Exploiting Internet Route Sharing for
Large Scale Available Bandwidth Estimation

Ningning Hu, Peter Steenkiste
Carnegie Mellon University
{hnn, prs}@cs.cmu.edu

Abstract

Recent progress in active measurement techniques has
made it possible to estimate end-to-end path available band-
width. However, how to efficiently obtain available band-
width information for the N2 paths in a large N-node sys-
tem remains an open problem. While researchers have de-
veloped coordinate-based models that allow any node to
quickly and accurately estimate latency in a scalable fash-
ion, no such models exist for available bandwidth. In this
paper we introduce BRoute — a scalable available band-
width estimation system that is based on a route sharing
model. The characteristics of BRoute are that its overhead
is linear with the number of end nodes in the system, and
that it requires only limited cooperation among end nodes.
BRoute leverages the fact that most Internet bottlenecks are
on path edges, and that edges are shared by many different
paths. It uses AS-level source and sink trees to character-
ize and infer path-edge sharing in a scalable fashion. In this
paper, we describe the BRoute architecture and evaluate the
performance of its components. Initial experiments show
that BRoute can infer path edges with an accuracy of over
80%. In a small case study on Planetlab, 80% of the avail-
able bandwidth estimates obtained from BRoute are accu-
rate within 50%.

1 Introduction

Recent progress in measurement techniques has made it
possible to estimate path available bandwidth [11, 21, 18,
17, 23, 25]. These tools have enhanced our understanding
of Internet end-to-end performance, and can be used to im-
prove the performance of network applications. However,
how to efficiently obtain available bandwidth information
for the N2 paths in a large N-node system remains an open
problem. At the same time, a scalable available bandwidth
estimation system has many potential applications. For ex-
ample, a large service provider may want to know the avail-
able bandwidth performance for all its customers; P2P sys-
tems may want to know the available bandwidth between all
node-pairs so as to select the best overlay topology; or peo-
ple may want to monitor the health of a large scale system
or testbed, like Planetlab [4].

Researchers have been able to build scalable systems for
Internet latency estimation by using synthetic coordinated

This research was funded in part by NSF under award number CCR-
0205266 and in part by KISA (Korea Information Security Agency) and
CyLab Korea.

systems to significantly reduce the number of required mea-
surements [22, 12]. Unfortunately, we do not have a similar
concept for available bandwidth. Brute force solutions will
not work either. The overhead to probe one path is at least
around 100KB [25, 17], so measuring all end-to-end paths
in a 150-node system would already require over 2GB for
just one snapshot. This approach clearly does not scale to a
large number of nodes, let alone to the whole Internet. An-
other challenge is that most available bandwidth measure-
ment tools need to run on both ends of a network path to
conduct measurements. This complicates the deployment
of the tools significantly.

In this paper, we propose a scalable available bandwidth
estimation system—BRoute. Here “available bandwidth”
refers to the residual bandwidth left on an end-to-end path;
it is determined by the available bandwidth of the bottle-
neck link, i.e., the link with smallest residual bandwidth.
The goal of BRoute is to estimate the available bandwidth
for any node-pair in a large system, with limited measure-
ment overhead and limited cooperation among end nodes.
BRoute is based on two observations. First, Hu et.al. [16]
have observed that over 86% of Internet bottlenecks are
within 4 hops from end nodes, i.e., on path edges. This sug-
gests that bandwidth information for path edges can be used
to infer end-to-end available bandwidth with high probabil-
ity. Moreover, links near the end nodes are often shared by
many paths, thus providing the opportunity to limit mea-
surement overhead. This leads to the two key challenges in
BRoute: how to measure the available bandwidth of path
edges and how to quickly determine which edges a path
uses.

The primary contribution of this paper is the BRoute sys-
tem architecture: we discuss in Section 2 how it leverages
routing information to reduce available bandwidth estima-
tion overhead. In Sections 4-6, we first use an extensive set
of measurement to show that many Internet paths exhibit
the properties that BRoute relies on, we then present an al-
gorithm that uses AS-level source and sink tree information
to infer network path edges, and we finally describe how
we measure the available bandwidth near end nodes. We
discuss related work and conclude in Sections 7 and 8.

