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Abstract

Detecting the sources or destinations that have communi-
cated with a large number of distinct destinations or sources
during a small time interval is an important problem in
network measurement and security. Previous detection ap-
proaches are not able to deliver the desired accuracy at high
link speeds (10 to 40 Gbps). In this work, we propose two
novel algorithms that provide accurate and efficient solu-
tions to this problem. Their designs are based on the in-
sight that sampling and data streaming are often suitable
for capturing different and complementary regions of the
information spectrum, and a close collaboration between
them is an excellent way to recover the complete informa-
tion. Our first solution builds on the standard hash-based
flow sampling algorithm. Its main innovation is that the
sampled traffic is further filtered by a data streaming mod-
ule which allows for much higher sampling rate and hence
much higher accuracy. Our second solution is more sophis-
ticated but offers higher accuracy. It combines the power
of data streaming in efficiently estimating quantities asso-
ciated with a given identity, and the power of sampling in
collecting a list of candidate identities. The performance
of both solutions are evaluated using both mathematical
analysis and trace-driven experiments on real-world Inter-
net traffic.

1 Introduction
Measurement of flow-level statistics, such as total active
flow count, sizes and identities of large flows, per-flow
traffic, and flow size distribution are essential for network
management and security. Measuring such information on
high-speed links (e.g., 10 Gbps) is challenging since the
standard method of maintaining per-flow state (e.g., us-
ing a hash table) for tracking various flow statistics is pro-
hibitively expensive. More specifically, at very high link
speeds, updates to the per-flow state for each and every in-
coming packet would be feasible only through the use of
very fast and expensive memory (typically SRAM), while
the size of such state is very large [7] and hence too expen-
sive to be held in SRAM. Recently, the techniques for ap-
proximately measuring such statistics using a much smaller
state, based on a general methodology called network data
streaming, have been used to solve some of the aforemen-
tioned problems [5, 6, 12, 11, 22]. The main idea in net-

work data streaming is to use a small and fast memory to
process each and every incoming packet in real-time. Since
it is impractical to store all information in this small mem-
ory, the principle of data streaming is to maintain only the
information most pertinent to the statistic to be measured.
In this work, we design data streaming algorithms that
help detect super sources and destinations. A super source1
is a source that has a large fan-out (e.g., larger than a pre-
defined threshold) defined as the number of distinct des-
tinations it communicates with during a small time in-
terval. The concepts of super destination and fan-in can
be defined symmetrically. Our schemes in fact solve a
strictly harder problem than making a binary decision of
whether a source/destination is a super source/destination
or not: They actually provide accurate estimates of the fan-
outs/fan-ins of potential super sources/destinations. In this
work a source can be any combination of “source” fields
from a packet header such as source IP address, source port
number, or their combination, depending on target applica-
tions. Similarly, a destination can be any combination of
the “destination” fields from a packet header. We refer to
the source-destination pair of a packet as the flow label and
use these two terms interchangeably in the rest of this pa-
per.
The problem of detecting super sources and destinations
arises in many applications of network monitoring and se-
curity. For example, port-scans probe for the existence of
vulnerable services across the Internet by trying to connect
to many different pairs of destination IP address and port
number. This is clearly a type of super source under our
definition. Similarly, in a DDoS (Distributed Denial of Ser-
vice) attack, a large number of zombie hosts flood packets
to a destination. Thus the problem of detecting the launch
of DDoS attacks can be viewed as detecting a super desti-
nation. This problem also arises in detecting worm prop-
agation and estimating their spreading rates. An infected
host often propagates the worm to a large number of des-
tinations, and can be viewed as a super source. Knowing
its fan-out allows us to estimate the rate at which the worm
may spread. Another possible instance lies in peer-to-peer
and content distribution networks, where a few servers or
peers might attract a larger number of requests (for con-
tent) than they can handle while most of others in the net-
work are relatively idle. Being able to detect such “hot
spots” (a type of super destination) in real-time helps bal-
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ance the workload and improve the overall performance of
the network. A number of other variations of the above ap-
plications, such as detecting flash crowds [9] and reflector
attacks [15], also motivate this problem.
Techniques proposed in the literature for solving this
problem typically maintain per-flow state, and cannot scale
to high link speeds of 10 or 40 Gbps. For example, to
detect port-scans, the widely deployed Intrusion Detec-
tion System (IDS) Snort [19] maintains a hash table of
the distinct source-destination pairs to count the destina-
tions each source talks to. A similar technique is used
in FlowScan [17] for detecting DDoS attacks. The inef-
ficiency in such an approach stems from the fact that most
of the source-destination pairs are not a part of port scans
or DDoS attacks. Yet, they result in a large number of
source-destination pairs that can be accommodated only
in DRAM, which cannot support the high access rates re-
quired for updates at line speed. More recent work [20] has
offered solutions based on hash-based flow sampling tech-
nique. However, its accuracy is limited due to the typically
low sampling rate imposed by some inherent limitations of
the hash-based flow sampling technique discussed later in
Section 3. A more comprehensive survey of related work
is provided in Section 7.
In this paper we propose two efficient and accurate data
streaming algorithms for detecting the set of super sources
by estimating the fan-outs of the collected sources. These
algorithms can be easily adapted symmetrically for detect-
ing the super destinations. Their designs are based on the
insight that (flow) sampling and data streaming are often
suitable for capturing different and complementary regions
of the information spectrum, and a close collaboration be-
tween them is an excellent way to recover the complete in-
formation. This insight leads to two novel methodologies
of combing the power of streaming and sampling, namely,
“filtering after sampling” and “separation of counting and
identity gathering”. Our two solutions are built upon these
two methodologies respectively.
Our first solution, referred to as the simple scheme, is
based on the methodology of “filtering after sampling”. It
enhances the traditional hash-based flow sampling algo-
rithm to approximately count the fan-outs of the sampled
sources. As suggested by its name, the design of this solu-
tion is very simple. Its main innovation is that the sampled
traffic is further filtered by a simple data streaming module
(a bit array), which guarantees that at most one packet from
each flow is processed. This allows for much higher sam-
pling rate (hence much higher accuracy) than achievable
with traditional hash-based flow sampling. Our second so-
lution, referred to as the advanced scheme, is more sophis-
ticated than the simple scheme but offers even higher accu-
racy. Its design is based on the methodology of “separation
of counting and identity gathering”, which combines the
power of streaming in efficiently estimating quantities (e.g.,

fan-out) associated with a given identity, and the power of
sampling in generating a list of candidate identities (e.g.,
sources). Through rigorous theoretical analysis and exten-
sive trace-driven experiments on real-world Internet traffic,
we demonstrate these two algorithms produce very accu-
rate fan-out estimations.
We also extend our advanced scheme for detecting the
sources that have large outstanding fan-outs, defined as the
number of distinct destinations it has contacted but has
not obtained acknowledgments (TCP ACK) from. This
extension has several important applications. One exam-
ple is that in port-scans, the probing packets, which target
a large number of destinations, will receive acknowledg-
ments from only a small percentage of them. Another ex-
ample is distributed TCP SYN attacks. In this case, the
victim’s TCP acknowledgments (SYN/ACK packets) to a
large number of hosts for completing the TCP handshake
(the second step) are not acknowledged. Our evaluation
on bidirectional traffic collected simultaneously on a link
shows that our solution estimates outstanding fanout with
high accuracy.
The rest of this paper is organized as follows. In the next
section, we present our design methodologies and provide
an overview of the proposed solutions. Sections 3 and 4 de-
scribe the design of the two schemes in detail respectively
and provide a theoretical analysis of their complexity and
accuracy. Section 5 presents an extension of our scheme
for estimating outstanding fan-outs. We evaluate our solu-
tions in Section 6 using packet header traces of real-world
Internet traffic. We discuss the related work in Section 7
before concluding in Section 8.

