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Abstract
In some contexts it may be useful to predict the latency for
short TCP transfers. For example, a Web server could auto-
matically tailor its content depending on the network path
to each client, or an “opportunistic networking” application
could improve its scheduling of data transfers.

Several techniques have been proposed to predict the
latency of short TCP transfers based on online measure-
ments of characteristics of the current TCP connection, or
of recent connections from the same client. We analyze the
predictive abilities of these techniques using traces from a
variety of Web servers, and show that they can achieve use-
ful accuracy in many, but not all, cases. We also show that
a previously-described model for predicting short-transfer
TCP latency can be improved with a simple modification.
Ours is the first trace-based analysis that evaluates these
prediction techniques across diverse user communities.

1 Introduction
It is often useful to predict the latency (i.e., duration) of

a short TCP transfer before deciding when or whether to
initiate it. Network bandwidths, round-trip times (RTTs),
and loss rates vary over many orders of magnitude, and so
the transfer latency for a given data item can vary similarly.

Examples where such predictions might be useful in-
clude:� a Web server could automatically select between “low-

bandwidth” and “high-bandwidth” versions of content,
with the aim of keeping the user's download latency
below a threshold [9, 16].� A Web server using shortest-remaining-processing-
time (SRPT) scheduling [19] could better predict over-
all response times if it can predict network transfer
latency, which in many cases is the primary contrib-
utor to response time.� An application using opportunistic networking [20]
might choose to schedule which data to send based on
an estimate of the duration of a transfer opportunity
and predictions of which data items can make the most

effective use of that opportunity.
There are several possible ways to define “short” TCP

transfers. Models for TCP performance typically distin-
guish between long flows which have achieved steady state,
and short flows which do not last long enough to leave
the initial slow-start phase. Alternatively, one could define
short in terms of an arbitrary threshold on transfer length.
While defining “short” in terms of slow-start behavior is
less arbitrary, it is also less predictable (because the dura-
tion of slow-start depends on unpredictable factors such as
cross traffic and packet loss), and so for this paper we use a
definition based on transfer length. Similarly, while trans-
fer length could be defined in terms of the number of data
packets sent, this also depends on unpredictable factors
such as MTU discovery and the interactions between ap-
plication buffering and socket-level buffering. So, for sim-
plicity, in this paper we define “short” in terms of the num-
ber of bytes transferred.

Several techniques have previously been proposed for
automated prediction of the transfer time for a short TCP
transfer. Some of these techniques glean their input para-
meters from characteristics of TCP connections, such as
round-trip time (RTT) or congestion window size (cwnd),
that are not normally exposed to the server application. We
call these characteristics TCP arcana. These characterist-
ics can then be used in a previously-described model for
predicting short-transfer latency [2]. Other techniques use
observations of the actual latency for past transfers to the
same client (or to similarly located clients), and assume that
past performance is a good predictor of future performance.

In this paper, we use packet-level traces captured near a
variety of real Web servers to evaluate the ability of tech-
niques based on both TCP arcana and historical observa-
tion to predict short transfer latencies. We show that the
previously-described model does not quite fit the observa-
tions, but that a simple modification to the model greatly
improves the fit. We also describe an experiment sug-
gesting (based on a limited data set) that RTT observa-
tions could be used to discriminate, with modest accuracy,
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between dialup and non-dialup paths.
This work complements previous work on predicting the

throughput obtained by long TCP transfers. He et al. [7]
characterized these techniques as either formula-based or
history-based; our TCP arcana approach is formula-based.

2 Latency prediction techniques
We start with the assumption that an application wishing

to predict the latency of a short transfer must do so as early
as possible, before any data has been transferred. We also
assume that prediction is being done at the server end of
a connection that was initiated by a client; although the
approaches could be extended to client-side prediction, we
have no data to evaluate that scenario.