2 System Design
2.1 BRoute Intuition

The BRoute design is based on two important observations.
First, most bottlenecks are on path edges, so for most paths
we only need to obtain available bandwidth information for
both edges of a path to estimate path available bandwidth.

USENIX Association

Internet Measurement Conference 2005 187

[a0’s AS—level source tree

a2

JUoWISs—a01N0s
&
2

JuowSos—yuIs

Figure 1: End-segments and AS-level source/sink trees

Second, relatively few routes exist near the source and des-
tination compared with the core of the Internet, thus sim-
plifying the problem of determining which edges a path
takes, and which bottleneck it encounters. These observa-
tions lead to the two main operations in BRoute. First, each
node collects both routing and bottleneck information for
the network “edge” to which it is attached, using traceroute
and Pathneck [15], respectively. This information can be
published, similar to a set of coordinates. Second, in or-
der to estimate the available bandwidth between a source
node and a sink node, any node can collect the routing and
bottleneck information for the source and sink and use it to
determine the route taken at the edges of the path, and thus
the likely bottleneck location and available bandwidth.

Before we describe BRoute in more detail, let us first de-
fine what we mean by the “edge” of a path. It corresponds to
the first ' and the last NV links of a complete IP level path;
we will call these two partial paths the source-segment and
sink-segment respectively. In this paper we will use £ =
4, N = 4 since this captures most of the bottlenecks [16].
However, different values can be used. Formally, let the
path from s to d be Path(s,d) = (rg = $,71,72, ., 'y =
d), here 7;(1 < i < n — 1) are routers on the path. Then
the source-segment of Path(s,d) is srcSgmt(s,d)
(ro,r1,72,73,74), and the sink-segment of Path(s,d) is
sinkSgmt(d,s) = (rn—4,"n—3,"n—2,Tn—1,7n). The left
graph of Figure 1 illustrates the source-segments for end
nodes ag, by and the sink-segments for end nodes cg, dy.
The dashed lines indicate the omitted central part of the
paths. In this paper, we also use the term end-segment to
indicate either a source-segment or a sink-segment.

If bottlenecks are on end-segments, we only need to con-
sider the trees composed of the source-segments and sink-
segments (called the source and sink tree), and we can ig-
nore links within the “Internet Core” as illustrated in Fig-
ure 1. Each node can characterize both the structure and
bandwidth properties of its source and sink tree. This in-
formation can be published in a central location or using a
publish-subscribe system. Other nodes can then use that
information to estimate the bandwidth for the paths to-
ward or from that node. In large systems, many paths will

Sy-uowod

share a same end-segment. For example, Path(ag, ¢o) and
Path(bg, co) share sink-segment (cs, ¢4, ¢2,¢1,¢p). This
means that the measurement overhead is proportional to the
number of end-segments, not the number of paths. Based
on the data set discussed in Section 3, we found that, assum-
ing source/sink trees with a depth of 4, Internet end nodes
have on average only about 10 end-segments, so the over-
head is linear in the number of system nodes.

Besides identifying source and sink threes, BRoute needs
to identify the source-segment and sink-segment for a path
without direct measurement, i.e. identifying the leaves of
the trees in Figure 1. BRoute does this using AS-level
path information. Intuitively, for a pair of nodes s and
d, if we know all the upstream AS paths from s (called
the AS-level source tree or srcT'ree(s)) and all the down-
stream AS paths toward d (called the AS-level sink tree
or sinkTree(d)), then Path(s,d) should pass one of their
shared ASes. For example, the right graph of Figure 1 illus-
trates the upstream AS paths from ag, and the downstream
AS paths toward co. Assume that A7 is the only shared AS
then this means that path Path(ag, co) must pass through
A7, and we can use A7 to identify srcSgmit(ao, co) and
sinkSgmt(co, ap). We will call the AS that is shared
and on the actual path the common-AS. Of course, there
will typically be multiple shared ASes between srcT'ree(s)
and sinkT'ree(d). We will discuss in Section 5.1 how to
uniquely determine the common-AS.