2 Overview of our schemes
As we mentioned above, accurate measurement and mon-
itoring in high speed networks are challenging because
the traditional per-flow schemes cannot scale to high link
speeds. As a stop-gap solution, packet sampling has been
used to keep up with high link speeds. In packet sampling,
a small fraction p of traffic is sampled and processed. Since
the sampled packets constitute a much lower volume than
the original traffic, a per-flow table stored in relatively in-
expensive DRAM can handle all the updates triggered by
the sampled packets in real-time [14]. Thus we can typi-
cally obtain complete information contained in the sampled
traffic. The statistics of the original traffic are then inferred
from that of the sampled traffic by “inverting” the sampling
process, i.e., by compensating for the effects of sampling.
However the accuracy of such sampling-based estimations
is usually low, because the error is scaled by 1/p and p is
typically small (e.g., 1/500) to make the sampling opera-
tion computationally affordable [4, 11, 8]. In other words,
although the sampling-based approach allows for 100% ac-
curate digesting of information on sampled traffic, a large
amount of information may be lost during the sampling
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process.
Network data streaming2 has begun to be recognized as
a better alternative to sampling for measurement and mon-
itoring of high-speed links [10]. Contrary to sampling, a
network data streaming algorithm will process each and
every packet passing through a high-speed link to glean the
most important information for answering a specific type
of query, using a small yet well-organized data structure.
This data structure is small enough to be fit into fast (yet
expensive) SRAM, allowing it to keep up with high link
speeds. The challenge is to design this data structure in
such a way that it encodes the information we need, for an-
swering the query, in a succinct manner. Data streaming
algorithms, if available, typically offer much more accu-
rate estimations than sampling for measuring network flow
statistics. This is because, intuitively the sampling throws
away a large percentage of information up front, while data
streaming, which processes each and every packet, is often
able to retainmost of the most important information inside
a small SRAM module.
In our context of detecting super sources, however, both
sampling and data streaming are valuable for capturing dif-
ferent and complementary regions of the information spec-
trum, and a close collaboration between them is used to
recover the complete information. There are two parts of
information that we would like to know in finding super
sources: one is the identities (e.g., IP addresses) of the
sources that may be super sources. The other is the fan-
out associated with each source identity. We observe that
data streaming algorithms can encode the fan-outs of var-
ious sources into a very succinct data structure. Such a
data structure, however, typically only provides a lookup
interface. In other words, if we obtain a source identity
through other means, we are able to look up the data struc-
ture to obtain its (approximate) fan-out, but the data struc-
ture itself cannot produce any identities and is undecod-
able without such identities being supplied externally. On
the other hand, sampling is an excellent way of gathering
source identities though it is not a great counting device as
we described earlier.
The above observation leads to one of the two aforemen-
tioned design methodologies, i.e., separating identity gath-
ering and counting. The idea is to use a streaming data
structure as a counting device and use sampling to gather
the identities of potential super sources. Then we look up
the streaming data structure using the gathered identities to
obtain the corresponding counts. This methodology is used
in our advanced scheme that employs a 2-dimensional bit
array as the counting device, in parallel with an identity
gathering module that adopts an enhanced form of sam-
pling. We show that our sampling module has vanishingly
small probability of missing the identity of any actual super
sources and the estimation module produces highly accu-
rate estimates of the fan-out of the potential super sources.

This scheme is especially suitable for very high link speeds
of 10 Gbps and above. We describe this scheme in Sec-
tion 4.
We also explore another way of combing sampling and
streaming, i.e., “filtering after sampling”. Its idea is to em-
ploy a data streaming module between the sampling op-
eration and the final processing procedure to efficiently en-
code whether a flow has been seen before. A careful design
of this module guarantees that at most one packet in each
flow needs to be processed. This allows us to achieve much
higher sampling rate and hence much higher accuracy than
the traditional flow sampling scheme. This solution works
very well for relatively lower link speeds (e.g., 10 Gbps and
below). We describe this scheme in detail in Section 3.

3 The simple scheme
In this section we present a relatively simple scheme for
detecting super sources. It builds upon the traditional hash-
based flow sampling technique but can achieve a much
higher sampling rate, and hence more accurate estimation.
We begin with a discussion of some limitations of the tradi-
tional hash-based sampling approach, and then describe our
solution that alleviates these limitations. We also present an
analysis of the complexity and accuracy of the scheme.

3.1 Limitations of traditional hash-based
flow sampling

There are two generic sampling approaches for network
measurement: packet sampling and flow sampling. In the
former approach, each packet is sampled independently
with a certain probability, while in the latter, the sampling
decision is made at the granularity of flows (i.e., all packets
belonging to sampled flows are sampled). In the following,
we only consider flow sampling since packet sampling is
not suitable for our context of detecting super sources. 3

