
Building a Time Machine
for Efficient Recording and Retrieval of High-Volume Network Traffic

Stefan Kornexl Vern Paxson Holger Dreger Anja Feldmann Robin Sommer
TU München ICSI / LBNL TU München TU München TU München

Abstract
There are times when it would be extraordinarily convenient to
record the entire contents of a high-volume network traffic stream,
in order to later “travel back in time” and inspect activity that has
only become interesting in retrospect. Two examples are secu-
rity forensics—determining just how an attacker compromised a
given machine—and network trouble-shooting, such as inspect-
ing the precursors to a fault after the fault. We describe the design
and implementation of a Time Machine to efficiently support such
recording and retrieval. The efficiency of our approach comes
from leveraging the heavy-tailed nature of network traffic: be-
cause the bulk of the traffic in high-volume streams comes from
just a few connections, by constructing a filter that records only
the first N bytes of each connection we can greatly winnow down
the recorded volume while still retaining both small connections
in full, and the beginnings of large connections (which often suf-
fices).

The system is designed for operation in Gbps environments,
running on commodity hardware. It can hold a few minutes of a
high volume stream in RAM, and many hours to days on disk; the
user can flexibly configure its operation to suit the site’s nature.
We present simulation and operational results from three distinct
Gbps production environments exploring the feasibility and effi-
ciency of a Time Machine implementation. The system has al-
ready proved useful in enabling analysis of a break-in at one of
the sites.

1 Introduction

Network packet traces—particularly those with not only
headers but full contents—can prove invaluable both for
trouble-shooting network problems and for investigating
security incidents. Yet in many operational environments
the sheer volume of the traffic makes it infeasible to capture
the entire stream or retain even significant subsets for ex-
tended amounts of time. Of course, for both troubleshoot-
ing and security forensics, only a very small proportion of
the traffic actually turns out to be pertinent. The problem
is that one has to decide beforehand, when configuring a
traffic monitor, what context will turn out to be relevant
retrospectively to investigate incidents.

Only in low volume environments can one rou-
tinely bulk-record all network traffic using tools such as
tcpdump [2]. Rising volumes inevitably require filtering.
For example, at the Lawrence Berkeley National Labora-
tory (LBNL), a medium-size Gbps environment, the net-
work traffic averages 1.5 TB/day, right at the edge of what
can be recorded using commodity hardware. The site has
found it vital to record traffic for analyzing possible secu-
rity events, but cannot retain the full volume. Instead, the

operators resort to a tcpdump filter with 85 terms describ-
ing the traffic to skip—omitting any recording of key ser-
vices such as HTTP, FTP data, X11 and NFS, as well as
skipping a number of specific high-volume hosts, and all
non-TCP traffic. This filter reduces the volume of recorded
traffic to about 4% of the total.

At higher traffic rates, even such filtering becomes tech-
nically problematic. For example, the Munich Scientific
Research Network (Münchner Wissenschaftsnetz, MWN),
a heavily-loaded Gbps university environment, averages
more than 2 TB external traffic each day, with busy-hour
loads of 350 Mbps. At that level, it is very difficult to reli-
ably capture the full traffic stream using a simple commod-
ity deployment.

A final issue concerns using the captured data. In cases
of possible security compromise, it can be of great impor-
tance to track down the attacker and assess the damage as
quickly as possible. Yet, manually sifting through an im-
mense archive of packet traces to extract a “needle in a
haystack” is time-consuming and cumbersome.

In this work we develop a system that uses dynamic
packet filtering and buffering to enable effective bulk-
recording of large traffic streams. As this system allows us
to conveniently “travel back in time”, we term it a Time Ma-
chine. Our Time Machine buffers network streams first in
memory and then on disk, providing several days of nearly-
complete (from a forensics and trouble-shooting perspec-
tive) historic data and supporting timely access to locate
the haystack needles. Our initial application of the Time
Machine is as a forensic tool, to extract detailed past in-
formation about unusual activities once they are detected.
Already the Time Machine has proved operationally useful,
enabling diagnosis of a break-in that had gone overlooked
at LBNL, whose standard bulk-recorder’s static filter had
missed capturing the relevant data.