2.2 BRoute Architecture

The BRoute architecture includes three components: sys-
tem nodes, traceroute landmarks, and an information ex-
change point. System nodes are Internet nodes for which
we want to estimate available bandwidth; they are responsi-
ble for collecting their AS-level source/sink trees, and end-
segment available bandwidth information. Traceroute land-
marks are a set of nodes deployed in specific ASes; they are
used by system nodes to build AS-level source/sink trees
and to infer end-segments. An information exchange point,
such as a server or publish-subscribe system, collects mea-
surement data from system nodes and the bandwidth esti-
mation operations can then be carried by either the server
or alternatively, by the querying client. For simplicity, we
will assume the use of a BRoute server in this paper.

BRoute leverages two existing techniques: bottleneck

detection [15] and AS relationship inference [14, 26]. Bot-
tleneck detection is used to measure end-segment band-
width, and AS relationship information is used to infer the
end-segments of a path. The operation of BRoute can be
split into a pre-processing stage and a query stage (Fig-
ure 2):

e Pre-processing: In this stage, each system node con-
ducts a set of traceroute measurements to the tracer-
oute landmarks. Similarly, traceroute landmarks con-
duct traceroutes toward system nodes. The system
node then uses the traceroute information to construct
AS-level source and sink trees. Next the system node
identifies its source-segments and sink-segments and

188 Internet Measurement Conference 2005

USENIX Association

source Pre—processing ; Query

upstream T +

traceroute AS-level
source tree

source— =" oo cured? Y bw of source—
segment N —| segment

!

AS-level
sink tree

destination

downstream
traceroute

T path bw
%‘ common AS ‘ ‘ pathneck % estimation
) i @—‘ 1
In
@ sink—
segment

bw of
sink—segment

measured?

Figure 2: BRoute System Architecture

uses Pathneck to collect bandwidth information for
each end-segment. This information is reported to the
BRoute server.

e Query: Any node can query BRoute server for an es-
timate of the available bandwidth between two sys-
tem nodes—s to d. The BRoute server will first
identify the common-AS between srcTree(s) and
sinkTree(d). The common-AS is used to identify
the end-segments srcSgmt(s, d) and sinkSgmt(d, s)
of Path(s,d), and the BRoute server then returns the
smaller of the available bandwidths for srcSgmi(s, d)
and sinkSgmt(d, s) as the response to the query.

A distinguishing characteristic of BRoute is that it uses AS-
level source/sink tree computation to replace expensive net-
work measurements. In the following four sections, we first
describe the data sets used in our analysis, and we then elab-
orate on three central features of BRoute: key properties of
AS-level source and sink trees, end-segment inference, and
end-segment bandwidth measurement.

3 Data Collection

The evaluation of the BRoute design uses five data sets:
The BGP data set includes BGP routing tables down-
loaded from the following sites on 01/04/2005: University
of Oregon Route Views Project [8], RIPE RIS (Routing In-
formation Service) Project [5], and the public route servers
listed on [7]. These BGP tables include views from 190
vantage points, which allow us to conduct a relatively gen-
eral study of AS-level source/sink tree properties.

The Rocketfuel data set is mainly used for IP-level anal-
ysis of end-segments. We use the traceroute data collected
on 12/20/2002 by the Rocketfuel project [24, 6], where 30
Planetlab nodes are used to probe over 120K destinations.
The Planetlab data set was collected by the authors using
160 Planetlab nodes at different sites. It includes traceroute
result from each node to all the other nodes and it is used to
characterize AS-level sink tree properties.

