCode values on-demand. As
such, an object’s LockWord may be empty, contain the
hashCode value or be inflated. We use the low order bits
to distinguish the contents. At inflation time, in
monEnter, the locking thread copies the hashCode
from the LockWord and stores it in the monRec [Listing
1, Line 35]. At deflation time the unlocking thread
copies the hashCode back into the LockWord [Listing 1,
Line 97]. [4] attributes the idea of the displaced header
words to Lars Bak in the HotSpot VM. To avoid timing
hazards, the first time we inflate an object, if a hashCode
has not been assigned, we generate a hashCode and
associate it with an object. An inflated object always has
a hashCode value.

We compute the hashCode as the XOR of the object’s
current address and a global gcHash value. This
calculation is extremely fast and doesn’t impact
synchronization performance. The gcHash value is
recomputed using a Park-Miller [16] random number
generator at each GC-point. In a sense, the address
provides a spatial component to the hashCode and the
gcHash value contributes a temporal component. The
gcHash component is particularly important as, when
using a copying garbage collector, heap addresses tend to
be reused and don’t have a good distribution.

3.3. Futile wakeup throttling
Consider the following policies used to activate a
successor thread when a thread unlocks an object. In
directed handoff the unlocking thread explicitly picks a
successor from the list of blocked threads, marks that
thread as the owner of the object and then wakes it. The
distinguished successor, by virtue of waking, knows that
it owns the object. Directed handoff is strictly fair,
assuming a LIFO list. When multiple threads repeatedly
contend for the same object, however, the directed
handoff policy results in high levels of context switching.
Assume a typical parallel program that executes the
following loop: lock a shared object, execute serial work,
unlock the object, execute parallel work. If multiple
threads execute the loop they will contend for the shared
lock. If the locking is fine-grained and duration of the
“execute parallel work” and “execute serial work” phases
is short then cost of the context switching will dominate
performance

In competitive handoff, when a thread unlocks an object,
it marks the object as available and then makes a
potential successor thread (sometimes called the heir
apparent) ready. The successor, upon waking up, must

compete for the object like other threads. Waking a
successor ensures progress. Competitive handoff is
inherently unfair as one thread may dominate the lock.
By avoiding excessive context switching and by keeping
“hot” threads running it usually provides the best system
throughput. Competitive handoff relies on system-level
thread preemption to provide a coarse level of fairness.
The ResearchVM Meta-Lock and the Relaxed-Lock
protocol both use competitive handoff.

Competitive handoff suffers from the futile wakeup
problem. When multiple threads repeatedly compete for
the same lock, one thread tends to dominate and the
remaining threads tend to migrate back and forth
between the monitor’s EntryQ and the system ready
queue. In particular, the successor threads will often
wake up, fail to grab the lock and re-block on the
monitor. It fails to acquire the lock because the previous
owner, which made the successor ready, has reacquired
the lock in the interim. This is a futile wakeup. The
threads eventually make progress, but suffer from
degraded performance because of the excessive context
switching. To avoid this effect the Relaxed-Lock
protocol uses futile wakeup throttling. Instead of
permitting an unbounded number of successors to be
ready, we permit at most one. At any one time, we only
need one heir apparent to ensure that the computation
makes forward progress. Having more than one heir
apparent is unnecessary and inefficient. Throttling
greatly reduces the futile wakeup rate.

 To implement throttling we use a field in the monRec
called Candidate. Candidate is set to one to indicate that
the next time the thread releases the monitor it should
also wakeup a successor. The field is set to zero to
indicate that no wakeup is needed. To be precise, zero
means that either no threads are blocked on the monitor
or that a successor has been make ready but has not yet

come awake. Throttling greatly improves the
performance of Java applications that have many threads
contending heavily for a single object. [Listing 1, Lines
19 and 72]. Throttling is an optimization and is not
fundamental to the Relaxed-Lock scheme.

To demonstrate the utility of throttling consider a Java
program, RandBash, that has 24 threads, running in
parallel, each of which loops calling the
java.util.Random.nextInt method for a shared
object 1000000 times. The nextInt method calls a
worker routine that is synchronized. On an 8-way 333
MHz SPARC system running Solaris 2.8 we have the
following results:

JVM seconds
ResearchVM with Meta-Lock 141

ResearchVM with Relaxed-Lock, throttling
enabled

40

ResearchVM with Relaxed-Lock, throttling
disabled

119

Table 1 Throttling Results.

3.4. Fast Assembly Language Paths
In order to improve performance, our implementation,
like Meta-Lock, uses fast, specialized forms of
monEnter and monExit to handle uncontested
locking. These routines are written in assembly
language. Space permits us from describing these
further.