We examine two prediction approaches in this paper:� The initial-RTT approach: The server's first possible
measurement of the connection RTT is provided by
the interval between its initial SYN

�
ACK packet and

the client' s subsequent ACK. For short transfers, this
RTT measurement is often sufficient to predict sub-
sequent data transfer latency to this client. This ap-
proach was first proposed by Mogul and Brakmo [15]
and discussed in [16]. We describe it further in Sec-
tion 2.1.� The recent-transfers approach: A server can predict
the data transfer bandwidth to a given request based on
recently measured transfer bandwidths to the same cli-
ent. This approach, in the context of Web servers, was
proposed in [9]; we describe it further in Section 2.2.

2.1 Prediction from initial RTTs
Suppose one wants to predict the transfer latency, for a

response of a given length over a specific HTTP connec-
tion, with no prior information about the client and the net-
work path, and before having to make the very first decision
about what content to send to the client. Let us assume that
we do not want the server to generate extra network traffic
or cause extra delays. What information could one glean
from the TCP connection before it is too late?

Figure 1 shows a timeline for the packets sent over a
typical non-persistent HTTP connection. (We assume that
the client TCP implementation does not allow the client
application to send data until after the 3-way handshake;
this is true of most common stacks.) In this timeline, the
server has to make its decision immediately after seeing
the GET-bearing packet ( ��� ) from the client.

It might be possible to infer network path characteristics
from the relative timing of the client's first ACK-only ( ��� )
and GET ( � � ) packets, using a packet-pair method [11].
However, the initial-RTT predictor instead uses the path's
RTT, as measured between the server's SYN

�
ACK packet

( ��� ) and the client's subsequent ACK-only packet ( � � ).
Since these two packets are both near-minimum length,
they provide a direct measurement of RTT, in the absence
of packet loss.

SYN (P1)

SYN|ACK (P2)

ACK (P3)

HTTP GET (P4)

ACK (P5)

HTTP REPLY (P6)

HTTP REPLY (P7)

FIN (P8)

ACK (P9)

1 RTT

Client Server

T
ransfer latency

Figure 1: Timeline: typical HTTP connection

Why might this RTT be a useful predictor of transfer
latency?� Many last-hop network technologies impose both high

delay and low bandwidth. For example, dialup mo-
dems almost always add about 100ms to the RTT [4, 5]
and usually limit bandwidth to under 56Kb/s. If we
observe an RTT much lower than 100ms, we can in-
fer that the path does not involve a modem. (See Sec-
tion 5 for quantitative evidence.) A similar inference
might be made about some (perhaps not all) popular
low-bandwidth wireless media.� Even when the end-to-end bandwidth is large, the total
transfer time for short responses depends mostly on
the RTT. (Therefore, an HTTP request header indicat-
ing client connection speed would not reliably predict
latency for such transfers.)

Cardwell et al. [2] showed that for transfers smaller than
the limiting window size, the expected latency to transfer	

segments via TCP, when there are no packet losses, is
approximated by


�� 
������������������ �!�#"$
�%'&�(*) 	 )�+-,/.'0132 4 .50 (1)

where� + depends on the client' s delayed-ACK policy; reason-
able values are 1.5 or 2 (see [2] for details).�61 2 depends on the server's initial value for cwnd; reas-
onable values are 2, 3, or 4 (see [2] for details).� 	 �87:9<;>=?�@A@�B� 
���� is the number of bytes sent.�DCFEGE is the TCP maximum segment size for the con-
nection.

Note that median Web response sizes (we use the definition
of “response” from the HTTP specification [6]) are typic-
ally smaller than the limiting window size; see Section 3.4.

End-to-end bandwidth limits and packet losses can only
increase this latency. In other words, if we know the RTT
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and response size, then we can predict a lower bound for
theH transfer latency.

We would like to use the RTT to predict the transfer
latency as soon as possible. Therefore, the first time a
server sees a request from a given client, it has only one
RTT measurement to use for this purpose. But if the client
returns again, which RTT measurement should the server
use for its prediction? It could use the most recent meas-
urement (that is, from the current connection), as this is the
freshest; it could use the mean of all measurements, to deal
with noise; it could use an exponentially smoothed mean,
to reduce noise while favoring fresh values; it could use the
minimum measurement, to account for variable queueing
delays; or it could use the maximum measurement, to be
conservative.