The AS-Hierarchy data set was downloaded from [1] to
match our route data sets. It contains two snapshots: one
from 01/09/2003 (the closest available data set to the Rock-
etfuel data set in terms of measurement time), which is used
for mapping Rocketfuel data set; the other from 02/10/2004,
which is the latest snapshot available, and is used for map-
ping BGP and Planetlab data sets. This data set uses the
heuristic proposed by Subramanian et.al. [26] to rank all
the ASes in the BGP tables used in the computation.

The IP-to-AS data set was downloaded from [3]. Its IP-to-
AS mapping is obtained using a dynamic algorithm, which

tier—1

tier-3

Figure 3: Maximal uphill/downhill path

is shown to be better than results obtained directly from
BGP tables [20].

4 AS-Level Source/Sink Tree

In this section, we define AS-level source/sink trees and
show that they are very similar to real tree structures.

4.1 Definition

The definition of AS-level trees is based on the ranking sys-
tem from [26], where all ASes are classified into five tiers.
Tier-1 includes ASes belonging to global ISPs, while tier-
5 includes ASes from local ISPs. Intuitively, if two con-
nected ASes belong to different tiers, they should have a
provider-to-customer or customer-to-provider relationship;
otherwise, they should have a peering or sibling relation-
ship. To be consistent with the valley-free rule [14], we say
that an AS with a smaller (larger) tier number is in a higher
(lower) tier than an AS with a larger (smaller) tier number.
An end-to-end path needs to first go uphill from low-tier
ASes to high-tier ASes, then downbhill until reaching the
destination (see Figure 3).

Formally, let Tier(u;) denote the tier number of AS
u;, then an AS path (ug,u1, ..., uy) is said to be valley-
free iff there exist 4,5(0 < ¢ < j < n) satisfying:
Tier(ug) > ... > Tier(ui—1) > Tier(u;) = ... =
Tier(u;) < Tier(ujt+1) < ... < Tier(uy). The maximal
uphill path is then (ug, u1, ..., u;), and the maximal down-
hill path is (u;, w11, ..., 4y). The AS(es) in the highest tier
{wi, ..., u;} are called top-AS(es).

We can now define the AS-level source tree for a node s
as the graph srcTree(s) = (V, E), where V. = {u;} in-
cludes all the ASes that appear in one of the maximal uphill
paths starting from s, and E = {(u;, u;)|u; € V,u; € V}
includes the directional links among the ASes in V, i.e.
(us,u;) € E iff it appears in one of the maximal uphill
paths starting from s. The AS-level sink tree is defined sim-
ilarly, except that we use maximal downbhill paths.

USENIX Association

Internet Measurement Conference 2005 189

——source tree
[| — - sink tree

CDF

0 i
0.85 0.9 0.95 1
percentage of prefixes that are covered

Figure 4: The tree proximities of the AS-level source/sink
trees from the BGP data set

4.2 Tree Structure

In this subsection, we show that AS-level source/sink trees
closely approximate tree structures. As we will see in the
next section, this is important, since it allows BRoute to
map the common-AS to a unique tree branch. There are two
reasons why an AS-level source/sink tree may not be a tree.
First, ASes in the same tier can have a peering or a sibling
relationship, where data can flow in either direction; that
canresultin a loop in the AS-level source/sink tree. Second,
customer-to-provider or provider-to-customer relationship
can cross multiple tiers.

To study how closely AS-level source/sink trees approx-
imate real tree structures, we define the tree-proximity met-
ric. For AS-level source trees it is defined as follows; the
definition for AS-level sink trees is similar. We first ex-
tract all maximal uphill paths from a data set that provides
path information, for example, as obtained from BGP (BGP
data set) or traceroute (Rocketfuel data set). This is done
for each view point, where a view point is either a peering
point (BGP data set) or a measurement source node (Rock-
etfuel data set). We then count the number of prefixes cov-
ered by each maximal uphill path, and use that number as
the popularity measure of the corresponding maximal uphill
path. Next we construct a tree by adding the maximal up-
hill paths sequentially, starting from the most popular one.
If adding a new maximal uphill path introduces non-tree
links, i.e., gives a node a second parent, we discard that
maximal uphill path. As a result, the prefixes covered by
that discarded maximal uphill path will not be covered by
the resulting tree. The tree proximity of the corresponding
AS-level source tree is defined as the percentage of prefixes
covered by the resulting tree. While this greedy method
does not guarantee that we cover the largest number of pre-
fixes, we believe it provides a reasonable estimate on how
well an AS-level source tree approximates a real tree.