4. Results

JVM

Benchmark Meta-Lock Relaxed-Lock

VolanoMark 2.1.2 -- The VolanoMark benchmark, created by
Volano LLC, predicts the performance of an internet chat server.
We tested it with the rooms parameter set to 10 and the message
count parameter set to 100. VolanoMark executes a large number
of uncontended synchronization operations.

14925 15346 msgs/sec

pBOB 1.2 (Portable BOB) -- pBOB was created by IBM to model
the performance of object databases. It uses a random number
generator to create the synthetic workload. The random number
generator class is protected by a static monitor and is highly
contended. pBOB scores reflect the throughput of a large number
of threads passing through a single critical section.

49282 137349 tpmBOB

Contend – Contend, like pBOB, tests the ability of a JVM to handle
high levels of contention on a single monitor. It uses 24 threads
executing concurrently, each of which iterates 100000 time over a
loop. The loop body consists of a parallel portion, which takes
1.55 µsecs to complete and a serial portion, protected by a global
monitor, which also requires 1.55 µsecs to complete.

23.771 8.993 secs

SPECjvm98

 _201_compress LZW compress and decompress 39.205 39.209 secs

 _202_jess Java Expert Systems Shell 18.278 17.316 secs

 _209_db Simulates a database – search and update 60.931 59.045 secs

 _213_javac Java source to bytecode compiler 32.659 31.867 secs

 _222_mpegaudio Compress an audio file 42.916 41.602 secs

 _227_mtrt Multithreaded ray tracer 11.466 10.288 secs

 _228_jack Self-generating parser generator 23.643 22.456 secs

Java Grande Forum Benchmark, Version 2.0.

 Section1:Method:Same:SynchronizedInstance

5027309 6727437 calls/sec

Sync – Sync is a single-threaded micorbenchmark that times the
execution of uncontested synchronization operations. The
synchronized statements and methods are empty.

 1M normal calls to an empty method 30 30 msecs

 No waiting threads, 1M synchronized method calls 251 179 msecs

 No waiting threads, 1M synchronized method calls – nested 125 114 msecs

 No waiting threads, 1M synchronized statements 244 207 msecs

 One waiting thread, 1M synchronized method calls 451 246 msecs

 One waiting thread, 1M synchronized method calls – nested 296 114 msecs

 One waiting thread, 1M synchronized statements 462 212 msecs

CHashMapTest – CHashMapTest, written by Doug Lea, exercises
his mostly-concurrent reading, exclusive writing HashMap
package. As run, it has 4 threads concurrently applying 1000000
updates each to a HashMap having 100000 elements.

19.249 5.733 secs

Table 2 Benchmark Results.

All tests were run on an 8-Way 333MHz SPARC
system running Solaris 2.8 in the Interactive
Scheduling class. The Relaxed-Lock JVM used fast
assembly language paths, speculative deflation,
hashCode multiplexing and futile wakeup throttling.

As shown above, the Relaxed-lock protocol takes 179
milliseconds to complete 1 million calls to an empty
synchronized method. For comparison, optimized “C”
code runs 1 million mutex_lock-mutex_unlock
pairs in 236 milliseconds. We should note, however,
that for “C” code a large component of the cost is the
control transfer through the procedure linkage table.

5. Conclusions
5.1. Recap
We have presented the Relaxed-Lock protocol that
supports Java monitor semantics. It has been validated
in the context of ResearchVM. It is time-efficient,
reasonably space-efficient and holds up well under
contention. For uncontended locking it requires only
one atomic CAS to lock an object and only a memory
barrier to unlock and object. On most processors
atomic instructions are very expensive so the number
of atomic instructions in the lock-unlock code path
determines synchronization performance.
ResearchVM with Relaxed-Lock actually has a longer
lock-unlock path in terms of instruction count than the
Meta-Lock form, but the Relaxed form has lower
latency and can sustain a higher throughput because it

has one less atomic instruction. As we use fewer
atomic instructions, The Relaxed-Lock protocol incurs
less memory bus traffic and scales better on
multiprocessor systems. It also provides predictable
performance and is free of pathologies. The
synchronization portion of the JVM stands alone and is
largely independent of the rest of the JVM, and in
particular the garbage collector.

5.2. Future work
In the future we may investigate using model checkers
to formally validate the Relaxed-Lock protocol. Also
of interest is making the monRec a first-class Java
object. This would greatly simplify management of the
monRec pool. In the current implementation the
monRec contains a Solaris semaphore, and therefore
can’t be moved by the garbage collector. To avoid this
problem we’d put a system semaphore in each EE and
do away with the semaphore in the monRec. An EE
would always block on its own semaphore. The
monRec EntryQ would then become a pointer to an
explicit list of EEs blocked on an object. Meta-Lock
uses an explicit linked list of EEs. This would also give
the JVM considerable control over short term
scheduling policy. We would also be able to eliminate
the rcThis field and use the explicit linked list pointer
as indication that the monRec was idle.

