
Inferring and Debugging Path MTU Discovery Failures

Matthew Luckie
University of Waikato

mjl@wand.net.nz

Kenjiro Cho
Internet Initiative Japan

kjc@iijlab.net

Bill Owens
NYSERNet

owens@nysernet.org

Abstract

If a host can send packets larger than an Internet path can
forward, it relies on the timely delivery of Internet Control
Message Protocol (ICMP) messages advising that the pac-
ket is too big to forward. An ICMP Packet Too Big message
reports the largest packet size – or Maximum Transmission
Unit (MTU) – that can be forwarded to the next hop. The
iterative process of determining the largest packet size sup-
ported by a path by learning the next-hop MTU of each
MTU-constraining link on the path is known as Path MTU
Discovery (PMTUD). It is fundamental to the optimal oper-
ation of the Internet. There is a perception that PMTUD is
not working well in the modern Internet due to ICMP mes-
sages being firewalled or otherwise disabled due to security
concerns. This paper provides a review of modern PMTUD
failure modes. We present a tool designed to help network
operators and users infer the location of a failure. The tool
provides fairly detailed information about each failure, so
the failure can be resolved. Finally, we provide data on
the failures that occurred on a large jumbo-capable network
and find that although disabling ICMP messages is a prob-
lem, many other failure modes were found.

1 Introduction

Given a volume of data to send, it is desirable to encap-
sulate the data in the fewest number of packets possible,
as “much of the cost of packetised communication is per-
packet rather than per-probe” [1]. To send the fewest num-
ber of packets possible, a host must determine the largest
IP packet size – or Maximum Transmission Unit (MTU)
– supported by the path. The iterative process to deter-
mine the largest possible MTU on an end-to-end path by
consecutively learning the next-hop MTU of each MTU-
constraining link on the path is known as Path MTU Dis-
covery (PMTUD). PMTUD allows a host or application to
determine the largest IP packet size supported by an Inter-
net path, and thus send the fewest number of packets.

Path MTU Discovery is documented in RFC 1191 for
IPv4 [2] and RFC 1981 for IPv6 [3]. An application or
kernel determines the largest supported MTU on an Inter-
net path in an iterative manner, starting with the outgoing
interface’s MTU. It reduces the Path MTU each time a Pac-
ket Too Big (PTB) message is received until the destination
host is reached, using the next-hop MTU value included in
each successive PTB message. When this approach to PM-
TUD works, it allows an end host to quickly determine the
Path MTU. There are, however, a number of well-known
limitations of this technique [4], and work is in progress
in the IETF to redefine the PMTUD method. This work
discusses the current approach to PMTUD.

The failure modes of PMTUD are often difficult to de-
bug, as they are triggered by relatively large packets. For
example, a TCP connection may be established through
a path where a PMTUD failure exists, as the TCP three-
way handshake involves small packets that are unlikely to
trigger a PMTUD failure. However, a PMTUD failure is
likely to occur when either end of the TCP connection at-
tempts to send a packet that is larger than can be forwarded
through the path without fragmentation. A scenario like
this is likely to cause the TCP connection to stall for some
period of time before either failing, sending smaller pack-
ets, or allowing retransmitted packets to be fragmented.

This work introduces a technique for inferring and de-
bugging PMTUD failures which occur on the forward path.
Our technique uses a traceroute-like method to infer the lo-
cation of a failure and the maximum packet size which can
be forwarded through it. The technique does not infer fail-
ures that occur on the reverse path, such as the over-zealous
firewalling of all inbound ICMP packets – including PTB
messages – in order to protect a machine from security con-
cerns related to ICMP or crude Denial of Service (DoS)
attacks [5]. A recent study on the TCP behaviour of web-
servers [6] found that PMTUD on the reverse path failed for
17% of 81776 targets tested and 35% of 500 popular web-
sites tested – presumably because of middle-boxes which
blocked inbound ICMP to the web-servers.