Using the BGP data set, we can build an AS-level source
tree for each of the 190 view points. The distribution of
the tree proximities is shown as the solid curve in Figure 4.
About 90% of the trees have a proximity over 0.95, and over
99% are above 0.88. This shows that the AS-level source
trees indeed resemble real trees. This conclusion is consis-
tent with the finding by Battista et.al. [9], who noticed that
a set of AS relationships can be found to perfectly match
the partial view of BGP routes from a single vantage point.

We also built AS-level sink trees using the BGP data set.
We identified 87,877 prefixes that are covered by at least

150 view points, i.e., for which we can get over 150 maxi-
mal downhill paths. We picked the number “150” because
it can give us a large number of trees. The results, illus-
trated by the dot-dash curve in Figure 4, are very similar
with those for AS-level source trees. Actually, the tree-
proximity from sink trees are slightly better, which could
be a result of the limited number of downstream routes used
for the AS-level sink-tree construction.

We repeated the same analysis for the Rocketfuel data
set and reached similar conclusions. When looking at the
causes for discarding a maximum uphill path during tree
construction, we found that the second cause for violations
of the tree property, i.e. the creation of multiple paths to
reach a higher tier AS, was by far the most common rea-
son. We speculate that these violations are caused by load-
balancing-related routing policies such as MOAS (Multiple
Origin AS) and SA (Selected Announced Prefixes).

As a final note, we also looked at how to efficiently mea-
sure AS-level source/sink tree. We found that if we deploy
one landmark in each of the tier-1 and tier-2 ASes (totally
237 ASes in the 02/10/2004 AS-Hierarchy data set), we can
cover at least 90% of most AS-level source/sink trees. That
suggests that 200-300 landmarks can do a reasonable job.

5 End-Segment Inference

We are now ready to describe two key operations of
BRoute: how to pick the common-AS, and how to use
the common-AS to identify the source-segment and sink-
segment of a path.

5.1 Selecting the Common-AS

Algorithm: Typically, an AS-level source tree and an AS-
level sink tree share multiple ASes. We use the following
algorithm to choose one of them as the common-AS. Based
on the fact that most AS-level routes follow the shortest AS
path [19], the algorithm first searches for the shared ASes
that are closest to the root ASes in both srcT'ree(s) and
sinkTree(d). If we are left with multiple candidates, we
pick the one that has the highest probability to appear on
Path(s, d) in the measurement. We must also consider two
special cases: (a) one or both root ASes can be shared, and
(b) there may be no shared AS between the measured trees.
For case (a), we return either one or both root ASes as the
common-AS(es), while for case (b), we consider all ASes as
shared, and we pick based on their occurrence probabilities.
Evaluation: Given the data we have, we can use two meth-
ods to evaluate the above algorithm. The first is to apply the
algorithm on the AS-level source and sink trees described
in Section 4.2. This method is straightforward and is used
in the case study of BRoute discussed in Section 6. This
method however has the drawback that it is based on limited
downstream data, so the AS-level sink trees can be incom-
plete. In this section we use a different method: we evaluate
the algorithm using the srcT'ree(d) to replace the incom-
plete sinkT'ree(d). The basis for this method is the obser-
vation that the AS-level trees are only used to determine the
end-segments of a path (we do not need the AS-level path

190 Internet Measurement Conference 2005

USENIX Association

itself), and the AS-level source tree may be a good enough
approximation of the AS-level sink tree for this restricted
goal. This in fact turns out to be the case in our data sets.
Using the BGP data set, we construct an AS-level source
tree for each vantage point, infer the common-AS for each
pair of vantage points, and then compare the result with
the actual AS paths in the BGP tables. To make sure we
have the correct path, we exclude those AS paths whose last
AS is not the AS of the destination vantage point. For the
15,383 valid AS paths, the common-AS algorithm selects
the wrong common-AS for only 514 paths, i.e. the success
rate is 97%. Furthermore, for the 14,869 correctly inferred
common-ASes, only 15 are not top AS, which confirms our
intuition that the common-AS inferred is typically a top-
AS, where the maximal uphill and downhill paths meet.