“Most recent,” which requires no per-client state, is the
simplest to implement, and this is the only variant we have
evaluated.

2.2 Prediction from previous transfers
Krishnamurthy and Wills originally described the notion

of using measurements from previous transfers to estim-
ate the connectivity of clients [9]. A prime motivation of
this work was to retain poorly connected clients, who might
avoid a Web site if its pages take too long to download. Bet-
ter connected clients could be presented enhanced versions
of the pages.

This approach is largely passive: it examines server
logs to measure the inter-arrival time between base-object
(HTML) requests and the requests for the first and last em-
bedded objects, typically images. Exponentially smoothed
means of these measurements are then used to classify cli-
ents. A network-aware clustering scheme [8] was used as
an initial classification mechanism, if a client had not been
seen before but another client from the same cluster had
already used the site. Krishnamurthy and Wills used a di-
verse collection of server logs from multiple sites to evalu-
ate the design, and Krishnamurthy et al. presented an im-
plementation [10], using a modified version of the Apache
server, to test the impact of various server actions on clients
with different connectivity.

The recent-transfers approach that we study in this paper
is a simplification of the Krishnamurthy and Wills design.
Because their measurements use Web server logs, this gave
them enough information about page structure to investig-
ate the algorithm's ability to predict the download time for
an entire page, including embedded objects. We have not
extracted object-relationship information from our packet
traces, so we only evaluated per-response latency, rather
than per-page latency. On the other hand, most server logs
provide timing information with one-second resolution,
which means that a log-based evaluation cannot provide the
fine-grained timing resolution that we got from our packet
traces.

2.3 Defining transfer latency
We have so far been vague about defining “transfer

latency.” One might define this as the time between the de-
parture of the first response byte from the server and the
arrival of the last response byte at the client. However,
without perfect clock synchronization and packet traces
made at every host involved, this duration is impossible to
measure.

For this paper, we define transfer latency as the time
between the departure of the first response byte from the
server and the arrival at the server of the acknowledgment
of the last response byte. (Figure 1 depicts this interval
for the case of a non-persistent connection.) This tends to
inflate our latency measurement by approximately RTT/2,
but because path delays can be asymmetric we do not at-
tempt to correct for that inflation. We are effectively meas-
uring an upper bound on the transfer latency.

3 Methodology
We followed this overall methodology:I Step 1: collect packet traces near a variety of Web

servers with different and diverse user populations.I Step 2: extract the necessary connection parameters,
including client IDs, from these raw traces to create
intermediate traces.I Step 3: evaluate the predictors using simple simu-
lator(s) driven from the intermediate traces.

Although the prediction mechanisms analyzed in this
paper are not necessarily specific to Web traffic, we lim-
ited our trace-based study to Web traffic because we have
not obtained significant and diverse traces of other short-
transfer traffic. It might be useful to capture traffic near
busy e-mail servers to get another relevant data set, since
e-mail transfers also tend to be short [13].

Given that we are defining “short” TCP transfers in terms
of the number of data bytes sent, we analyzed three plaus-
ible thresholds: 8K bytes, 16K bytes, and 32K bytes; this
paper focuses on the 32K byte threshold. (The response-
size distributions in Figure 2 support this choice.)

3.1 Trace sets
We collected trace sets from several different environ-

ments, all in North America. For reasons of confidentiality,
we identify these sets using short names:I C2: Collected on a corporate networkI U2,U3,U4: Collected at a UniversityI R2: Collected at a corporate research lab
In all cases, the traces were collected on the public Inter-
net (not on an Intranet) and were collected relatively near
exactly one publicly-accessible Web server.

We collected full-packet traces, using tcpdump, and lim-
ited the traces to include only TCP connections to or from
the local Web server.