A traditional flow sampling algorithm that estimates the
fan-outs of sources works as follows. The algorithm ran-
domly samples a certain percentage (say p) of source-
destination pairs using a hashing technique (described
next). The fan-out of each source in the sampled pairs is
counted and then scaled by 1/p to obtain an estimate of
the fan-out of the source in the original traffic (i.e., before
sampling). This counting process is typically performed
using a hash table that stores the fan-out values (after sam-
pling) of all sources seen in the sampled traffic so far, and
a newly sampled flow will increment the fan-out counter
of the corresponding hash node (or trigger the creation of a
new node). Since the estimation error is also scaled by 1/p,
it is desirable to make the sampling rate p as high as pos-
sible. However, we will show that, at high link speeds, the
traditional hash-based flow sampling approachmay prevent
us from achieving high sampling rate needed for accurate
estimation.
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Flow sampling is commonly implemented using a sim-
ple hashing technique [3] as follows. First a hash function
g that maps a flow label to a value uniformly distributed
in [0, 1) is fixed. When a packet arrives, its flow label is
hashed by g. Given a sampling probability p, the flow is
sampled if and only if the hashing result is no more than
p. Recall that the purpose of flow sampling is to reduce
the amount of traffic that needs to be processed by the
aforementioned hash table which performs the counting.
Clearly, it is desirable that a hash table that runs slightly
faster than p times the link speed, can keep up with the in-
coming rate of the sampled traffic (with rate p). For exam-
ple, we would like a hash table (in DRAM) that is able to
process a packet in 400ns to handle all traffic sampled from
a link with 10 million packets per second (i.e., one packet
arrival per 100ns on the average) with slightly less than
25% sampling rate. Unfortunately, we cannot achieve this
goal with the current hash-based flow sampling approach
for the following reason.
With hash-based flow sampling, if a flow is sampled, all
packets belonging to the flow need to be processed by the
hash table. Internet traffic is very bursty in the sense that
the packets belonging to a flow tend to arrive in bursts and
do not interleave well with packets from other flows and
is also known to exhibit the following characteristic [5]: a
small number of elephant flows contain most of the overall
traffic while the vast majority of the flows are small. If a
few elephant flows are sampled, their packets could gen-
erate a long burst of sampled traffic that has much higher
rate than that can be handled by the hash table4. Therefore,
with hash-based flow sampling, the sampling rate p has to
be much smaller than the ratio between the operating speed
of the hash table and the arrival rate of traffic, thus lead-
ing to large estimation errors as discussed before. In the
following subsection, we present an efficient yet simple so-
lution to this problem, allowing the sampling rate to reach
or even well exceed this ratio.
In [20] the authors propose a one-level filtering algo-
rithm which uses the hash-based flow sampling approach
described above, in conjunction with a hash table for count-
ing the fan-out values. It does not specify whether DRAM
or SRAM will be used to implement the hash table. If
DRAM were used, it will not be able to achieve a high
sampling rate as discussed before. If SRAM were used, the
memory cost is expected to be prohibitive when the sam-
pling rate is high. This algorithm appears to be effective
and accurate for monitoring lower link speeds, but cannot
deliver a high estimation accuracy when operating at high
link speeds such as 10Gbps (the target link speeds are not
mentioned in [20]).

3.2 Our scheme
We design a filtering technique that completely solves the
aforementioned problem. It allows the sampling rate to be
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Figure 1: Traditional flow sampling vs. filtering after sampling

1. Initialize
2. G[r] := 0, r=1,2,. . . , w
3. /* w is the size of the array */
4. u := w

5. /* variable u keep track the number of “0”s in G */

6. Filtering after sampling
7. Upon each incoming sampled packet pkt

8. r := h(< pkt.src, pkt.dst >)
9. if G[r] = 0
10. s := pkt.src

11. cNs := cNs + w

u

12. /* The (s, cNs) pairs are maintained as a hash
table L. */

13. G[r] := 1
14. u := u − 1
15. /* The number of “0”s is decreased by 1 */

Figure 2: Algorithm of updating data streaming module.

very close to the ratio between the hash table speed and
the link speed in the worst-case and well exceed the ra-
tio otherwise. Its conceptual design is shown in Figure 1.
Compared with the traditional flow sampling approach, our
approach places a data streamingmodule between the hash-
based flow sampling module and the hash table (for count-
ing). This streaming module guarantees that at most one
packet from each sampled flow needs to be processed by
the hash table. This will completely smooth out the afore-
mentioned traffic bursts in the flow-sampled traffic, since
such bursts are caused by highly bursty arrivals from one
or a small number of elephant flows and now only the first
packets of these flowsmay trigger updates to the hash table.
The data structure and algorithm of the data streaming
module are shown in Figure 2. Its basic idea is to use a
bit array G to remember whether a flow label, a source-
destination pair in our context, has been processed by the
hash table. Let the size of the array be w bits. We fix a
hash function h that maps a flow label to a value uniformly
distributed in [1, w]. The array is initialized to all “0”s at
the beginning of a measurement epoch. Upon the arrival of
a packet pkt, we hash its flow label (< pkt.src, pkt.dst >)
using h and the result r is treated as an index into the array
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G. If G[r] is equal to 1, our algorithm concludes that a
packet with this flow label has been processed earlier, and
takes no further action. Otherwise (i.e.,G[r] is 0), this flow
label will be processed to update the corresponding counter
Npkt.src maintained in a hash table L. ThenG[r] is set to 1
to remember the fact that a packet with this flow has been
seen and processed. This method clearly ensures that at
most one packet from each sampled flow is processed by L.
However, due to hash collisions, some sampled flows may
not be processed at all since their corresponding bits in G
would be set by their colliding counterparts.5 The update
procedure of the hash table L, described next, statistically
compensates for such collisions.
Now we explain our statistical estimator, which is the
computation result of the hash table update procedure
shown in Figure 2 (line 11). Suppose the number of “0” en-
tries in G (with size w) is u right before a packet pkt with
source s arrives (s := pkt.src in line 10). Assume pkt be-
longs to a new flow and its flow label hashes to an index r.
The value of G[r] has value 0 with probability u

w
. There-

fore to obtain an unbiased estimator N̂s of the fan-out of
the source s on the sampled traffic, we should statistically
compensate for the fact that with probability 1− u

w
, the bit

G[r] has value 1 and pkt will miss the update to L due to
aforementioned hash collisions. It is intuitive that if we add
w
u
to N̂s, the resulting estimator is unbiased. To be more

precise, suppose in a measurement epoch, the hash table is
updated by altogether K packets {pktj , j = 1, 2, ...,K}
from a source s, whose flow labels hash to locations rj ’s
where G[rj ] = 0, and there are uj 0’s in G right before
pktj arrives, respectively. The output of the hash table L,
which is an unbiased estimator of the fan-out of s on the
sampled traffic, is

N̂s =
K∑

j=1

w

uj

(1)

We show in the following lemma that this is an unbiased
estimator of Ns and its proof can be found in [24].

Lemma 1 N̂s is an unbiased estimator of Ns, i.e.,
E[N̂s] = Ns.

Then an unbiased estimator of the fan-out Fs of source s
is given by scaling N̂s by 1/p, i.e.,

F̂s =
1

p

K∑

j=1

w

uj

(2)

where p is the sampling rate used in the flow sampling.
We show in the following theorem that the estimator F̂s is
unbiased. Its proof uses Lemma 1 and is also provided in
[24].

Theorem 1 F̂s is an unbiased estimator of Fs, i.e.,
E[F̂s] = Fs.

We now demonstrate that this solution will completely
smooth out the aforementioned problem of traffic bursts ,
and allow the sampling rate to be close to the ratio between
the hash table speed and the link rate, the theoretical upper
limit in the worst case. The worst case for our scheme is
that each flow contains only one packet (e.g., in the case of
DDoS attacks)6. Even in this worst case, the update times
to the hash table (viewed as a random process) is very close
to Poisson7 (nonhomogeneous as the value of u varies over
time) since each new flow is sampled independently. Due
to the “benign” nature of this arrival process, by employing
a tiny SRAM buffer (e.g., holding 20 flow labels of 64 ∼
100 bits each), a hash table that operates slightly faster than
the average rate of this process will only miss a negligible
fraction of updates due to buffer overflow. This process
can be faithfully modeled as a Markov chain for rigorous
analysis. We elaborate it with a numerical example in [24]
and omit it here due to lack of space.
Notice that in Figure 2 the variable u, the number of “0”
entries in G, decreases as more and more sampled flows
are processed. When more and more packets pass through
the data streaming module, u becomes small and hence the
probability for a new flow to be recorded, u

w
, decreases.