Flushing, while rare, victimizes the unlocking thread.
To keep the monRec out of circulation the exiting
thread must wait until all flushees rendezvous.
Intuitively, this seems unfair. One remedy would be to
hand off the monRec to a special thread dedicated to
flushing.

5.3. Acknowledgements
I’d like to thank Ole Agesen, Paula J. Bishop, Alex
Garthwaite, Maurice Herlihy, Paul Hohensee and Doug
Lea for useful suggestions.

6. References
[1] Ken Arnold and James Gosling. The Java Programming

Language. The Java Series, Addison-Wesley, 1996.

[2] C.A.R. Hoare. Monitors: An Operating Systems Structuring
Concept. CACM 17(10), pp. 549, October 1974.

[3] Timothy Lindholm and Frank Yellin. The Java Virtual
Machine Specification. The Java Series, Addison-Wesley,
1996.

[4] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel,
Y.S. Ramakrishna, Derek White. An Efficient Meta-Lock for
Implementing Ubiquitous Synchronization.. In Proceedings of
ACM SIGPLAN ‘99 Conference on Object-Oriented
Programming Languages, Systems and Applications
(OOPSLA), 1999.

[5] Ole Agesen. Space and Time-Efficient Hashing of Garbage-
Collected Objects. Theory and Practice of Object Systems,
Volume 5, Number 2, 1999, pp. 119.

[6] Michael Greenwald and David Cheriton. The Synergy
Between Non-Blocking Synchronization and Operating
Systems Structure. Proceedings of the Second Symposium on
Operating Systems Design and Implementation (OSDI),
USENIX, Seattle, October 1996, pp. 123

[7] Michael Greenwald. Ph. D. Thesis. Non-Blocking
Synchronization and System Design. Stanford University,
1999.

[8] David F. Bacon, Ravi Konuru, Chet Murthy and Mauricio
Serrano. Thin Locks: Featherweight Synchronization for Java.
In Proceedings of the ACM SIGPLAN’98 Conference on
Programming Language Design and Implementation (PLDI),
Montreal, Canada, June 1998. pp. 258.

[9] B. Lewis, D. Berg. The Threads Primer: A Guide to
Multithreaded Programming. Sunsoft Press, Prentice Hall,
1996.

[10] John Valois. Lock-Free Data Structures. Ph. D. Thesis,
Rensselaer Polytechnic Institute, 1995.

[11] David L. Weaver, Tom Germond, editors. The SPARC
Architecture Manual, Version 9. SPARC International,
Prentice-Hall, 1994.

[12] Peter A. Buhr, Michel Fortier, Michael H. Coffin. Monitor
Classification. ACM Computing Surveys, 27(1), pp. 63-107.
March 1995.

[13] Y. Oyama, K. Taura, A. Yonezawa. Executing Parallel
Programs with Synchronization Bottlenecks Efficiently.
University of Tokyo, 1998.

[14] Tamiya Onodera, Kiyokuni Kawachiya. A Study of Locking
Objects with Bimodal Fields. In Proceedings of ACM
SIGPLAN ‘99 Conference on Object-Oriented Programming
Languages, Systems and Applications (OOPSLA), 1999.

[15] R. Dimpsey, R. Arora, K. Kuiper. Java server performance: A
case study of building efficient, scalable JVMs. IBM Systems
Journal, Volume 39, no. 1, 2000 – Java Performance.

[16] S.K.Park, K.W. Miller. Random Number Generators: Good
Ones Are Hard to Find. CACM 31(10), pp. 1192, October
1988.

Sun, Sun Microsystems, Java, JDK and Solaris are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other
countries. All SPARC trademarks are used under
license, and are trademarks or registered trademarks of
SPARC International, Inc. in the United States and
other countries. Products bearing the SPARC
trademark are based on an architecture developed by
Sun Microsystems, Inc.