While we wanted to collect traces covering an entire
week at each site, storage limits and other restrictions
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meant that we had to collect a series of shorter traces. In
orderJ to cover representative periods over the course of a
week (May 3–9, 2004), we chose to gather traces for two to
four hours each day: 9:00AM-11:00AM Monday, Wednes-
day, and Friday; 2:00PM-4:00PM Tuesday and Thursday;
and 10:00AM-2:00PM Saturday and Sunday (all are local
times with respect to the trace site: MST for C2, MDT for
U2, and PDT for R2). We additionally gathered two 24-
hour (midnight to midnight) traces at the University: U3
on Thursday, Aug. 26, 2004, and U4 on Tuesday, Aug. 31,
2004.

3.2 Are these traces representative?
We certainly would prefer to have traces from a diverse

sample of servers, clients, and network paths, but this is
not necessary to validate our approach. Our goal is not to
predict the latencies seen by all client-server pairs in the
Internet, but to find a method for a given server to predict
the latencies that it itself (and only itself) will encounter in
the near future.

It is true that some servers or client populations might
differ so much from the ones in our traces that our res-
ults do not apply. Although logistical and privacy con-
straints prevent us from exploring a wider set of traces,
our analysis tools are available at http://bro-ids.org/bro-
contrib/network-analysis/akm-imc05/ so that others can
test our analyses on their own traces.

The results in Section 4.6 imply that our equation-based
predictor works well for some sites and not so well for oth-
ers. One could use our trace-based methodology to dis-
cover if a server's response latencies are sufficiently pre-
dictable before deciding to implement prediction-based ad-
aptation at that server.

3.3 Trace analysis tools
We start by processing the raw (full-packet binary) traces

to generate one tuple per HTTP request/response exchange.
Rather than write a new program to process the raw traces,
we took advantage of Bro, a powerful tool originally meant
for network intrusion detection [17]. Bro includes a policy
script interpreter for scripts written in Bro' s custom script-
ing language, which allowed us to do this processing with a
relatively simple policy script – about 800 lines, including
comments. We currently use version 0.8a74 of Bro.

Bro reduces the network stream into a series of higher
level events. Our policy script defines handlers for the rel-
evant events. We identify four analysis states for a TCP
connection: not established, timing SYN ACK, estab-
lished, and error has occurred. We also use four ana-
lysis states for each HTTP transaction: waiting for reply,
waiting for end of reply, waiting for ack of reply, and
transaction complete. (Our script follows existing Bro
practice of using the term “reply” in lieu of “response” for
state names.)

Progression through these states occurs as follows.

When the client's SYN packet is received, a data structure
is created to retain information on the connection, which
starts in the not established state. When the corresponding
SYN KACK packet is received from the server, the modeled
connection enters the timing SYN ACK state, and then
to the established state when the client acknowledges the
SYN KACK.

We then wait for http request() events to occur on that
connection. When a request is received, a data struc-
ture is created to retain information on that HTTP trans-
action, which starts in the waiting for reply transaction
state. On an http reply() event, that state becomes wait-
ing for end of reply. Once the server has finished send-
ing the response, the transaction state is set to wait-
ing for ack of reply. Once the entire HTTP response has
been acknowledged by the client, that state is set to trans-
action complete. This design allows our script to properly
handle persistent and pipelined HTTP connections.

Our analysis uses an additional state, er-
ror has occurred, which is used, for example, when
a TCP connection is reset, or when a packet is missing,
causing a gap in the TCP data. All subsequent packets on
a connection in an error has occurred state are ignored,
although RTT and bandwidth estimates are still recorded
for all HTTP transactions that completed on the connection
before the error occurred.

For each successfully completed and successfully traced
HTTP request/response exchange, the script generates one
tuple that includes the timestamp of the arrival time of the
client's acknowledgement of all outstanding response data;
the client' s IP address; the response's length, content-type,
and status code; the position of the response in a persistent
connection (if any); and estimates of the initial RTT, the
MSS, the response transfer latency, and the response trans-
fer bandwidth. The latency is estimated as described in
Section 2.3, and the bandwidth estimate is then computed
from the latency estimate and the length.