Naturally, the Time Machine cannot buffer an entire
high-volume stream. Rather, we exploit the “heavy-tailed”
nature of network traffic to partition the stream more effec-
tively (than a static filter can) into a small subset of high
interest versus a large remainder of low interest. We then
record the small subset and discard the rest. The key in-
sight that makes this work is that most network connections
are quite short, with only a small number of large connec-
tions (the heavy tail) accounting for the bulk of the total
volume [6]. However, very often for forensics and trouble-
shooting applications the beginning of a large connection
contains the most significant information. Put another way,
given a choice between recording some connections in their

Internet Measurement Conference 2005 USENIX Association 267

entirety, at the cost of missing others in their entirety; ver-
sus recording the beginnings of all connections and the en-
tire contents of most connections, we generally will prefer
the latter.

The Time Machine does so using a cutoff limit, N : for
every connection, it buffers up to the first N bytes of traffic.
This greatly reduces the traffic we must buffer while retain-
ing full context for small connections and the beginning for
large connections. This simple mechanism is highly effi-
cient: for example, at LBNL, with a cutoff of N = 20 KB
and a disk storage budget of 90 GB, we can retain 3–5 days
of all of the site’s TCP connections, and, using another
30 GB, 4–6 days for all of its UDP flows (which tend to
be less heavy-tailed).

We are not aware of any comparable system for traffic
capture. While commercial bulk recorders are available
(e.g, McAfee Security Forensics [3]), they appear to use
brute-force bulk-recording, requiring huge amounts of disk
space. Moreover, due to their black-box nature, evaluat-
ing their performance in a systematic fashion is difficult.
Another approach, used by many network intrusion detec-
tion/prevention systems, is to record those packets that trig-
ger alerts. Some of these systems buffer the start of every
connection for a short time (seconds) and store them per-
manently if the session triggers an alert. Such systems do
not provide long-term buffers or arbitrary access, so they do
not support retrospective analysis of a problematic host’s
earlier activity. The Bro NIDS [5] can either record all an-
alyzed packets, or future traffic once an incident has been
detected. Finally, the Packet Vault system was designed to
bulk record entire traffic streams [1]. It targets lower data
rates and does not employ any filtering.

We organize the remainder of the paper as follows. In
§ 2, we briefly summarize the Time Machine’s design
goals. In § 3, we use trace-driven simulation to explore the
feasibility of our approach for data-reduction in three high-
volume environments. We discuss the Time Machine’s ar-
chitecture in § 4 and present an evaluation of its perfor-
mance in two of the environments in § 5. § 6 summarizes
our work.

2 Design Goals

We identified six major design goals for a Time Machine:
Provide raw packet data. The Time Machine should

enable recording and retrieval of full packets, including
payload, rather than condensed versions (e.g., summaries,
or just byte streams without headers), in order to prevent
losing crucial information.

Buffer traffic comprehensively. The Time Machine
should manage its stored traffic for time-frames of multi-
ple days, rather than seconds or minutes. It should not re-
strict capture to individual hosts or subnetworks, but keep
as widespread data as possible.

Prioritize traffic. Inevitably, in high-volume environ-
ments we must discard some traffic quickly. Thus, the Time
Machine needs to provide means by which the user can ex-
press different classes of traffic and the resources associ-
ated with each class.

Automated resource management. From experience,
we know that having to manually manage the disk space as-
sociated with high-volume packet tracing becomes tedious
and error-prone over time. The Time Machine needs to en-
able the user to express the resources available to it in high-
level terms and then manage these resources automatically.

Efficient and flexible retrieval. The Time Machine
must support timely queries for different subsets of the
buffered data in a flexible and efficient manner. However,
its packet capture operation needs to have priority over
query processing.

Suitable for high-volume environments using com-
modity hardware. Even though we target large networks
with heavily loaded Gbps networks, there is great benefit
in a design that enables the Time Machine to run on off-
the-shelf hardware, e.g., PCs with 2 GB RAM and 500 GB
disk space.