Thereby the estimation error will increase. To maintain
high accuracy, we specify a minimum value umin for u.
Once the value of u drops below umin, the estimation pro-
cedure will use a new array (set to all “0”s initially) and
start a new measurement epoch (with an empty hash ta-
ble). Two sets of arrays and hash tables will be operated in
an alternating manner so that the measurement can be per-
formed without interruption. The parameter umin is typi-
cally set to around w/2 (i.e., “half full”).

3.3 Complexity analysis
The above scheme has extremely low storage (SRAM)
complexity and allows for very high streaming speed.
Memory (SRAM) consumption. Each processed flow
only consumes a little more than one bit in SRAM. Thus
a reasonable amount of SRAM can support very high link
speeds. For example, assuming the average flow size of 10
packets [11], 512KB SRAM is enough to support a mea-
surement epoch which is slightly longer than 2 seconds
for a link with 10 million packets per second even without
performing any flow sampling. With 25% flow sampling
which is typically set for OC-192 links the SRAM require-
ment is even brought down to 128KB.8
Streaming speed. Our algorithm in Figure 2 has two
branches to deal with the packets arriving at the data
streamingmodule. If the corresponding bit is “1”, the pack-
ets only require one hash function computation and one
read to SRAM. Otherwise they require one hash function
computation, one read and one write (at the same location)
to SRAM and an update to the hash table. Using efficient
hardware implementation of hash function [18] and 5ns
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Figure 3: System model of the advanced scheme

SRAM, all operations in the data streaming module can be
finished in 10’s of ns in both cases.

3.4 Accuracy analysis
Nowwe establish the following theorem to characterize the
variance of the estimator F̂s in Formula 2. Its proof can be
found in [24]

Theorem 2

V ar[F̂s] ≈

∑pFs

j=1
w−uj

uj

p2
+

Fs(1 − p)

p

Remark: The above variance consists of two terms. The
first term corresponds to the variance of the error term in
estimating the sampled fan-out, scaled by 1

p2 (to compen-
sate for sampling), and the second term corresponds to the
variance of the error term in inverting flow sampling pro-
cess. Since these two errors are approximately orthogonal
to each other, their total variance is the sum of their indi-
vidual variances.

4 The advanced scheme
In this section we propose the advanced scheme that is
more sophisticated than the simple scheme but can offer
more accurate fan-out estimations. It is based on the afore-
mentioned design methodology of separating identity gath-
ering from counting. Its system model is shown in Fig-
ure 3. There are two parallel modules processing the in-
coming packet stream. The data streaming module encodes
the fan-out information for each and every source (arc 1 in
Figure 3) into a very compact data structure, and the iden-
tity sampling module captures the candidate source identi-
ties which have potential to be super sources (arc 2). These
source identities are then used by an estimation algorithm
to look up the data structure (arc 3) produced by the data
streaming module (arc 4) to get their corresponding fan-out
estimates. The design of these modules are described in the
following subsections.

4.1 Online streaming module
The data structure used in the online streaming module is
quite simple: anm×n 2-dimensional bit arrayA. The bits
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Figure 4: An instance of online streaming module

1. Initialize
2. A[i, j] := 0, i = 1, 2, ..., m j = 1, 2, · · · , n

3. Update
4. Upon the arrival of a packet pkt

5. row := h′(< pkt.src, pkt.dst >)
6. for i := 1 to k

7. col := hi(pkt.src)
8. A[row, col] := 1

Figure 5: Algorithm of online streaming module

in A are set to all “0”s at the beginning of each measure-
ment epoch. The algorithm of updating A is shown in Fig-
ure 5. Upon the arrival of a packet pkt, pkt.src is hashed by
k independent9 hash functions h1, h2, · · · , hk with range
[1..n]. The hashing results h1(pkt.src), h2(pkt.src), ...,
hk(pkt.src) are viewed as column indices into A. In
our scheme, k is set to 3, and the rationale behind it
will be discussed in Section 4.3. Then, the flow label
< pkt.src, pkt.dst > is hashed by another independent
hash function h′ (with range [1..m]) to generate a row in-
dex of A. Finally, the k bits located at the intersections
of the selected row and columns are set to “1”. An exam-
ple is shown in Figure 4, in which the three intersection
bits (circled) are set to “1”s. When A is filled (by “1”)
to a threshold percentage we terminate the current mea-
surement epoch and start the decoding process10. In Sec-
tion 4.2, we show that the above process produces a very
compact and accurate (statistical) encoding of the fan-outs
of the sources, and present the corresponding decoding al-
gorithm.
Readers may feel that the above 2D bit arrayA is a vari-
ant of Bloom filters [1]. This is not the case since although
its encoding algorithm is similar to that of a Bloom filter
(flipping some bits to “1”s), we decode the 2D bit array
for a different kind of information (the fan-out count) than
if we really use it as a Bloom filter (check if a particular
source-destination pair has appeared). Our encoding algo-
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rithm is not well engineered for being used as a Bloom fil-
ter. And our decoding algorithm, shown next, is also fun-
damentally different from that of a Bloom filter.
The proposed online streaming module has very low
memory consumption and high streaming speed:
Memory (SRAM) consumption. Our scheme is extremely
memory-efficient. Each source-destination pair (flow) will
set 3 bits in the bit vectors to “1”s and consume a little
more than 3 bits of SRAM storage11. We will show that
the scheme provides very high accuracy using reasonable
amount of SRAM (e.g., 128KB) in Section 6.
Streaming speed. Each update requires only 4 hash func-
tion computations and 3 writes to the SRAM. We require
that these four hash functions are independent and amend-
able to hardware implementation. They can be chosen from
the H3 hash function family [2, 18], which, with hard-
ware implementation, can produce a hash output within a
few nanoseconds. Then with commodity 5ns SRAM our
scheme would allow around 40million packets per second,
thereby supporting 40 Gbps traffic stream assuming a con-
servative average packet size of 1,000 bits.

4.2 Estimation module
For each source identity recorded by the sampling mod-
ule (described later), the estimation module decodes its ap-
proximate fan-out from the 2D bit array A, the output of
the data streaming module. In this section, we describe this
decoding algorithm in detail.
When we would like to know Fs, the fan-out of the
source s, s is hashed by the hash functions h1, · · · , hk,
which are defined and used in the online streaming mod-
ule, to obtain k column indices. Let Ai, i = 1, 2, · · · , k, be
the corresponding columns (viewed as bit vectors). In the
following, we derive, step by step, an accurate and almost
unbiased estimator of Fs, as a function of Ai, i = 1, 2, · · · ,
k.
Let the set of packets hashed into column Ai during the
correspondingmeasurement epoch be Ti and the number of
bits in Ai that are “0”s be UTi

. Note that the value UTi
is

a part of our observation since we can obtain UTi
from Ai

through simple counting, although the notation itself con-
tains Ti, the size of which we would like to estimate. Recall
the size of the column vector is m. A fairly accurate esti-
mator of |Ti|, the number of packets of Ti, adapted from
[21], is

DTi
= m ln

m

UTi

(3)

Note that Fs, the fan-out of the source s, is equal to |T1∩
T2 ∩ · · · ∩ Tk|, if during the measurement epoch, no other
sources are hashed to the same k columnsA1, A2, · · · , Ak.
Otherwise |T1 ∩ T2 ∩ · · · ∩ Tk| is the sum of the fan-
outs of all (more than 1) the sources that are hashed into
A1, A2, · · · , Ak. We show in the next section, that the

probability with which the latter case happens is very small
when k = 3. We obtain the following estimator of Fs,
which is in fact derived as an estimator for |T1 ∩T2 ∩ · · · ∩
Tk|.