Internet Measurement Conference 2005 USENIX Association 193

The rest of this paper is organised as follows. We begin
by reviewing some of the known PMTUD failures in Sec-
tion 2. We then discuss the debugging techniques used in
this work to infer the location and mode of a PMTUD fail-
ure, and discuss the implementation of these techniques in
our publicly available tool, scamper, in Section 3. In Sec-
tion 4, we discuss the data collection that we did in support
of this work, and then present some analysis of the results
obtained in Section 5. Finally, we discuss a few anecdotes
of strange behaviours we observed separate to the data col-
lection for this study, before presenting our conclusions.

2 Path MTU Discovery Failure Modes

2.1 Router Configuration Issues
The most well known PMTUD failure mode is the ICMP
Black Hole discussed in RFC 2923 [4]. The ICMP Black
Hole problem has two halves; routers which do not send
PTB messages due to misconfiguration or implementation
bugs, and hosts which do not receive PTB messages due
to a middle-box or firewall filtering them. The problem
of router misconfiguration was first documented in RFC
1435 [7], where it was reported that code had been added
to some routers to provide the capability to disable ICMP
message generation in order to protect old BSD hosts,
which were faulty in their handling of some ICMP mes-
sages. The RFC recommended that router code be updated
to exclude PTB messages from suppression, as that par-
ticular message type did not trigger the faulty behaviour.
However, it appears that this recommendation has either
not been widely implemented, or operators are not using it.
In the modern Internet, a router which does not send any
ICMP message is almost certainly configured that way due
to security concerns.

2.2 MTU Mismatches
An MTU mismatch occurs when a router and the path to
the next-hop do not have a consistent understanding of the
MTU. Specifically, a router believes that the path to the
next hop is capable of forwarding packets larger than it ac-
tually can. Such a mismatch causes PMTUD to fail be-
cause the MTU change occurs below the IP layer, where a
PTB message is not sent. A common scenario where this
occurs is connecting a jumbo-capable gigabit Ethernet in-
terface and a non-jumbo interface, which could be gigabit
or fast Ethernet, across a switch. It can also occur if two
jumbo interfaces are connected to a switch that does not
support jumbo packets. The jumbo-capable Ethernet inter-
face can send packets larger than 1500 bytes to the switch.
However, the switch either cannot accept these packets, or
cannot forward them to the next interface, and so the pack-
ets are silently discarded.

2.3 No Suggested Next-Hop MTU
The original IPv4 ICMP protocol [8] did not define the
next-hop MTU field that PMTUD relies on to determine
the largest packet size supported to the next hop. The next-
hop MTU field was first defined in RFC 1191 [2], and
makes use of otherwise unused space in the ICMP mes-
sage. Routers that do not set the next-hop MTU field in a
PTB message are easily detected, as the unused space is set
to zero. In the face of a PTB message without a suggested
next-hop MTU, current practice in the NetBSD kernel –
among others – is to determine the size of the packet that
caused the PTB message by examining the length field re-
turned with the IP header embedded in the PTB message
and then select a smaller packet size from a table of known
MTU values.

2.4 Private Addressing
Some operators choose to use RFC 1918 [9] private ad-
dresses when numbering router interfaces in order to avoid
using public addresses. The use of RFC 1918 addresses
can cause PMTUD to fail if PTB messages are sent with
an RFC 1918 source address, since packets with RFC 1918
source addresses are often dropped by ingress filters at the
network edge.

2.5 Unspecified Implementation Bugs
There are other possibilities of PMTUD failure modes re-
lated to implementation bugs. For example, a router may
send a PTB message with a suggested next-hop MTU larger
than the size of the packet which caused it to be sent. Pos-
sible causes of this failure mode include not sending the
next-hop MTU field in network byte order, or a router not
adjusting internal state correctly when adding or remov-
ing headers. Other possible implementation bugs include:
sending a PTB message with the embedded IP packet mod-
ified in some way such that the PTB message is unable to be
matched with an active connection or application; sending
an ICMP error message without generating a valid ICMP
checksum; and sending an ICMP error message that is not
a PTB message when it should have been.