3 Feasibility Study

In this section we explore the feasibility of achieving the
design goals outlined above by leveraging the heavy-tailed
nature of traffic to exclude most of the data in the high-
volume streams.
Methodology: To evaluate the memory requirements of a
Time Machine, we approximate it using a packet-buffer
model. We base our evaluation on connection-level logs
from the three environments described below. These logs
capture the nature of their environment but with a relatively
low volume compared to full packet-level data. Previous
work [7] has shown that we can use flow data to approxi-
mate the data rate contributed by a flow, so we can assume
that a connection spreads its total traffic across its duration
evenly, which seems reasonable for most connections, es-
pecially large ones.

We evaluate the packet-buffer model in discrete time
steps, enabling us to capture at any point the volume of
packet data currently stored in the buffer and the growth-
rate at which that volume is currently increasing. In our
simplest simulation, the arrival of a new connection in-
creases the growth-rate by the connection’s overall rate
(bytes transferred divided by duration); it is decreased by
the same amount when it finishes. We then add the notion
of keeping data for an extended period of time by intro-
ducing an eviction time parameter, Te, which defines how
long the buffer stores each connection’s data. In accordance
with our goals, we aim for a value of Te on the order of days
rather than minutes.

Internet Measurement Conference 2005 USENIX Association268

Connection size S [bytes]

P
(c

on
ne

ct
io

n
si

ze
 >

 S
)

1e
−0

7
1e

−0
5

0.
00

1
0.

1
1

1 10 100 1000 10000 1e+05 1e+06 1e+07 1e+08 1e+09

NERSC
LBL
MWN

Figure 1: Log-log CCDF of connection sizes

As described so far, the model captures bulk-recording
with a timeout but without a cutoff. We incorporate the idea
of recording only the first N bytes for each connection by
adjusting the time at which we decrement the growth-rate
due to each connection, no longer using the time at which
the connection finishes, but rather the time when it exceeds
N bytes (the connection size cutoff).
Environments: We drive our analysis using traces gath-
ered from packet monitors deployed at the Internet access
links of three institutions. While all institutions transfer
large volumes of data (one to several TBs a day), their net-
works and traffic composition have qualitative differences.
MWN: The Munich Scientific Research Network (Münch-
ner Wissenschaftsnetz, MWN) in Munich, Germany, con-
nects two major universities and affiliated research in-
stitutions to the Internet, totaling approximately 50,000
hosts. The volume transferred over its Gbps Internet link is
around 2 TB a day. Roughly 15–20% of the traffic comes
from a popular FTP mirror hosted by one of the univer-
sities. The average utilization during busy-hours is about
350 Mbps (68 Kpps).
LBNL: The Lawrence Berkeley National Laboratory
(LBNL) network in California, USA, comprises 9,000
hosts and 4,000 users, connecting to the Internet via a Gbps
link with a busy-hour load of 320 Mbps (37 Kpps).
NERSC: The National Energy Research Scientific Com-
puting Center is administratively part of LBNL, but phys-
ically separate and uses a different Internet access link;
it provides computational resources (around 600 hosts) to
2,000 users. The traffic is dominated by large transfers,
containing significantly fewer user-oriented applications
such as the Web. The busy-hour utilization of the Gbps
link is 260 Mbps (43 Kpps).

For our analysis we use connection-level logs of one
week from MWN, LBNL, and NERSC. The MWN con-
nection log contains 355 million connections from Mon-
day, Oct. 18, 2004, through the following Sunday. The logs
from LBNL and NERSC consist of 22 million and 4 mil-
lion connections observed in the week after Monday Feb.
7, 2005 and Friday Apr. 29, 2005 respectively.
Analysis of connection size cutoff: As a first step we in-
vestigate the heavy-tailed nature of traffic from our envi-
ronments. Figure 1 plots the (empirical) complementary

Time

V
ol

um
e

[G
B

]

0
20

0
40

0
60

0
80

0
10

00

Tue 0:00 Wed 0:00 Thu 0:00 Fri 0:00 Sat 0:00 Sun 0:00 Mon 0:00

Te = 3h, no cut−off
Te = 4d, 20kB cut−off
Te = 4d, 10KB cut−off

Figure 2: Simulated Volume for MWN environment

cumulative distribution function (CCDF) of the number of
bytes per connection for each of the three environments.
Note that a “linear” relationship in such a log-log scaled
plot indicates consistency of the tail with a Pareto distribu-
tion.