5.2 End-Segment Mapping

Given that the AS-level source and sink trees closely follow
a tree structure, the common-AS can be easily used to iden-
tify a unique branch in both the AS-level source and sink
tree. We now look at how well this AS-level tree branch
can be used to determine IP-level end-segments of the path.

Ideally, for any AS A € srcTree(s), we would like
to see that all upstream paths from s that pass A share
the same source-segment e. If this is the case, we say A
is mapped onto e, and every time A is identified as the
common-AS, we know that the source-segment of the path
is e. In practice, upstream paths from s that pass A could
go through different source-segments, due to reasons such
as load-balance routing or multihoming. To quantify the
differences among the source-segments that an AS can map
onto, we define the coverage of source-segments as follows.
Suppose AS A is mapped to k(k > 1) source-segments
€1, ea, ..., ek, each of which covers n(e;)(1 < ¢ < k)
paths that pass A. The coverage of e; is then defined as
n(e:)/ S5 n(e;). If we have n(e)) > n(ey) > .. >
n(eg), then e; is called the top-1 source-segment, e; and
eo are called the top-2 source-segments, etc. In BRoute,
we use 0.9 as our target coverage, i.e., if the top-1 source-
segment e; has coverage over 0.9, we say A is mapped onto
€1.

We use the Rocketfuel data set to analyze how many end-
segments are needed to achieve 0.9 coverage. The 30 AS-
level source trees built from this data set include 1687 ASes
(the same AS in two different trees is counted twice), 1101
of which are mapped onto a single source-segment (i.e.
coverage of 1). Among the other 586 ASes (from 17 trees)
that are mapped onto multiple source-segments, 348 can be
covered using the top-1 source-segments, so in total, (1101
+ 348 = 1449) (85%) ASes can be mapped onto a unique
source-segment. If we allow an AS to be covered using the
top-2 source-segments, this number increases to 98%, i.e.,
only 2% (17 ASes) cannot be covered.

We used the Planetlab data set, which includes many
downstream routes for each node, to look at the sink-
segment uniqueness. We found that the above conclusion
for source-segments also applies to sink-segment. Among

the 99 nodes that have at least 100 complete downstream
routes, 69 (70%) nodes have at least 90% of the ASes in
their AS-level sink tree mapped onto top-1 sink-segments,
while 95 (96%) nodes have at least 90% of their ASes
mapped onto top-2 sink-segments.

Based on these end-segment properties, we map the
common-AS onto top-1 or top-2 end-segments. In the first
case, we return the available bandwidth of the top-1 end-
segment. In the second case, we return the average of the
available bandwidth of the two top-2 end-segments as the
path bandwidth estimate. This method will work well if
the reason for having top-2 end-segments is load balancing,
since the traffic load on both end-segments is likely to be
similar.

6 End-Segment Bandwidth Measurement

BRoute uses Pathneck to measure end-segment bandwidth.
Although Pathneck only provides available-bandwidth up-
per or lower bounds for links on the path, it also pin-
points the bottleneck location, so we know if the mea-
sured path bandwidth applies to the source-segment or sink-
segment. In BRoute, each node can easily use Pathneck
to measure the available bandwidth bounds on its source-
segments. However, to measure sink-segment bandwidth,
system nodes need help from other nodes in the network.