These tuples form an intermediate trace, convenient for
further analysis and several orders of magnitude smaller
than the original raw packet trace. For almost all of our
subsequent analysis, we examine only responses with status
code LNM�O�O , since these are the only ones that should al-
ways carry full-length bodies.

3.3.1 Proxies and robots

Most Web servers receive requests from multi-client proxy
servers, and from robots such as search-engine crawlers;
both kinds of clients tend to make more frequent requests
than single-human clients. Requests from proxies and ro-
bots skew the reference stream to make the average connec-
tion' s bandwidth more predictable, which could bias our
results in favor of our prediction mechanisms.

We therefore “pruned” our traces to remove apparent
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proxies and robots (identified using a separate Bro script);
weP then analyzed both the pruned and unpruned traces.

In order to avoid tedious, error-prone, and privacy-
disrupting techniques for distinguishing robots and prox-
ies, we tested a few heuristics to automatically detect such
clients:Q

Any HTTP request including a Via header probably
comes from a proxy. The converse is not true; some
proxies do not insert Via headers.Q
Any request including a From header probably comes
from a robot. Not all robots insert From headers.Q
If a given client IP address generates requests with sev-
eral different User-Agent headers during a short in-
terval, it is probably a proxy server with multiple cli-
ents that use more than one browser. It could also
be a dynamic IP address that has been reassigned to
a different client, so the time scale affects the accuracy
of this heuristic. We ignore User-Agent: con-
type headers, since this is an artifact of a particular
browser [12, 14].

The results of these tests revealed that the From header
is not widely used, but it is a reasonable method for identi-
fying robots in our traces. Our test results also indic-
ated that simply excluding all clients that issued a Via or
User-Agent header would result in excessive pruning.

An analysis of the Via headers suggested that compon-
ents such as personal firewalls also add this header to HTTP
requests. As a result, we decided to only prune clients that
include aVia header that can be automatically identified as
a multi-client proxy: for example, those added by a Squid,
NetApp NetCache, or Inktomi Traffic-Server proxy.

We adopted a similar approach for pruning clients that
sent multiple different User-Agent headers. First, we re-
quire that the User-Agent headers be from well-known
browsers (e.g., IE or Mozilla). These browsers typically
form the User-Agent header in a very structured format.
If we cannot identify the type of browser, the browser ver-
sion, and the client OS, we do not use the header in the ana-
lysis. If we then see requests from two different browsers,
browser versions, or client OSs coming from the same IP
address in the limited duration of the trace, we consider this
to be a proxy, and exclude that client from the prune trace.

We opted to err (slightly) on the side of excessive prun-
ing, rather than striving for accuracy, in order to reduce the
chances of biasing our results in favor of our predictors.

3.4 Overall trace characteristics
Table 1 shows various aggregate statistics for each trace

set, to provide some context for the rest of the results. For
reasons of space, we omit day-by-day statistics for C2, R2,
and U2; these show the usual daily variations in load, al-
though C2 and R2 peak on the weekend, while U2 peaks
during the work week. The table also shows totals for the
pruned versions of each trace set. Finally, the table shows

total response bytes, response count, and mean response
size for just the status-200 responses on which most sub-
sequent analyses are based.

We add “p” to the names of trace sets that have been
pruned (e.g., a pruned version of trace set “C2” is named
“C2p”). Pruning reduces the number of clients by 5% (for
trace C2) to 13% (for R2); the number of HTTP responses
by 7% (for C2) to 23% (for R2, U3, and U4); and the peak
request rate by 6% (for C2) to 11% (for R2).
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Figure 2: CDF of status-200 response sizes
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Figure 3: CDF of status-200 response latencies

The mean values in Table 1 do not convey the whole
story. In Figures 2 and 3, respectively, we plot cumulative
distributions for response size and latency for status-200
responses (These plots exclude the U3 and U4 traces, since
these CDFs are nearly identical to those for the U2 trace;
Figure 3 also excludes C2p and U2p, since these CDFs are
nearly identical to those for the unpruned traces.)