An important consideration when examining these plots
is that the data we used—connection summaries produced
by the Bro NIDS—are based on the difference in sequence
numbers between a TCP connection’s SYN and FIN pack-
ets. This introduces two forms of bias. First, for long-
running connections, the NIDS may miss either the initial
SYN or the final FIN, thus not reporting a size for the con-
nection. Second, if the connection’s size exceeds 4 GB,
then the sequence number space will wrap; Bro will report
only the bottom 32 bits of the size. Both of these biases
will tend to underestimate the heavy-tailed nature of the
traffic, and we know they are significant because the to-
tal traffic volume accounted for by the Bro reports is much
lower than that surmised via random sampling of the traffic.

The plot already reveals insight about how efficiently a
cutoff can serve in terms of reducing the volume of data
the Time Machine must store. For a cutoff of 20 KB, cor-
responding to the vertical line in Figure 1, 12% (LBNL),
14% (NERSC) and 15% (MWN) of the connections have
a larger total size. The percentage of bytes is much larger,
though: 87% for MWN, 96% for LBNL, and 99.86% for
NERSC. Accordingly, we can expect a huge benefit from
using a cutoff.

Next, using the methodology described above we sim-
ulated the packet buffer models based on the full connec-
tion logs. Figures 2, 3 and 4 show the required memory
for MWN, LBNL, and NERSC, respectively, for differ-
ent combinations of eviction time Te and cutoff. A deac-
tivated cutoff corresponds to bulk-recording with a time-
out. While the bulk-recording clearly shows the artifacts
of time of day and day of week variations, using a cutoff
reduces this effect, because we can accompany the cutoff
with a much larger timeout, which spreads out the varia-
tions. We see that a cutoff of 20 KB quite effectively re-
duces the buffered volume: at LBNL, with Te = 4 d, the
maximum volume, 68 GB, is just a tad higher than the max-
imum volume, 64 GB, for bulk-recording with Te = 3 h.
However, we have increased the duration of data availabil-

Internet Measurement Conference 2005 USENIX Association 269

Time

V
ol

um
e

[G
B

]

0
20

40
60

80

Mon 0:00 Tue 0:00 Wed 0:00 Thu 0:00 Fri 0:00 Sat 0:00 Sun 0:00 Mon 0:00

Te = 3h, no cut−off
Te = 4d, 20kB cut−off
Te = 4d, 10KB cut−off

Figure 3: Simulated volume for LBNL environment

Time

V
ol

um
e

[G
B

]

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Fri 0:00 Sat 0:00 Sun 0:00 Mon 0:00 Tue 0:00 Wed 0:00 Thu 0:00 Fri 0:00

Te = 3h, no cut−off
Te = 4d, 20kB cut−off
Te = 4d, 10KB cut−off

Figure 4: Simulated volume for NERSC environment

ity by a factor of 32! Note that the volume for simula-
tions with Te = 4 d stops to increase steadily after four
days, since starting then connections are being evicted in
the buffer model. At NERSC, the mean (peak) even de-
creases from 135 GB (344 GB) to 7.7 GB (14.9 GB). This
enormous gain is due to the site’s large proportion of high-
volume data transfers. As already indicated by the lower
fraction of bytes in the larger connections for MWN, the
gain from the cutoff is not quite as large, likely due to the
larger fraction of HTTP traffic.

Reducing the cutoff by a factor of two further reduces
the maximum memory requirements, but only by a factor
1.44 for LBNL, 1.40 for NERSC, and 1.50 for MWN—not
by a full factor of two. This is because at this point we are
no longer able to further leverage a heavy tail.

The Figures also show that without a cutoff, the volume
is spiky. In fact, at NERSC the volume required with Te =

1 h is no more than two times that with Te = 1 m, due to its
intermittent bursts. On the other hand, with a cutoff we do
not see any significant spikes in the volumes. This suggests
that sudden changes in the buffer’s growth-rate are caused
by a few high-volume connections rather than shifts in the
overall number of connections. All in all, the plots indicate
that by using a cutoff of 10–20 KB, buffering several days
of traffic is practical.