7. Appendix – Listing

[1] typedef struct _monRec { // monitor record
[2] struct _ExecEnv * volatile Owner ; // EE, NULL iff free
[3] volatile int Candidate ; // wait indicator -- futile wakeup throttle
[4] volatile int rcThis ; // ref count -- holds monRec persistent
[5] int Nest ; // recursive locking
[6] int hashCode ; // hoisted from object.LockWord
[7] struct _monRec * MonNext ; // LL chain: next free monRec
[8] lwp_sema_t EntryQ ; // heavy system sync object used for entry
[9] // Other fields elided …
[10] } monRec ;
[11]
[12] typedef struct _ExecEnv { // EE
[13] monRec * volatile MonFree ; // Linked list of free monitors
[14] // Other fields elided ...
[15] } ExecEnv ;
[16]
[17] void monWakeup (ExecEnv * ee, monRec * m)
[18] {
[19] if (m->Candidate == 1 && CAS(&m->Candidate, 1, 0) == 1) {
[20] _lwp_sema_post (&m->EntryQ) ;
[21] }
[22] }
[23]
[24] int monEnter (ExecEnv * ee, Object * obj)
[25] {
[26] monRec * m ;
[27] monRec * nxt ;
[28] intptr_t raw;
[29]
[30] retry:
[31] raw = obj->LockWord ;
[32] if (!INFLATED(raw)) { // Case 1: Empyt – fast path
[33] m = ee->MonFree ;
[34] if (m == NULL) m = ExtendFreeList (ee);
[35] m ->hashCode = raw ;
[36] nxt = m->MonNext ;
[37] if (CAS(&obj->LockWord, raw, MKMON(m)) == raw) {
[38] ee->MonFree = nxt ; // successfully installing "m" confers ownership
[39] return OK;
[40] }
[41] goto retry ; // CAS failed: interference – retry
[42] }
[43]
[44] m = MONREC(raw) ;
[45] if (m->Owner == ee) { // Case 2: Inflated and locked by calling thread
[46] m->Nest ++ ;
[47] return OK ;
[48] }
[49]
[50] // Case 3: inflated and unlocked. optimization – not strictly necessary.
[51] if (m->Owner == NULL && CAS(&m->Owner, NULL, ee) == NULL) {
[52] if (obj->LockWord == raw) {
[53] m->Nest = 1 ;
[54] return OK ;
[55] }
[56] m->Owner = NULL ; // "m" is stale wrt obj. Recover as needed
[57] MEMBAR(StoreLoad) ;
[58] monWakeup (ee, m) ;
[59] goto retry ;
[60] }

[61]
[62] // Case 4: inflated and locked by another thread.
[63] // Slow path ... apparent contention: do this the hard way
[64] Adjust (&m->rcThis, 1) ; // atomic fetch-and-add
[65] if (obj->LockWord != raw) { // Similar to Valois’ SAFEREAD
[66] Adjust (&m->rcThis, -1) ; // "m" is stale wrt obj
[67] MarkSuspect (ee, m) ;
[68] goto retry ;
[69] }
[70]
[71] while (obj->LockWord == raw) {
[72] m->Candidate = 1 ;
[73] MEMBAR(StoreLoad) ;
[74] if (m->Owner == NULL && CAS(&m->Owner, NULL, ee) == NULL) {
[75] Adjust (&m->rcThis, -1) ;
[76] m->Nest = 1 ;
[77] return OK ;
[78] }
[79] _lwp_sema_wait (&m->EntryQ) ;
[80] // We’re awake – recontend for the object
[81] }
[82] FlushAcknowledge (ee, m) ; // we've been flushed
[83] goto retry ;
[84] }
[85]
[86] int monExit (ExecEnv * ee, Object * obj)
[87] {
[88] monRec * m ;
[89] intptr_t raw ;
[90] int nn ;
[91] raw = obj->LockWord ;
[92] m = MONREC(raw) ;
[93] if (INFLATED(raw) && m->Owner == ee) {
[94] nn = m->Nest – 1 ;
[95] if (nn == 0) {
[96] if (m->rcThis == 0) {
[97] obj->LockWord = m->hashCode ; // attempt speculative deflate
[98] MEMBAR(StoreLoad) ; // publish store
[99] if (m->rcThis == 0) { // resample ref count
[100] ReturnToFreeList (ee, m) ; // recycle m
[101] return OK ; // fast path exit
[102] } else {
[103] FlushAndFree (ee, m) ; // misspeculated - expel blocked threads
[104] return OK ;
[105] }
[106] } else {
[107] m->Owner = NULL ;
[108] MEMBAR(StoreLoad) ;
[109] monWakeup (ee, m) ;
[110] return OK ;
[111] }
[112] }
[113] // The following memory barrier is unrelated to the Relaxed-Lock protocol.
[114] // The Java Memory Model promises release consistency.
[115] MEMBAR(StoreLoad);
[116] m->Nest = nn ;
[117] return OK ;
[118] }
[119] return THROW(ILLEGAL_MONITOR_STATE) ;
[120] }
[121]

Listing 1 "C" Code for monEnter() and monExit()

	Introduction
	The Basic Locking Protocol
	Overview
	Data Structures
	Execution Environment
	Object Header
	Monitor Record

	Run-time support
	monEnter
	
	
	
	
	
	Case 2: Inflated and already locked by the calling thread
	Case 3: Inflated and unlocked

	MonExit
	Wait-Notify

	Augmenting the Basic Protocol
	Safely incrementing rcThis.
	hashCode multiplexing
	Futile wakeup throttling
	Fast Assembly Language Paths

	R
	Results
	Conclusions
	Recap
	Future work
	Acknowledgements

	References
	Appendix – Listing