3 Debugging Techniques

We have implemented two forward path debugging tech-
niques into scamper, our publicly available measurement
tool. The initial goal of the PMTUD code in scamper was to
enable the detection of IPv6-over-IPv4 tunnels when com-
paring IPv4 and IPv6 paths between pairs of dual-stack
nodes [10]. The code has evolved beyond this requirement,
in part due to experiences in inferring tunnels in uncooper-
ative paths.

Internet Measurement Conference 2005 USENIX Association194

To begin with, scamper conducts a standard traceroute
with small UDP probes to unused ports. The purpose of
this initial phase is to infer the forward IP path topology,
determine which routers will provide ICMP feedback to
small TTL-limited probes, and ensure that small probes
are terminated somewhere in the path by an ICMP Des-
tination Unreachable message so that scamper can distin-
guish between large probes being silently discarded and all
probes being silently discarded. After the traceroute com-
pletes, scamper begins a PMTUD phase, where it solicits
PTB messages in response to large probes until the desti-
nation is reached. scamper infers that PMTUD has failed
when it does not obtain an expected reply packet to a probe
the size of the currently known Path MTU value. When a
PMTUD failure is detected, it uses one of two debugging
techniques to infer the location of the failure and the largest
packet which can be forwarded. Before we describe the two
debugging techniques in detail, we describe the process by
which the next-hop MTU is inferred.

3.1 Next-hop MTU Search

The purpose of the next-hop MTU search is to infer the
largest packet size which can be forwarded to the next-hop.
The general strategy is to, as quickly as possible, reduce a
search space bounded by the smallest packet size to obtain
a valid response and the largest packet size to not obtain
a valid response, to find the underlying next-hop MTU. A
binary search is not well suited to this task, for two rea-
sons. First, MTU values tend to cluster due to the fairly
limited combinations of media MTU values and encapsula-
tions commonly used. Second, each probe that is discarded
without the source receiving any ICMP feedback incurs a
timeout delay that is often at least an order of magnitude
larger than the delay incurred when probing with a pac-
ket that does obtain ICMP feedback. By default, scamper
will retry a probe that obtains no ICMP feedback once, five
seconds after sending the initial probe. In this scenario, a
choice of probe size that does not obtain ICMP feedback in-
curs a ten second penalty before a different probe size can
be tried. In order to determine the actual next-hop MTU as
quickly and efficiently as possible, scamper is pre-loaded
with a table of known MTU values.

When scamper begins a next-hop MTU search, it defines
the lower bound by selecting an MTU in the table smaller
than the failed probe, depending on three criteria. First,
if the failed probe is larger than 1500 bytes, then scamper
tries with a 1500 byte packet, as Ethernet is ubiquitous and
likely to be the cause of an MTU restriction from larger
frame sizes. Second, if the failed probe is larger than 1454
bytes, then scamper tries with a 1454 byte probe because
1454 is a lower bound of a series of MTU values that in-
dicate some tunnel or encapsulation of IP over Ethernet.
Otherwise, scamper selects the largest MTU from the table

that is smaller than the size of the failed probe. The search
for the initial lower bound is complete when ICMP feed-
back is obtained; the upper bound is reduced each time a
probe for the initial lower bound does not obtain feedback.