4 Architecture

The main functions our Time Machine needs to support are
(i) buffering traffic using a cutoff, (ii) migrating (a subset
of) the buffered packets to disk and managing the asso-

Capture

Classification

Indexing

Tap

Storage
Container

Storage
Container

User
Interface

...

Query Processing

Query

Answer

Storage policy

Class Configuration

Capture Filter

Recording ThreadUser Interaction Thread

Connection
Tracking

Figure 5: Time Machine System Architecture

ciated storage, (iii) providing flexible retrieval of subsets
of the packets, and (iv) enabling customization. To do so,
we use the multi-threaded architecture shown in Figure 5,
which separates user interaction from recording to ensure
that packet capture has higher priority than packet retrieval.

The user interface allows the user to configure the
recording parameters and issue queries to the query pro-
cessing unit to retrieve subsets of the recorded packets. The
recording thread is responsible for packet capture and stor-
age. The architecture supports customization by splitting
the overall storage into several storage containers, each of
which is responsible for storing a subset of packets within
the resources (memory and disk) allocated via the user in-
terface. The classification unit decides which packets to
assign to each storage container. In addition, the classifica-
tion unit is responsible for monitoring the cutoff with the
help of the connection tracking component, which keeps
per connection statistics. To enable efficient retrieval, we
use an index across all packets stored in all storage con-
tainers, managed by the indexing module. Finally, access
to the packets coming in from the network tap is managed
by the capture unit.

The capture unit receives packets from the network tap
and passes them on to the classification unit. Using the
connection tracking mechanism, it checks if the connection
the packet belongs to has exceeded its cutoff value. If not,
it finds the associated storage container, which then stores
the packet in memory, indexing it in the process for quick
access later on. It later migrates it to disk, and eventually
deletes it. Accordingly, the actual Time Machine differs
from the connection-level simulation model in that now the
buffers are caches that evict packets when they are full,
rather than evicting whole connections precisely at their
eviction time.

Our implementation of the architecture uses the
libpcap packet capture library [2], for which the user
can specify a kernel-level BPF [4] capture filter to discard
“uninteresting” traffic as early as possible. We collect and
store each packet’s full content and capture timestamp.

The capture unit passes the packet to the classification
routines, which divide the incoming packet stream into
classes according to a user-specified configuration. Each
class definition includes a class name, a BPF filter to iden-

Internet Measurement Conference 2005 USENIX Association270

tify which packets belong to the class, a matching priority,
and several storage parameters; for example:

class "telnet" { filter "tcp port 23";
precedence 50; cutoff 10m;
mem 10m; disk 10g; }

which defines a class “telnet” that matches, with prior-
ity 50, any traffic captured by the BPF filter "tcp port
23". A cutoff of 10 MB is applied, and an in-memory
buffer of 10 MB and a disk budget of 10 GB allocated.

For every incoming packet, we look up the class asso-
ciated with its connection in the connection tracking unit,
or, if it is a new connection, match the packet against all of
the filters. If more than one filter matches, we assign it to
the class with the highest priority. If no filter matches, the
packet is discarded.

To track connection cutoffs, the Time Machine keeps
state for all active connections in a hash table. If a newly
arrived packet belongs to a connection that has exceeded
the cutoff limit configured for its class, it is discarded. We
manage entries in the connection hash table using a user-
configurable inactivity timeout; the timeout is shorter for
connections that have not seen more than one packet, which
keeps the table from growing too large during scans or de-
nial of service attacks.

For every class, the Time Machine keeps an associated
storage container to buffer the packets belonging to the
class. Storage containers consist of two ring buffers. The
first stores packets in a RAM buffer, while the second
buffers packets on disk. The user can configure the size
of both buffers on a per-class basis. (A key motivation for
maintaining a RAM buffer in addition to disk storage is to
enable near-real-time access to the more recent part of the
Time Machine’s archive.) Packets evicted from the RAM
buffer are moved to the disk buffer. We structure the disk
buffer as a set of files. Each such file can grow up to a
configurable size (typically 10–100s of MB). Once a file
reaches this size, we close it and create a new file. We store
packets both in memory and on disk in libpcap format.
This enables easy extraction of libpcap traces for later
analysis.