F̂s =
∑

1≤i≤k

DTi
−

∑

1≤i1<i2≤k

DTi1
∪Ti2

+
∑

1≤i1<i2<i3≤k

DTi1
∪Ti2

∪Ti3

+ · · · + (−1)k−1DT1∪T2···∪Tk
(4)

Here DTi∪···∪Tj
, is defined as m ln m

UTi∪···∪Tj

, where
UTi∪···∪Tj

denotes the number of “0”s in the bit vector
BTi∪···∪Tj

which is the result of hashing the set of pack-
ets Ti ∪ · · · ∪ Tj into a single empty bit vector. The bit
vectorBTi∪···∪Tj

is computed as the bitwise-OR of Ai,. . . ,
Aj . One can easily verify the correctness of this computa-
tion with respect to the semantics of BTi∪···∪Tj

.
We need to show that the RHS of Formula 4 is a fairly
good estimator of |T1 ∩ T2 ∩ · · · ∩ Tk|. Note that

|T1 ∩ T2 ∩ · · · ∩ Tk| =
∑

1≤i≤k

Ti −
∑

1≤i1<i2≤k

Ti1 ∪ Ti2

+
∑

1≤i1<i2<i3≤k

Ti1 ∪ Ti2 ∪ Ti3

+ · · · + (−1)k−1T1 ∪ T2 · · · ∪ Tk (5)

by the principle of inclusion and exclusion. Since
DTi∪···∪Tj

is a fairly good estimator of |Ti ∪ · · · ∪ Tj | ac-
cording to [21], we obtain the RHS of Formula 4 by replac-
ing the terms |Ti ∪ · · · ∪ Tj | in Formula 5 by DTi∪···∪Tj

,
1 ≤ i < j ≤ k. Note that it is not correct to di-
rectly use the bitwise-AND of A1, A2, ..., Ak for estimat-
ing |T1∩T2∩· · ·∩Tk| using Formula 3, because the bit vec-
tor corresponding to the result of hashing the set of packets
T1∩T2∩ ...∩Tk into an empty bit vector, is not equivalent
to the bitwise-AND of A1, ..., Ak.
The estimator in Formula 4 generalizes the result in [21]
which is developed for the special case k = 2. We will
show that our scheme only needs to use the special case of
k = 3, which is

F̂s =DT1
+ DT2

+ DT3
− DT1∪T2

− DT1∪T3
− DT2∪T3

+ DT1∪T2∪T3
(6)

The computational complexity of estimating the fan-out
of a source is dominated by 2k − k − 1 bitwise-OR op-
erations among k column vectors. Such vectors can be
encoded as one or more unsigned integers so that the bit-
parallelism can significantly reduce the execution time.
Since m is typically 64 bits in our scheme, the whole vec-
tor can be held in two 32-bit integers. Therefore, in our
scheme where k = 3, estimation of the fan-out of each
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source only needs 8 bitwise-OR operations between 32-bit
integers. We also need to count the number of “0”s in a
vector (to get UT values). This can be sped up significantly
by using a pre-computed table (in SRAM) of size 262,144
(= 216 × 4) bits that stores the number of “0”s in all 16-bit
numbers. Our estimation of the execution time shows that
our scheme is fast enough to support OC-768 operations.

4.3 Accuracy analysis

In this section we first briefly explain the rationale behind
setting k to 3 in the estimator and then analyze the accuracy
of our estimator rigorously. We set k (the number of “col-
umn” hash functions) to 3 due to the following two consid-
erations. First, we mentioned before that if two sources s1

and s2 both are hashed to the same k columns, our decod-
ing algorithm will give us an estimate of their total fan-out,
when we use s1 or s2 to lookup the 2D array. We cer-
tainly would like the probability with which this scenario
occurs to be as small as possible. This can be achieved
by making k as large as possible. However, larger k im-
plies larger computational and storage complexities at the
online streaming module. We will show that k = 3 makes
the probability of the aforementioned hash collision very
small, and at the same time keeps the computational and
storage complexities of our scheme modest.

Nowwe derive η, the probability that at least two sources
happen to hash to the same set of k columns by h1, h2, ...,
hk. It is not hard to show, using straightforward combi-

natorial arguments, that η = 1 −
(nk

S )S!

nkS , where S is the
total number of the distinct sources during the measure-
ment epoch. We observe that, given typical values for n
and S, η is quite large when k = 2, but drops to a very
low value when k = 3. For example, when n = 16K and
S = 100, 000, η is close to 1 when k = 2, but drops to
0.002 when k = 3.

The following theorem characterizes the variance of the
estimator in Formula 6, which is also its approximate mean
square error (MSE), since the estimator is almost unbiased
and the impact of η (discussed above) on the estimation
error is very small when k = 3. Its proof can be found in
[24]. This is an extension of our previous variance analysis
in [23] which is derived for the special case k = 2. Let tT

denote |T |/m, which is the load factor of the bit vector(of
sizem) when the corresponding set T of source-destination
pairs are hashed into it, in the following theorem.
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Figure 6: Distribution of the estimation from Monte-Carlo simu-
lation (m = 64b, k = 3 and Fs = 50). σ is the standard deviation
computed from Theorem 3

Theorem 3 The variance of F̂s is given by

V ar[F̂s] ≈ −m

3∑

i=1

f(tTi
) − m

∑

1≤i1<i2≤3

f(tTi1
∪Ti2

)

+ 2m(f(tT1∪(T2∩T3)) + f(tT2∪(T1∩T3)) + f(tT3∪(T2∩T1)))

+ 2m
∑

1≤i1<i2≤3

f(tTi1
∩Ti2

)

− 2m(f(tT1∩(T2∪T3)) + f(tT2∩(T1∪T3)) + f(tT3∩(T2∪T1)))

+ mf(tT1∪T2∪T3
)

where f(t) = et − t − 1.