After the lower bound is set, scamper then narrows the
search space until it converges on the actual next-hop MTU.
The approach to choosing a suitable probe size consists of
three criteria, which are checked in order until a matching
condition is found. First, if the lower bound of the search
space is 1500 bytes or is a known MTU value in the table,
and the upper bound is smaller than the next largest known
MTU, then scamper probes with a packet one byte larger
than the lower bound. The rationale for this is that if the
search space is narrowed to within two entries in the MTU
table, then there is a fair chance that the actual next-hop
MTU is the current lower bound, and we can confirm this
by sending a probe one byte larger. Second, if the next
largest MTU in the table is smaller than the current upper
bound, then scamper chooses this MTU as its next probe
size. The rationale for this decision is that scamper can
quickly determine the next-hop MTU if it is one of the val-
ues in the table. Lastly, if scamper is working within two
known MTU values, then it will resort to a binary search to
determine the next-hop MTU.

3.2 Inferring MTU without Feedback

This technique is used to infer the next-hop MTU and lo-
cation of a hop that does not send PTB messages when it
should. This technique is used when scamper does not ob-
tain ICMP feedback with large packets the size of the cur-
rent working Path MTU value. The technique consists of
two stages. The first stage is a next-hop MTU search to in-
fer the largest packet that can be forwarded, as described in
Section 3.1. The second stage is a Time-to-Live (TTL) or
Hop-Limit (HLIM) search of the forward path to infer the
hop where large packets are silently discarded by determin-
ing the largest TTL or HLIM value that can be set in the IP
header which still obtains an ICMP Time Exceeded mes-
sage in response. This debugging technique is illustrated in
Figure 1. This technique can infer a series of failure modes
which are difficult to distinguish from each other, as there
are many reasons why a source host may not receive a PTB
message, and we have incomplete information to defini-
tively infer why. We can, however, use a few heuristics to
narrow the failure modes down.

If the farthest hop from which we obtain an ICMP Time
Exceeded message with a large TTL-limited probe is im-
mediately before a hop from which we obtain no ICMP
Time Exceeded messages, we infer that the failure is likely
to occur at the next hop either because all ICMP messages
are disabled, or all ICMP responses from the router are be-
ing filtered somewhere in the network, possibly due to the
use of RFC 1918 addresses. If we are able to receive ICMP

Internet Measurement Conference 2005 USENIX Association 195

1500

TTL 255, Size 14543.

1.

2.
TTL 255, Size 1500

4.

5. TTL 255, Size 1480

ICMP Port Unreachable

ICMP Port Unreachable

6.

TTL 255, Size 1500

12. ICMP Time Exceeded

TTL 255, Size 14927.

TTL 255, Size 14928.

TTL 255, Size 14819.

TTL 255, Size 148110.

TTL 1, Size 150011.

14.
TTL 3, Size 1500

13.
TTL 3, Size 1500

DstSrc R1 R3
1500 1480

*
1500

Figure 1: Inferring the MTU without feedback. An ICMP
Black Hole exists between routers R1 and R3 where the
MTU is restricted to 1480 bytes. A PMTUD failure is de-
tected with probes 1 and 2, probes 3 to 10 infer that the
next-hop MTU is 1480, and probes 11 to 14 infer that the
large packets are probably being discarded at hop 2.

Time Exceeded messages with small TTL-limited probes
from adjacent hops but we only receive Time Exceeded
messages with large probes from the first hop in the path,
we infer that the failure mode is likely to be either due to an
interface being configured to not send any ICMP Destina-
tion Unreachable messages, or an MTU mismatch between
the adjacent routers, or the PTB message originating from
a different interface than the interface that sends Time Ex-
ceeded messages – with a source address that causes the
PTB message to be subsequently filtered.

3.3 Inferring MTU with Invalid Feedback

This technique is used when a PTB message is received
in response to a large probe, but the next-hop MTU in-
cluded in the PTB message is either not set, or is larger
than the probe which triggered the message. This tech-
nique uses a variation of the next-hop MTU search tech-
nique described in Section 3.1; instead of using the absence
of a PTB message to reduce the upper-bound of the search
space, this technique uses the faulty PTB message. This
method can converge on the actual next-hop MTU fairly
rapidly if ICMP feedback is received for packets smaller

than the next-hop MTU past the faulty router, as the test for
each probe size costs one round-trip-time (RTT). We use
a slightly different technique if the path does not provide
ICMP feedback after the faulty router due to another fail-
ure further in the path. When this occurs, scamper works
progressively downwards through the MTU table soliciting
faulty PTB messages rather than moving progressively up-
wards, as it would normally do. This is because scamper
has to time-out on a probe which does not obtain ICMP
feedback before it can send another probe, which has a
much larger cost than sending packets which trigger faulty
PTB messages.