The three traces in Figure 2 show quite different re-
sponse size distributions. The responses in trace C2 seem
somewhat smaller than has typically been reported for Web
traces; the responses in trace R2 are a lot larger. (These dif-
ferences also appear in the mean response sizes in Table 1.)
Trace R2 is unusual, in part, because many users of the site
download entire technical reports, which tend to be much
larger than individual HTML or embedded-image files.

Figure 2 includes three vertical lines indicating the 8K
byte, 16K byte, and 32K byte thresholds. Note that 8K is
below the median size for R2, but above the median size
for C2 and U2, but the median for all traces is well below
32K bytes.
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All HTTP status codes status code T 200
Total Total Total Total mean resp. mean peak Total Total mean resp.

Trace name Conns. Clients Resp. bytes Resps. size (bytes) req. rate req. rate Resp. bytes Resps. size (bytes)

C2 323141 17627 3502M 1221961 3005 2.3/sec 193/sec 3376M 576887 6136
C2p (pruned) 281375 16671 3169M 1132030 2935 2.1/sec 181/sec 3053M 533582 5999
R2 33286 7730 1679M 50067 35154 0.1/sec 35/sec 1359M 40011 35616
R2p (pruned) 23296 6732 1319M 38454 35960 0.1/sec 31/sec 1042M 31413 34766
U2 261531 36170 5154M 909442 5942 1.7/sec 169/sec 4632M 580715 8363
U2p (pruned) 203055 33705 4191M 744181 5904 1.4/sec 152/sec 3754M 479892 8202
U3 278617 29843 5724M 987787 6076 11.4/sec 125/sec 5261M 637380 8655
U3p (pruned) 197820 26697 4288M 756994 5939 8.8/sec 117/sec 3940M 491497 8405
U4 326345 32047 6800M 1182049 6032 13.7/sec 139/sec 6255M 763545 8589
U4p (pruned) 230589 28628 5104M 902996 5926 10.5/sec 139/sec 4689M 588954 8347

Table 1: Overall trace characteristics

Figure 3 shows that response durations are significantly
longer in the R2 trace than in the others, possibly because
of the longer response sizes in R2.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 10  100  1000  10000  100000  1e+06  1e+07

Fr
ac

tio
n 

of
 c

lie
nt

s

U

Mean bandwidth per client (bits/sec)

Trace set C2
Trace set R2
Trace set U2
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We calculated, for each distinct client, a mean bandwidth
across all transfers for that client. Figure 4 shows the dis-
tributions; the pruned traces had similar distributions and
are not shown. Trace C2 has a much larger fraction of low-
bandwidth users than R2 or U2. The apparent slight excess
of high-bandwidth clients in R2 might result from the larger
responses in R2; larger transfers generally increase TCP's
efficiency at using available bandwidth.

We also looked at the distribution of the TCP Maximum
Segment Size (MSS) values in our traces. In trace R2, vir-
tually all of the MSS values were at or close to the stand-
ard Ethernet limit (about 1460 bytes); in traces C2 and U2,
about 95% of the MSS values were near the limit, with
the rest mostly close to 512 bytes. Figure 2 shows a ver-
tical line at 1460 bytes, indicating approximately where the
dominant MSS value lies on the response-size distribution.

3.5 Trace anomalies
The monitoring architectures available to us differed at

each of the collection sites. For example, at one of the sites
port mirroring was used to copy packets from a monitored
link to the mirrored link. At another site, separate links
were tapped, one for packets bound for the Web server, the
second for packets sent by the server. These monitoring in-
frastructures are subject to a variety of measurement errors:V Port mirroring multiplexes bidirectional traffic from

the monitored link onto the unidirectional mirror link.