An example distribution of F̂s with respect to the actual
valueFs is shown in Figure 6. We obtained this distribution
with 20,000 runs of the Monte-Carlo simulations with the
following parameters. In this empirical distribution, the ac-
tual fan-out Fs is 50, the size of the column vectorm is 64
bits. The load factor is set to tTi

= 1.5 for 1 ≤ i ≤ 3. Also,
since the sets T1, T2, and T3 have 50 flows in common, we
set tTi∩Tj

= 50
64 = 0.78125, for 1 ≤ i < j ≤ 3. Here we

implicitly assume that pairs of them do not have any flows
in common other than these 50 flows, which happens with
very high probability (= 1− 1

n2 + 1
n3 ) anyway given a large

n (e.g., 16K). In this example the standard deviation σ is
around 6.4 as computed from Theorem 3. We observe that
the size of the tail that falls outside 2 standard deviations
from the mean is very small (< 4%). This shows that, with
high probability, our estimator will not deviate too much
from the actual value. In Section 6, the trace-driven experi-
ments on the real-world Internet traffic will further validate
this.12
Note that given the size ofm, our scheme is only able to
accurately estimate fan-out values up to m lnm + O(m),
because if the actual fan-out Fs is much larger than that, we
will see all 1’s in the corresponding column vectors with
high probability (due to the result of the “coupon collec-
tor’s problem” [13]). In this case, the only information we
can obtain aboutFs is that it is no smaller thanm lnm. For-
tunately, for the purpose of detecting super sources, this in-
formation is good enough for us to declare s a super source,
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as long as the threshold for super sources is much smaller
thanm lnm. However, in some applications (e.g., estimat-
ing the spreading speed of a worm), we may also want to
know the approximate fan-out value. This can be achieved
using amulti-resolution extension of our advanced scheme.
The methodology of multi-resolution is quite standard and
has been used in several recent works [6, 12, 11]. The ex-
tension in our context is straightforward. We omit its de-
tailed specifications here in interest of space.

4.4 Identity sampling module
The purpose of this module is to capture the identities of
potential super sources that will be used to look up the
2D array to get their fan-out estimations. The filtering af-
ter sampling technique proposed in Section 3 is adopted
here with a slightly different recording strategy. Instead of
constructing a hash table to record the sources and their
fan-out estimation, here we only record the source identi-
ties sequentially in the DRAM. Since this strategy avoids
expensive hash table operations and sequential writes to
DRAM can be made very fast (using burst mode), very
high sampling rate can be achieved. With commodity 5ns
SRAM and 60ns DRAM, this recording strategy will be
able to process more than 12.5 million packets per second.
At this speed, we can record 100% and 25% flow labels
for OC-192 and OC-768 links respectively. With such a
high sampling rate, the probability that the identity of a
real super source misses sampling is very low. For exam-
ple, given 25% sampling rate the probability that a source
with fan-out 50 fails to be recorded is only 5.6 × 10−7

(=(1 − 25%)50).

5 Estimating outstanding fan-outs
In this section we describe how to extend the advanced
scheme to detect the sources that have contacted but have
not obtained acknowledgments from a large number of dis-
tinct destinations (i.e., the sources with large outstanding
fan-outs). Although both of our schemes have the potential
to support this extension we focus on the advanced scheme
in this work and leave the extension of the simple scheme
for future research. In the following sections we show how
to slightly modify the operations of the online streaming
module and the estimation module of the advanced scheme
for estimating outstanding fan-outs. The sampling module
does not need to be modified.

5.1 Online streaming module
The online streaming module employs two 2D bit arraysA
and B of identical size and shape. The array A encodes
the fan-outs of sources in traffic in one direction (called
“outbound”) in the same way as in the advanced scheme
(shown in Figure 5). The array B encodes the fan-ins
of the destinations of the acknowledgment packets in the
opposite direction (called “inbound”). Its encoding algo-

1. Initialize
2. B[i, j] := 0, i = 1, 2, ..., m j = 1, 2, · · · , n

3. Update
4. Upon the arrival of a packet pkt

5. if pkt is an acknowledgment packet
6. row := h′(< pkt.dst, pkt.src >)
7. for i := 1 to k

8. col := hi(pkt.dst)
9. B[row, col] := 1

Figure 7: Algorithm for updating the 2D bit array B to record
ACK packets

rithm is shown in Figure 7. It is a transposed version of
the algorithm shown in Figure 5 in the sense that all oc-
currences of “pkt.src” are replaced with with “pkt.dst”
and “pkt.dst” with “pkt.src”. This transposition is needed
since a source in the outbound traffic appears in the in-
bound acknowledgment traffic as a destination, and after
transposing two packets that belong to a flow and its “ac-
knowledgment flow” respectively will result in a write of
“1” to the same bit locations in A and B respectively. This
allows us to essentially take a “difference” between A and
B to obtain the decoding of outstanding fan-outs of various
sources, shown next.

5.2 Estimation module
We compute the bitwise-OR ofA andB, denoted asA∨B.
For each source s, we decode its fan-out from A∨B using
the same decoding algorithm as described in Section 4.2.
Similarly, we decode its fan-in in the acknowledgment traf-
fic fromB. Our estimator of the outstanding fan-out of s is
simply the former subtracted by the latter.
Now we explain why this estimator will provide an accu-
rate estimate of the outstanding fan-out of a source s. Let
S1 be the set of flows whose source is “s” in the outbound
traffic. Let S2 be the set of flows whose destination is “s”
in the inbound acknowledgment traffic. Clearly the quan-
tity we would like to estimate is simply |S1 − S2|. The
correctness of our estimator is evident from the following
three facts: (a) |S1 − S2| is equal to |S1

⋃
S2| − |S2|; (b)

decoding from A ∨ B will result in a fairly accurate esti-
mate of |S1

⋃
S2| and (c) decoding from B will result in a

fairly accurate estimate of |S2|.

6 Evaluation
In this section, we evaluate the proposed schemes using
real-world Internet traffic traces. Our experiments are
grouped into three parts corresponding to the three algo-
rithms presented: the simple scheme, the advanced scheme,
and its extension to estimate outstanding fan-outs. The ex-
perimental results show that our schemes allow for accu-
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Trace # of sources # of flows # of packets
IPKS+ 119,444 151,260 1,459,394
IPKS− 96,330 125,126 1,655,992
USC 84,880 106,626 1,500,000
UNC 55,111 101,398 1,495,701

Table 1: Traces used in our evaluation. Note that source is <

src IP, src port >, destination is dst IP and flow label is the
distinct source-destination pair.

rate estimation of fan-outs and hence the precise detection
of super sources.

6.1 Traffic Traces and Flow definitions
Trying to make the experimental data as representative as
possible, we use packet header traces gathered at three dif-
ferent locations of the Internet, namely, University of North
Carolina (UNC), University of Southern California (USC),
and NLANR. The trace form UNC was collected on a 1
Gbps access link connecting the campus to the rest of the
Internet, on Thursday, April 24, 2003 at 11:00 am. The
trace from USC was collected at their Los Nettos tracing
facility on Feb. 2, 2004. We also use a pair of unidirec-
tional traces from NLANR: IPKS+ and IPKS−, col-
lected simultaneously on both directions of an OC192c link
on June 1, 2004. The link connects Indianapolis (IPLS) to
Kansas City (KSCY) using Packet-over-SONET. This pair
of traces is especially valuable to evaluate the extended ad-
vanced scheme for estimating outstanding fan-outs. All
the above traces are either publicly available or available
for research purposes upon request. Table 1 summarizes
all the traces used in the evaluation. We will use USC,
UNC and IPKS+ to evaluate our simple scheme and ad-
vanced scheme and use the concurrent traces IPKS+ and
IPKS− to evaluate the extension.
As mentioned before, a source/destination label can be
any combination of source/destination fields from the IP
header. Two different definitions of source and destination
labels are used in our experiments, targeting different ap-
plications. In the first definition, source label is the tuple
<src IP, src port> and destination label is <dst IP>. This
definition targets applications such as detecting worm prop-
agation and locating popular web servers. The flow statis-
tics displayed in Table 1 use this definition. In the second
definition, Second, source label is <src IP> and destina-
tion label is the tuple <dst IP, dst port>. This definition
targets applications such as detecting infected sources that
conduct port scans. The experimental results presented in
this section use the first definition of source and destination
labels unless noted otherwise.