3.4 Limitations
As the techniques we described rely on ICMP messages as
feedback, they can be unreliable when ICMP rate-limiting
is encountered. By default, scamper will send each probe
twice before trying another probe type, with a five second
timeout between each attempt. If two successive probes do
not receive ICMP feedback due to rate-limiting, we may in-
fer an incorrect next-hop MTU, or infer the wrong location
of a failure, or infer a failure where one does not exist.

4 Methodology

We collected PMTUD failure data from two IPv4 hosts
with 9000-byte MTU interfaces connected to networks that
peer with Internet2, which itself is 9000-byte clean through
the core, on April 28th 2005. The first location was from
NYSERNet in New York, and the second was an Internet2
measurement machine in Chicago. The target list consists
of 147 NLANR AMP machines, which are typically either
on university campuses connected to the Internet2 network,
or connected to networks that peer with Internet2. Most of
the AMP machines connect to their host network with an
Intel Pro100 Ethernet interface, which is capable of send-
ing 1500 byte IP packets. Some have Gigabit Ethernet in-
terfaces which are capable of sending IP packets larger than
1500 bytes, but are not configured to do so. The purpose of
this dataset is to understand PMTUD failures on networks
that can natively carry jumbo packets, and thus will require
fragmentation at least at the edge of the campus network
closer to each individual AMP machine.

5 Results

Of the 147 AMP machines in each dataset, we were able
to complete a traceroute to at least 134 machines, or 91%
of the target list. However, we inferred a PMTUD failure
for 30% of the reachable machines. A summary of the fail-
ures is presented in Table 1. We categorised the failures
into four groups: failure points where no ICMP messages

Internet Measurement Conference 2005 USENIX Association196

Dataset: NYSERNet-east nms1-chin Intersection Total
Location: New York, NY Chicago, IL – –
Hostname: east.nysernet.org nms1-chin.abilene.ucaid.edu – –
Date / Time: Apr 28 2005, 21:50 EDT Apr 28 2005, 20:10 CDT – –
Target Count: 147 147 147 –
Reachable: 136 (92.5%) 134 (91.2%) 134 –
PMTUD Failures: 41 (30.1%) 40 (29.9%) 25 –
No ICMP messages: 6 (6 unique) 5 (5 unique) 4 (4 unique) 7 unique
No PTB messages: 26 (17 unique) 27 (18 unique) 13 (13 unique) 22 unique
Incorrect PTB messages: 2 (2 unique) 2 (2 unique) 2 (2 unique) 2 unique
Target MTU Mismatch: 7 (7 unique) 6 (6 unique) 6 (6 unique) 7 unique

Table 1: Summary of the two data collections. 30% of reachable targets had a PMTUD failure.

are received (7), failure points where no PTB message is
received (22), failure points where a PTB message is re-
ceived with an incorrect next-hop MTU (2), and target ma-
chines which have an MTU mismatch with a router on their
subnet (7). We identify a failure point by the IP addresses
either side of the fault in the IP path. For example, the fail-
ure point would be identified as being between R1 and R3
in Figure 1. For each fault, we approached the technical
and administrative contacts for the relevant AMP machine
if the fault was determined to be local to that campus, or
the operators of the relevant transit network.