BRoute can collect end-segment bandwidths in two
modes: infrastructure mode and peer-to-peer mode. In the
infrastructure mode, we use bandwidth landmarks that have
high downstream bandwidth to measure the sink-segment
bandwidth of system nodes. The bandwidth landmarks
can use the same physical machines as the traceroute land-
marks. In this mode, a system node uses its AS-level source
tree to pick a subset of bandwidth landmarks. The system
node will use Pathneck to measure source-segment band-
width, using the selected bandwidth landmarks as destina-
tions. Similarly, the bandwidth landmarks, at the request of
the system, will measure the sink-segment bandwidth using
the system node as Pathneck’s destination. Clearly, each
bandwidth landmark can only support a limited number of
system nodes, but a back-of-envelop calculation shows that
a bandwidth landmark with a dedicated Internet connection
of 100Mbps can support at least 100K system nodes, as-
suming the default Pathneck configuration.

In the peer-to-peer mode, end-segment bandwidths are
measured by system nodes themselves in a cooperative
fashion. That is, each system node chooses a subset of other
system nodes as peers to conduct Pathneck measurements,
so as to cover all its end-segments. We use a simple greedy
heuristic to find the sampling set. The main idea is to al-
ways choose the path whose two end nodes have the largest
number of un-measured end-segments. In the Planetlab
data set, this algorithm finds a sampling set that includes
only 7% of all paths, which shows it is indeed effective.
The peer-to-peer mode scales well, but it needs to support
node churn, which can be complicated. Also, some system
nodes may not have sufficient downstream bandwidth to ac-
curately measure the available bandwidth on sink-segments

USENIX Association

Internet Measurement Conference 2005 191

of other system nodes.

Based on the peer-to-peer mode, we conducted a case
study of BRoute on Planetlab using the design of Figure 2.
The results show that over 70% of paths have a common-
AS inference accuracy over 0.9, and around 80% of paths
have an available bandwidth inference error within 50%.
Although not perfect, these results are encouraging consid-
ering that available bandwidth is a very dynamic metric.

7 Related Work

BRoute is motivated by coordinate-based systems [22, 12]
used for delay inference, but it does not explicitly con-
struct a geometric space. BRoute instead leverages ex-
isting work on AS relationships [14, 26] as described in
Section 4.1. Recent work on AS relationships identifica-
tion [9, 19] could help improve BRoute. For example, [19]
shows how to infer the AS path for a pair of nodes using
only access to the destination node.

AS-level source/sink trees are an important part of the
BRoute design. Others have also identified such tree struc-
ture, but at the IP level. For example, Broido et.al. [10]
pointed out that 55% of IP nodes in their data set are in
trees. Recently, Donnet et.al. [13] propose the Doubletree
algorithm, which uses an IP-level tree structure to reduce
traceroute redundancy in IP-level topology discovery. Us-
ing our terminology, the Doubletree is a combination of a
source-node IP-level source tree and a destination-node IP-
level sink tree. In contrast, BRoute leverages AS-level tree
and we quantify how closely they approximate real trees.

BRoute uses Pathneck [15] for bandwidth measurements
since it also provides the bottleneck location. For dif-
ferent application requirements, other bandwidth measure-
ment tools [11, 21, 18, 17, 23, 25] can be used. In a broad
sense, BRoute is a large-scale measurement infrastructure
that uses information sharing to estimate available band-
width efficiently. Several measurement architectures have
been proposed, but they typically focus on ease of deploy-
ment and of data gathering. A good survey can be found in

[2].
8 Conclusion and Future Work

In this paper, we presented the system architecture and pri-
mary operations of BRoute—a large-scale bandwidth esti-
mation system. We explain we take advantage of Internet
route sharing, captured as AS-level source/sink trees, to re-
duce bandwidth estimation overhead. We show that AS-
level source/sink trees closely approximate a tree structure,
and demonstrate how to use this AS-level information to in-
fer end-segments, where most bottlenecks are located. In a
small case study on Planetlab, 80% of the available band-
width estimates obtained from BRoute are accurate within
50%.