This can cause packets to appear in the trace in a differ-
ent order than they arrived on the monitored link. Such
reordering typically affects packets that occurred close
together in time. For example, in the U2 trace, 10%
of connections had the SYN and SYN W ACK packets in
reverse order. Our Bro script corrects for this.V Port mirroring temporarily buffers packets from the
monitored link until they can be sent over the mirrored
link. This buffer can overflow, causing packets to be
dropped.V Several of our environments have multiple network
links that transfer packets to or from the Web server.
Since we could not monitor all of these links, we did
not capture all of the HTTP request/response transac-
tions. In some cases we capture only half of the trans-
action (about 48% of the connections are affected by
this in one trace).V Ideally, a traced packet would be timestamped at the
precise instant it arrives. However, trace-collection
systems buffer packets at least briefly (often in sev-
eral places) before attaching a timestamp, and packets
are often collected at several nearby points (e.g., two
packet monitors on both members of a pair of simplex
links), which introduces timestamp errors due to im-
perfect clock synchronization. Erroneous timestamps
could cause errors in our analysis by affecting either or
both of our RTT estimates and our latency estimates.

We estimated the number of packets lost within our
measurement system by watching for gaps in the TCP
sequence numbers. This could overestimate losses (e.g.,
due to reordered packets) but the estimates, as reported in
Table 2, are quite low.

Table 2 also shows our estimates (based on a separ-
ate Bro script) for packet retransmission rates on the path
between client and server, implied by packets that cover
part of the TCP sequence space we have already seen.
Retransmissions normally reflect packet losses in the In-
ternet, which would invalidate the model used in equa-
tion 1. Knowing these rates could help understand where
the initial-RTT approach is applicable.

Note that Table 1 only includes connections with at least
one complete HTTP response, while Table 2 includes all
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Total Total Measurement Retransmitted Conns. w/ Conns. w/no pkts
Trace name packets Conns. system lost pkts. packets retransmitted packets in one direction

C2 40474900 1182499 17017 (0.04%) 114911 (0.3%) 53906 (4.6%) 572052 (48.4%)
R2 2824548 43023 1238 (0.04%) 27140 (1.0%) 4478 (10.4%) 460 (1.1%)
U2 11335406 313462 5611 (0.05%) 104318 (0.9%) 26815 (8.6%) 17107 (5.5%)
U3 11924978 328038 2093 (0.02%) 89178 (0.7%) 26371 (8.0%) 14975 (4.6%)
U4 14393790 384558 5265 (0.04%) 110541 (0.8%) 30638 (8.0%) 18602 (4.8%)

Table 2: Packet loss rates

connections, including those that end in errors. We were
only able to use 27% of the connections listed in Table 2
for C2, partly because we only saw packets in one direction
for 48% of the connections. Our analysis script flagged an-
other X 20% of the C2 connections as error has occurred,
possibly due to unknown problems in the monitoring infra-
structure.

4 Predictions based on initial RTT: results
In this section, we summarize the results of our exper-

iments on techniques to predict transfer latency using the
initial RTT. We address these questions:

1. Does RTT per se correlate well with latency?
2. How well does equation 1 predict latency?
3. Can we improve on equation 1?
4. What is the effect of modem compression?
5. How sensitive are the predictions to parameter

choices?
There is no single way to define what it means for a latency
predictor to provide “good” predictions. We evaluate pre-
diction methods using several criteria, including the cor-
relation between predicted and measured latencies, and the
mean and median of the difference between the actual and
predicted latencies.

4.1 Does RTT itself correlate with latency?
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Figure 5: Scatter plot of bandwidth vs. RTT, trace C2

Perhaps it is unnecessary to invoke the full complexity
of equation 1 to predict latency from RTT. To investigate
this, we examined the correlation between RTT per se and
either bandwidth or latency.