We inferred seven failure points from which we did not
receive any ICMP messages; of these, six were at routers
where the next-hop MTU was inferred to be 1500 bytes,
while the seventh had a next-hop MTU of 1536 bytes. One
failure appeared to be caused by two successive routers in
the path that both sent ICMP messages with a source ad-
dress of 127.0.0.1, which were then discarded by a filter
close to both of our measurement hosts. Similarly, an-
other router located at the campus border used RFC 1918
addresses to number its interfaces, which also caused all
ICMP messages from it to be filtered out. Another fail-
ure was caused by a BGP routing issue that, despite the
fact that end-to-end connectivity was available, a signifi-
cant portion of the routers on the forward path had no route
back to the source host. This included one router which
was therefore unable to send a PTB message to the source
to signal that it was sending packets which were too big to
forward. Finally, one other was due to a firewall designed
to protect systems from security exploits by blocking all
packets with a source or destination address matching par-
ticular addresses, including the addresses of core routers.

We found 22 hops from which we received ICMP Time
Exceeded messages, but did not receive PTB messages
when it was inferred that we should have. Sixteen of these
hops had a next-hop MTU of 1500 bytes, accounting for
just over two-thirds of the failures. Due to the method of
counting hops where a failure occurs, the actual number
of unique failure locations is a little less, as there is some

repetition in the source address of some failure points. We
determined that there were 20 failure locations. Two points
were upgraded before a diagnosis could be obtained. We
obtained a technical diagnosis of each fault for seven fail-
ures; three reported that they had disabled ICMP Destina-
tion Unreachable messages, while the other four were the
result of an MTU mismatch or misconfiguration. For the
11 other failures for which we do not have a technical diag-
nosis, we probed the particular routers with a UDP probes
to unused ports, in order to determine if they had disabled
Destination Unreachable messages or not. Eight systems
did not reply with a Destination Unreachable message.

We found two hops at one location from which we re-
ceived a PTB message, but the next-hop MTU reported in
the message was incorrect. The particular router would
send a PTB message with a suggested next-hop MTU of
4586. It was, however, unable to forward packets larger
than 4472 bytes to the next hop.

Seven targets were inferred to be on a subnet where
nodes did not have a consistent agreement regarding the
MTU. Two of the seven AMP targets with an MTU mis-
match were able to receive IP packets larger than 1500
bytes, despite their use of 1500 byte MTU interfaces. One
was able to receive packets up to 2016 bytes, while the
other was able to receive packets up to 1506 bytes. We
established that IP packets were arriving complete at these
monitors by examining the probe packets with tcpdump.

6 Two Anecdotes

As discussed in Section 3.3, we implemented a technique to
infer the correct next-hop MTU when a router sends a PTB
message with an invalid next-hop MTU. The data included
in this paper did not include such a failure, although we
encountered one when implementing our tool. The router
in question was located in New York City in the network
of a large Internet Service Provider. For packet sizes be-
tween 4458 and 4470 bytes, the router would return a PTB
message with an invalid next-hop MTU of 4470. Initial at-

Internet Measurement Conference 2005 USENIX Association 197

tempts to determine the cause of what appeared to be a bug
were difficult. Initially, we were told the fault was some-
how related to the next-hop having an MPLS header with
room for three 4-byte MPLS labels. It was also suggested
that the fault could be a particular known router bug, al-
though the bug number suggested seems unrelated. At this
time we have been unable to determine the cause of the
fault, and are pursuing this matter with a router vendor.

Unspecified router bugs can also prevent PMTUD from
succeeding, as discussed in Section 2.5. During the course
of scamper’s development, we found an IPv6 router which
appeared to route IPv6 packets over an IPv6-in-IPv4 tunnel
with an MTU of 1480 bytes. However, for IPv6 packets
larger than 1480 bytes, we did not receive any PTB mes-
sages. Rather, it sent two Destination Unreachable, No
Route messages. The first message was returned with the
IPv6 probe packet intact and caused scamper to cease PM-
TUD to the target beyond it. The second message – which
we picked up by accident while monitoring all ICMPv6
packets into the machine – was unable to be matched to
any probe we sent, as the encapsulated probe packet had the
source and destination port fields zeroed out. We contacted
the site responsible and reported the fault. To our knowl-
edge, the fault was never identified and corrected, and went
away when the particular path was replaced with a native
IPv6 path.