6.2 Accuracy of the simple scheme
In this section, we evaluate the accuracy of the simple
scheme in estimating the fan-outs of sources and in detect-

ing super sources. Figure 8 compares the fan-outs of the
sources estimated using our simple scheme with the their
actual fan-outs in traces IPKS+, UNC, and USC re-
spectively. In these experiments, a flow sampling rate of
1/4 and a bit array of size 128K bits is used. The fig-
ure only plots the points whose actual fan-out values are
above 15 since lower values (i.e., < 15) are not interesting
for finding super sources. The solid diagonal line in each
figure denotes perfect estimation, while the dashed lines
denote an estimation error of ±15%. The dashed lines are
parallel to the diagonal line since both x-axis and y-axis are
on the log scale. Clearly the closer the points cluster around
the diagonal, the more accurate the estimation is. We ob-
serve that the simple scheme achieves reasonable accuracy
for relatively large fan-outs in all three traces. Figure 8
also reflects the false positives and negatives in detecting
super sources. For a given threshold 50, the points that fall
in “Area I” corresponds to false positives, i.e., the sources
whose actual fan-outs are less than the threshold but the
estimated fan-outs are larger than the threshold. Similarly,
the points that fall in “Area II” corresponds to false nega-
tives, i.e., the sources whose actual fan-outs are larger than
the threshold but the estimated fan-outs are smaller than
the threshold. We observe that in Figure 8, points rarely
fall into Areas I and II (i.e., very few false positives and
negatives13).
While this scheme works well with 1/4 sampling rate,
it cannot produce good estimations with smaller sampling
rates (e.g., 1/16. We omit the experimental results here
due to lack of space.). However such lower sampling rates
might be necessary to keep up with very high link speeds
such as 40 Gbps (OC-768).
We repeat the above experiment under the aforemen-
tioned second definition of source and destination, in
which the source label is <src IP> and destination label
is <dst IP, dst port>. Figure 9 plots the estimated fan-outs
of sources in trace IPKS+. With this definition the trace
IPKS+ has 9,359 sources and 140,140 distinct source-
destination pairs. We can see from the figure that our esti-
mation is also quite accurate with this second definition of
source and destination.

6.3 Accuracy of the advanced scheme
In this section we evaluate the accuracy of the advanced
scheme using both trace-driven simulation and theoretical
analysis. The estimation accuracy of the advanced scheme
is a function of the various design parameters, including
the size and shape of the 2D bit arrayA (i.e., the number of
rows m and columns n) and the number of hash functions
(k).
In the experiments we set the size of A to 128KB (64
rows × 16,384 columns), k = 3 and the flow sampling
rate to 1. This configuration is very space-efficient. For
example it only uses 7 bits per flow on the average for the
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Figure 8: Actual vs. estimated fan-outs of sources by the simple scheme given the flow sampling rate 1/4. Notice both axes are on
logscale.
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Figure 9: Actual vs. estimated fan-out of sources for trace
IPKS+ with flow sampling rate 1/4. The aforementioned sec-
ond definition of source and destination labels is used here. Note
that both x-axis and y-axis are on logscale.

trace IPKS+.

6.3.1 Trace-driven experiments
Figure 10 compares the fan-out values estimated using the
advanced scheme with the actual fan-outs of the corre-
sponding sources given three different traces. Compared
with the corresponding plots in Figure 8, the points are
much closer to the diagonal lines, which means that the
advanced scheme is much more accurate than the simple
scheme.
In Figure 11, we repeat the experiments with
source and destination labels defined as <src IP> and
<dst IP,dst port>, respectively. Compared with the re-
sult of the simple scheme (Figure 9) the points are much
closer to the diagonal again, indicating the higher accuracy
achieved by the advanced scheme.
Note that in the experiments above we set the flow sam-
pling rate to 1 instead of 1/4 used in the experiments of
the simple scheme since as we described in Section 3.3
and Section 4.4 respectively for a fully utilized OC-192
link the simple scheme requires 1/4 flow sampling rate but
the identity sampling module of the advanced scheme can
record 100% flow labels.

6.3.2 Theoretical accuracy
The accuracy of the estimation can be characterized by the
average relative error of the estimator, which is equal to the
standard deviation of the ratio cFs

Fs
which can be computed

by Theorem 3.
Figure 12 shows the average relative error plotted against
estimated fan-outs for the sources in the trace IPKS+.
Experiments on other traces produced similar results. The
average relative error shows a sharply downward trend
when the estimated value of fan-out increases in Figure 12.
This is a very desirable property as we would like our
mechanism to be more accurate when estimating larger fan-
outs. Towards the right extreme of the figure, the average
relative error starts to increase. This is because the selected
bit vectors become almost full (“saturation”) when the fan-
out value is close to 266 (m lnm). As we discussed in Sec-
tion 4.3 the accuracy of our estimator would degrade when
the corresponding column vectors become saturated14. It
does not affect the accuracy of our scheme for detecting
super sources, but to accurately estimate the exact fan-out
values that are large, the aforementioned multi-resolution
extension [6, 11, 12] is needed.
The accuracy of the estimator can also be characterized
by the probability of the estimated values F̂s falling into the
interval [(1−ε)Fs, (1+ε)Fs], whereFs is actual fan-out of
the source s. This quantity can be numerically computed by
Monte-Carlo Simulation as follows. We first use the trace
UNC to construct the 2D bit array A (serving as “back-
ground noise”). Then we synthetically generate a source
that has fan-out value Fs and insert it into A by randomly
selecting 3 different columns. The estimator (Formula 6) is
used to obtain the F̂s. The above operations are repeated
100,000 times to compute the probabilities shown in Fig-
ure 12.
Figure 13 shows the plot of (1 − δ) for different values
of Fs, where 1 − δ = Prob[(1 − ε)Fs ≤ F̂s ≤ (1 +
ε)Fs]. Each curve corresponds to a specific level of relative
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Figure 10: Actual vs. estimated fan-out of sources by the advanced scheme. Notice both axes are on logscale.
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Figure 11: Actual vs. estimated fan-out
of sources for trace IPKS+ under the
second flow definition by the advanced
scheme. Notice both axes are on logscale.
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Figure 12: Average relative error for vari-
ous fan-out values in the trace IPKS+.
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Figure 13: Probability that the estimate
cFS is within a factor of (1±ε) of the actual
fan-out Fs for various values of ε.

error tolerance, i.e., a specific choice of ε, and represents
the probability that the estimated value is within this factor
of the actual value. For example, the curve for ε = 0.2
shows that around 85% of the time the estimate is within
20% of the actual value. Notice how the curves in the figure
have an upward trend first and then show a downward trend
as the fan-out increases further. This corresponds exactly to
the aforementioned “saturation” situation.