To enable quick access to the packets, we maintain mul-
tiple indexes. The Time Machine is structured internally
to support any number of indexes over an arbitrary set of
(predefined) protocol header fields. For example, the Time
Machine can be compiled to simultaneously support per-
address, per-port, and per-connection-tuple indexes. Each
index manages a list of time intervals for every unique key
value, as observed in the protocol header field (or fields) of
the packets. These time intervals provide information on
whether packets with that key value are available in a given
storage container and at what starting timestamp, enabling
fast retrieval of packets. Every time the Time Machine
stores a new packet it updates each associated index. If
the packet’s key—a header field or combination of fields—

is not yet in the index, we create a new entry containing
a zero-length time interval starting with the timestamp of
the packet. If an entry exists, we update it by either ex-
tending the time interval up to the timestamp of the current
packet, or by starting a new time interval, if the time dif-
ference between the last entry in the existing interval and
the new timestamp exceeds a user-defined parameter. Thus,
this parameter trades off the size of the index (in terms of
number of intervals we maintain) for how precisely a given
index entry localizes the packets of interest within a given
storage container. As interval entries age, we migrate them
from in-memory index structures to index files on disk, do-
ing so at the same time the corresponding packets in the
storage containers migrate from RAM to disk. In addition,
the user can set an upper limit for the size of the in-memory
index data structure.

The final part of the architecture concerns how to find
packets of interest in the potentially immense archive.
While this can be done using brute force (e.g., running
tcpdump over all of the on-disk files), doing so can take
a great deal of time, and also have a deleterious effect
on Time Machine performance due to contention for the
disk. We address this issue using the query-processing unit,
which provides a flexible language to express queries for
subsets of the packets. Each query consists of a logical
combination of time ranges, keys, and an optional BPF fil-
ter. The query processor first looks up the appropriate time
intervals for the specified key values in the indexing struc-
tures, trimming these to the time range of the query. The
logical or of two keys is realized as the union of the set of
intervals for the two keys, and an and by the intersection.
The resulting time intervals correspond to the time ranges
in which the queried packets originally arrived. We then
locate the time intervals in the storage containers using bi-
nary search. Since the indexes are based on time intervals,
these only limit the amount of data that has to be scanned,
rather then providing exact matches; yet this narrowing suf-
fices to greatly reduce the search space, and by foregoing
exact matches we can keep the indexes much smaller. Ac-
cordingly, the last step consists of scanning all packets in
the identified time ranges and checking if they match the
key, as well as an additional BPF filter if supplied with the
query, writing the results to a tcpdump trace file on disk.

5 Evaluation

To evaluate the Time Machine design, we ran an imple-
mentation at two of the sites discussed in § 3. For LBNL,
we used three classes, each with a 20 KB cutoff: TCP traf-
fic, with a space budget of 90 GB; UDP, with 30 GB; and
Other, with 10 GB. To evaluate the “hindsight” capabilities,
we determine the retention, i.e., the distance back in time to
which we can travel at any particular moment, as illustrated
in Figure 6. Note how retention increases after the Time
Machine starts until the disk buffers have filled. After this

Internet Measurement Conference 2005 USENIX Association 271

Local time

R
et

en
tio

n
[d

ay
s]

0
1

2
3

4
5

6
7

Sat 0:00 Mon 0:00 Wed 0:00 Fri 0:00 Sun 0:00 Tue 0:00 Thu 0:00

TCP
UDP
Other

Figure 6: Retention in the LBNL environment

point, retention correlates with the incoming bandwidth for
each class and its variations due to diurnal and weekly ef-
fects. New data forces the eviction of old data, as shown for
example by the retention of TCP shortening as the lower
level weekend traffic becomes evicted around Wed–Thu.
The TCP buffer of 90 GB allows us to retain data for 3–
5 days, roughly matching the predictions from the LBNL
simulations (recall the volume biases of the connection-
level data discussed in § 3). Use of a cutoff is highly ef-
ficient: on average, 98% of the traffic gets discarded, with
the remainder imposing an average rate of 300 KB/s and a
maximum rate of 2.6 MB/s on the storage system. Over the
2 weeks of operation, libpcap reported only 0.016% of
all packets dropped.