7 Conclusion

The consensus is that Path MTU Discovery – in its current
form – is unreliable due to it relying on the timely delivery
of PTB messages, which are disabled or firewalled in many
networks. We hypothesise that these failures go unnoticed
in routine operational testing and monitoring, as they are
only noticeable with larger probe packets. The default size
of probe packets sent using traceroute and ping is too small
to trigger PMTUD failures, and in the absence of packet
loss with these basic connectivity measures, it is tempting
to declare a path as fully operational.

In this paper, we presented a series of debugging tech-
niques which infer PMTUD failures on the forward path.
Using our implementation, we collected data on PMTUD
failures found in jumbogram-capable networks. We found
that of the reachable targets, 30% had a failure that would
prevent efficient end-to-end communication from taking
place. Less than half of these failures were caused by a
configuration decision to disable the ICMP messages that
are necessary for PMTUD to work. As the Internet MTU
is raised, particularly as jumbo-capable Ethernet interfaces
become more commonplace and jumbo transit services are
offered, it seems likely that the classical PMTUD meth-
ods will continue to be strained. Until the new approach to
PMTUD is completed and widely deployed amongst end-
hosts, we believe our tool is a useful operational utility.

Acknowledgements

scamper’s development was generously funded by the
WIDE project in association with CAIDA from April 2004
to March 2005. The NLANR Measurement and Network
Analysis Group (NLANR/MNA) is supported by the Na-
tional Science Foundation (NSF) under cooperative agree-
ment no. ANI-0129677. Matt Zekauskas (Internet2) col-
lected the nms1-chin dataset. Maureen C. Curran and Joe
Groff provided valuable editorial assistance. Matt Brown,
Nevil Brownlee, Alan Holt, and Perry Lorier provided use-
ful feedback on the paper.

References

[1] C.A. Kent and J.C. Mogul. Fragmentation considered
harmful. ACM SIGCOMM Computer Communication
Review, 17(5):390–401, 1987.

[2] J. Mogul and S. Deering. Path MTU Discovery. RFC
1191, IETF, November 1990.

[3] J. McCann, S. Deering, and J. Mogul. Path MTU Dis-
covery for IP version 6. RFC 1981, IETF, August
1996.

[4] K. Lahey. TCP problems with Path MTU Discovery.
RFC 2923, IETF, September 2000.

[5] R. van den Berg and P. Dibowitz. Over-zealous se-
curity administrators are breaking the Internet. In
Proceedings of LISA ’02: Sixteenth Systems Admin-
istration Conference, pages 213–218, Berkeley, CA,
November 2002.

[6] A. Medina, M. Allman, and S. Floyd. Measuring
the evolution of transport protocols in the Internet.
ACM SIGCOMM Computer Communication Review,
35(2):37–52, April 2005.

[7] S. Knowles. IESG advice from experience with Path
MTU Discovery. RFC 1435, IETF, March 1993.

[8] J. Postel. Internet Control Message Protocol. RFC
792, IETF, September 1981.

[9] Y. Rekhter, B. Moskowitz, D. Karrenberg, G.J.
de Groot, and E. Lear. Address allocation for private
internets. RFC 1918, IETF, February 1996.

[10] K. Cho, M. Luckie, and B. Huffaker. Identifying
IPv6 network problems in the dual-stack world. In
Proceedings of the ACM SIGCOMM workshop on
Network troubleshooting: research, theory and op-
erations practice meet malfunctioning reality, pages
283–288, Portland, OR., September 2004.

Internet Measurement Conference 2005 USENIX Association198