6.4 Accuracy of the extension to estimate
outstanding fan-outs

To evaluate the extension of the advanced scheme to es-
timate outstanding fan-outs we use the pair of traces,
IPKS+ and IPKS−, collected simultaneously on both
directions of a link. We extract all the acknowledgment
packets from IPKS− to produce the 2D bit array B us-
ing the transposed update algorithm (Figure 7). The same
parameters are configured for both 2D bit arrays A and
B. Figure 14 shows the scatter diagram of the fan-out
estimated using our proposed scheme (y axis) vs. actual
outstanding fan-out (x axis). The fact that most points are
concentrated within a narrow band of fixed width along the
diagonal line indicates that our estimator is accurate on es-
timating outstanding fan-outs.
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Figure 14: Actual vs. estimated fan-out of sources by extension
of the advanced scheme including deletions. Notice both axes are
on logscale.

7 Related work
The problem of detecting super sources and destinations
has been studied in recent years. In general, three ap-
proaches have been proposed in the literature:
1. A straightforward approach is to keep track, for each
source/destination, the set of distinct destinations/sources
that it contacts, using a hash table. This approach is
adopted in Snort [19] and FlowScan [17]. It is straightfor-
ward to implement but not memory-efficient, since most of
the source-destination pairs in the hash table do not come
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from super sources/destinations. As mentioned before, this
approach is not feasible for monitoring high-speed links
since the hash table typically can only fit into DRAM.
2. Data streaming algorithms are designed by Estan et
al. [6] mainly for estimating the number of active flows in
the Internet traffic. However, it is stated in [6], that one
variant of their scheme, i.e., triggered bitmap, can be used
for identifying the super sources. This algorithm maintains
a small bitmap (4 bytes) for each source (subject to hash
collision), for estimating its fan-out. Once the number of
bits set in the small bitmap exceeds a certain threshold (in-
dicting a large fan-out), a large multi-resolution bitmap is
allocated to perform a more accurate counting of its fan-
out. Since the implementation of the binding between the
source and the bitmap is not elaborated in [6], we speculate
that the binding is implemented as a hash table, which can
be quite costly if it has to fit in SRAM (for high-speed pro-
cessing). Also, its memory efficiency is further limited by
allocating at least 4 bytes for each source.
3. Recently Venkataraman et al. [20] propose two
flow sampling based techniques for detecting super
sources/destinations. Their one-level and two-level filter-
ing schemes both use a traditional hash-based flow sam-
pling technique for estimating fan-outs. We explained in
Section 3.1 that, when this scheme is used for high-speed
links (e.g., 10 or 40 Gbps), the sampling rate is typically
low due to the aforementioned traffic burst problem. This
prevents the algorithms from achieving high estimation ac-
curacy. In addition, the memory usage of both schemes,
which use hash tables, is much higher than our advanced
scheme. They only mentioned the possibility of replacing
hash table with Bloom filters to save space, but did not fully
specify the details of the scheme (e.g., parameter settings).
This makes a head-on comparison of our schemes with
theirs very difficult. In fact, after this replacement (of hash
table with Bloom filters), their scheme becomes a variant
of Space Code Bloom Filter (SCBF) we proposed in [12],
with a slightly different decoding algorithm15. Their de-
coding algorithm has similar computational complexity as
that of SCBF, which is an order magnitude more expensive
than that of our advanced scheme. This may prevent our
SCBF scheme (and their scheme as well) from operating at
very high link speeds (e.g., 40 Gbps).

8 Conclusion
Efficient and accurate detection of super sources and des-
tinations at high link speeds is an important problem in
many network security and measurement applications. In
this work we attack the problem with a new insight that
sampling and streaming are often suitable for capturing dif-
ferent and complementary regions of the information spec-
trum, and a close collaboration between them is an excel-
lent way to recover the complete information. This in-
sight leads to two novel methodologies of combining the

power of streaming and sampling, namely, “filtering after
sampling” and “separation of counting and identity gath-
ering”, upon which our two solutions are built respectively.
The first solution improves the estimation accuracy of hash-
based flow sampling by allowing for much higher sampling
rate, through the use of a embedded data streaming mod-
ule for filtering/smoothing the bursty incoming traffic. Our
second solution combines the power of data streaming in
efficiently retaining and estimating fan-out/fan-in associ-
ated with a given source/destination, and the power of sam-
pling in generating a list of candidate source/destination
identities. Mathematical analysis and trace-driven exper-
iments on real-world Internet traffic show that both solu-
tions allow for accurate detection of super sources and des-
tinations.
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Notes

1. Super sources have also been referred to as “super-
spreaders” in literature [20].

2. As a note of clarification, the term data streaming here
has no connection with the transmission of multimedia data
known as media (audio and video) streaming [16].

3. There is no explicit inversion procedure to recover the
number of flows if packet sampling is used. The technique
used in [4] may be helpful but does not provide accurate

answers.

4. A small buffer in SRAM will not be able to smooth out
such bursts since at high link speeds, such bursts can easily
fill up several Megabytes of buffer in a matter of millisec-
onds.

5. We can use multiple independent hash functions to re-
duce the probability of collisions. But it will significantly
increases the overhead of updatingG and does not improve
the estimation result too much.

6. Note that the worst case for hash-based flow sampling is
different. It occurs when a few of the sampled flows contain
most of the traffic on a link.

7. The inter-arrival time is in fact of geometric distribution.

8. We assume a conservative average packet size of 1,000
bits, to our disadvantage. Measurements from real-world
Internet traffic report much larger packet sizes.

9. Such hash functions are referred to as k-universal hash
function in literature [2]. It has been shown empirically
in [2] that theH3 family of hash functions are very close to
k-universal statistically when operating on real-world data,
for small k values (e.g., k ≤ 4).

10. Again, two ping-pong modules can be used in an alter-
nating fashion to avoid any operational interruption.

11. This is estimated based on the typical load factor (de-
fined later) we place on the bit vector.

12. Note that we do not show an example distribution for
the previous simple scheme since the estimator F̂s of it re-
lies on where the flows with source s appear in the packet
stream, i.e., the values of uj when the flows arrive (cf. For-
mula 2). Therefore the estimator may have different distri-
butions given a fixed value of Fs.

13. One shall not simply compare this false positive and
negative ratios with the results in [20] since there only
when the scheme fails to detect a source whose fan-out is
several (say 5) times larger than the threshold will a false
negative be declared.

14. For more details about this please refer to [21].

15. In [12], we decode for the exact value of the parameter
to be estimated while their scheme [20] decodes for a lower
bound of the parameter.
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