Note that classes do not have to be configured to yield an
identical retention time. The user may define classes based
on their view of utility of having the matching traffic avail-
able in terms of cutoff and how long to keep it. For example
we might have included a class configuration similar to the
example in § 4 in order to keep more of Telnet connections
for a longer period of time.

Operationally, the Time Machine has already enabled the
diagnosis of a break-in at LBNL by having retained the re-
sponse to an HTTP request that was only investigated three
days later. The Time Machine’s data both confirmed a suc-
cessful compromise and provided additional forensic infor-
mation in terms of the attacker’s other activities. Without
the Time Machine, this would not have been possible, as
the site cannot afford to record its full HTTP traffic for any
significant length of time.

At MWN we ran preliminary tests of the Time Ma-
chine, but we have not yet evaluated the retention capa-
bility systematically. First results show that about 85% of
the traffic gets discarded, with resulting storage rates of
3.5 (13.9) MB/s average (maximum). It appears that the
larger volume of HTTP traffic is the culprit for this differ-
ence compared to LBNL, due to its lesser heavy-tailed na-
ture; this matches the results of the MWN connection-level
simulation. For this environment it seems we will need
to more aggressively exploit the classification and cutoff
mechanisms to appropriately manage the large fraction of
HTTP traffic.

The fractions of discarded traffic for both LBNL and
MWN match our predictions well, and the resulting storage
rates are reasonable for today’s disk systems, as demon-
strated in practice. The connection tracking and indexing
mechanisms coped well with the characteristics of real In-
ternet traffic. We have not yet evaluated the Time Machine
at NERSC, but the simulations promise good results.

6 Summary

In this paper, we introduce the concept of a Time Machine
for efficient network packet recording and retrieval. The
Time Machine can buffer several days of raw high-volume
traffic using commodity hardware. It provides an efficient
query interface to retrieve the packets in a timely fashion,
and automatically manages its available storage. The Time
Machine relies on the simple but crucial observation that
due to the “heavy-tailed” nature of network traffic, we can
record most connections in their entirety, yet skip the bulk
of the total volume, by storing up to (a customizable) cutoff
limit of bytes per connection. We have demonstrated the ef-
fectiveness of the approach using a trace-driven simulation
as well as operational experience with the actual implemen-
tation in two environments. A cutoff of 20 KB increases
data availability from several hours to several days when
compared to brute-force bulk recording.

In operational use, the Time Machine has already proved
valuable by enabling diagnosis of a break-in that standard
bulk-recording had missed. In future work, we intend to
add a remote access interface to enable real-time queries
for historic network data by components such as network
intrusion detection systems.

7 Acknowledgments

This work was supported by the National Science Foundation un-
der grant STI-0334088, and by a grant from the Bavaria California
Technology Center, for which we are grateful.

References
[1] ANTONELLI, C., UNDY, M., AND HONEYMAN, P. The Packet Vault: Secure

Storage of Network Data. In Proc. Workshop on Intrusion Detection and Net-
work Monitoring (April 1999), pp. 103–110.

[2] LAWRENCE BERKELEY NATIONAL LABORATORY. tcpdump and libpcap.
http://www.tcpdump.org/.

[3] MCAFEE. McAfee Security Forensics. http://www.mcafeesecurity.
com/us/products/mcafee/forensics/security_for%
ensics.htm.

[4] MCCANNE, S., AND JACOBSON, V. The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture. In Proc. USENIX Winter 1993 Conference
(January 1993), pp. 259–270.

[5] PAXSON, V. Bro: A system for detecting network intruders in real-time. Com-
puter Networks 31, 23–24 (December 1999).

[6] PAXSON, V., AND FLOYD, S. Wide-Area Traffic: The Failure of Poisson Mod-
eling. IEEE/ACM Transactions on Networking 3, 3 (June 1995), 226–224.

[7] WALLERICH, J., DREGER, H., FELDMANN, A., KRISHNAMURTHY, B., AND
WILLINGER, W. A Methodology for Studying Persistency Aspects of Internet
Flows. ACM SIGCOMM Computer Communication Review 35, 2 (April 2005),
23–36.

Internet Measurement Conference 2005 USENIX Association272