Our BRoute study is only a first step towards a practical,
scalable bandwidth estimation infrastructure. More work
is needed in several areas. First, larger scale measurement
studies are need to evaluate and refine BRoute. Second, we

need to improve our understanding of several aspects of the
algorithms, including end-segment inference, path available
bandwidth estimation, and landmark selection. Finally and
perhaps most importantly, we would like to deploy BRoute,
both as a public service and as a platform for ongoing eval-
uation and research.

References

[1] AS hierarchy data set. http://www.cs.berkeley.edu/
“sagarwal/research/BGP-hierarchy/.

[2] Internet measurement infrastructure. http://www.caida.

org/analysis/performance/measinfra.

[3] IP to AS number mapping data set. http://www.research.

att.com/"jiawang/as_traceroute.

[4] Planetlab. https://www.planet-lab.org.

[5S] RIPE RIS (Routing Information Service) Raw Data. http://

www.ripe.net/projects/ris/rawdata.html.

Rocketfuel Data Sets. http://www.cs.washington.edu/

research/networking/rocketfuel.

[7] Route Server Wiki. http://www.bgp4.net/cgi-bin/
bgpdwiki.cgi?Route_Server Wiki.

[8] University of Oregon Route Views Project.
routeviews.org

[9] G. D. Battista, M. Patrignani, and M. Pizzonia. Computing the types
of the relationships between autonomous systems. In Proc. IEEE
INFOCOM, April 2003.

[10] A. Broido and k. clafy. Internet topology: Connectivity of ip graphs.
In Proc. SPIE International Symposium on Convergence of IT and
Communication, 2000.

[11] R. Carter and M. Crovella. Measuring bottleneck link speed in
packet-switched networks. Technical report, Boston University
Computer Science Department, March 1996.

[12] E. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a decentral-
izz(;a(()14network coordinate system. In Proc. ACM SIGCOMM, August

[13] B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Efficient algo-
rithms for large-scale topology discovery. In Proc. ACM SIGMET-
RICS, June 2005.

[14] L. Gao. On inferring autonomous system relationships in the Inter-
net. IEEE/ACM Trans. Networking, December 2001.

[15] N. Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang. Locating Internet
bottlenecks: Algorithms, measurements, and implications. In Proc.
ACM SIGCOMM, August 2004.

[16] N. Hu, O. Spatscheck, J. Wang, and P. Steenkiste. Optimizing net-
work performance in replicated hosting. In The Tenth International
Workshop on Web Caching and Content Distribution (WCW 2005),
September 2005.

[17] N. Hu and P. Steenkiste. Evaluation and characterization of available
bandwidth probing techniques. IEEE JSAC Special Issue in Internet
gggSWWW Measurement, Mapping, and Modeling, 21(6), August

[18] M. Jain and C. Dovrolis. End-to-end available bandwidth: Measure-
ment methodology, dynamics, and relation with TCP throughput. In
Proc. ACM SIGCOMM, August 2002.

[19] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang. On AS-level path infer-
ence. In to appear in SIGMETRICS’05, June 2005.

[20] Z. M. Mao, J. Rexford, J. Wang, and R. Katz. Towards an Accurate
AS-level Traceroute Tool. In Proc. ACM SIGCOMM, September
2003.

[21] B. Melander, M. Bjorkman, and P. Gunningberg. A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks.
In Proc. IEEE GLOBECOM, November 2000.

[22] T. S. E. Ng and H. Zhang. Predicting Internet network distance
with coordinates-based approaches. In Proc. IEEE INFOCOM, June
2002.

[23] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell.
pathchirp: Efficient available bandwidth estimation for network
paths. In Proc. PAM, April 2003.

[24] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with rocketfuel. In Proc. ACM SIGCOMM, August 2002.

[25] J. Strauss, D. Katabi, and F. Kaashoek. A measurement study of
available bandwidth estimation tools. In Proc. ACM IMC, October
2003.

[26] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz. Character-
izing the Internet hierarchy from multiple vantage points. In Proc.
IEEE INFOCOM, June 2002.

[6

=

http://www.

192 Internet Measurement Conference 2005

USENIX Association