For example, Figure 5 shows a scatter plot of bandwidth
vs. initial RTT, for all status-200 responses in trace C2.
(In order to avoid oversaturating our scatter plots, we ran-
domly sampled the actual data in each plot; the sampling
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Figure 6: BW vs. RTT, trace C2, 1 MSS Z length Z 32KB

ratios are shown in the figures.) The graph shows an ap-
parent weak correlation between initial RTT and transfer
bandwidth. Corresponding scatter plots for R2, U2, U3,
and U4 show even weaker correlations.

We found a stronger correlation if we focused on transfer
lengths above one MSS and below 32K bytes, as shown in
Figure 6. Our technique for measuring latency is probably
least accurate for responses below one MSS (i.e., those sent
in just one packet). Also, single-packet responses may suf-
fer excess apparent delay (as measured by when the server
receives the final ACK) because of delayed acknowledg-
ment at the client. In our subsequent analyses, we exclude
responses with lengths of one MSS or less because of these
measurement difficulties. The 32KB threshold represents
one plausible choice for defining a “short” transfer.

Trace Samples Correlation Correlation
name included w/bandwidth w/latency
C2 140234 (24.3%) -0.352 0.511
C2p 129661 (24.3%) -0.370 0.508
R2 7500 (18.7%) -0.112 0.364
R2p 5519 (17.6%) -0.054 0.418
U2 218280 (37.6%) -0.163 0.448
U2p 181180 (37.8%) -0.178 0.458
U3 234591 (36.8%) -0.181 0.421
U3p 181276 (36.9%) -0.228 0.427
U4 283993 (37.2%) -0.179 0.364
U4p 219472 (37.3%) -0.233 0.411

(a) 1 MSS [ length [ 8KB

Trace Samples Correlation Correlation
name included w/bandwidth w/latency
C2 261931 (45.4%) -0.325 0.426
C2p 238948 (44.8%) -0.339 0.426
R2 20546 (51.4%) -0.154 0.348
R2p 15407 (49.0%) -0.080 0.340
U2 312090 (53.7%) -0.165 0.392
U2p 258049 (53.8%) -0.179 0.401
U3 336443 (52.8%) -0.162 0.263
U3p 259028 (52.7%) -0.215 0.276
U4 414209 (54.2%) -0.167 0.287
U4p 320613 (54.4%) -0.215 0.343

(b) 1 MSS [ length [ 32KB

Table 3: Correlations: RTT vs. either bandwidth or latency
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For a more quantified evaluation of this simplistic ap-
proac\ h, we did a statistical analysis using a simple R [18]
program. The results are shown in Table 3(a) and (b), for
lengths limited to 8K and 32K bytes, respectively.

The tables show rows for both pruned and unpruned ver-
sions of the five basic traces. We included only status-200
responses whose length was at least one MSS; the “samples
included” column shows that count for each trace. The last
two columns show the computed correlation between ini-
tial RTT and either transfer bandwidth or transfer latency.
(The bandwidth correlations are negative, because this is
an inverse relationship.)

For the data set including response lengths up to 32K
bytes, none of these correlations exceeds 0.426, and many
are much lower. If we limit the response lengths to 8K
bytes, the correlations improve, but this also eliminates
most of the samples.

We tried excluding samples with an initial RTT value
above some quantile, on the theory that high RTTs correl-
ate with lossy network paths; this slightly improves RTT
vs. bandwidth correlations (for example, excluding records
with an RTT above 281 msec reduces the number of 32K-
or-shorter samples for R2 by 10%, and improves that cor-
relation from -0.154 to -0.302) but it actually worsens the
latency correlations (for the same example, from 0.348 to
0.214).

Note that, contrary to our expectation that traces pruned
of proxies and robots would be less predictable, in Table 3
this seems true only for the R2 trace; in general, prun-
ing seems to slightly improve predictability. In fact, while
we present results for both pruned and unpruned traces
throughout the paper, we see no consistent difference in
predictability.

4.2 Does equation 1 predict latency?
Although we did not expect RTT to correlate well with

latency, we might expect better results from the sophist-
icated model derived by Cardwell et al. [2]. They valid-
ated their model (equation 1 is a simplified version) using
HTTP transfers over the Internet, but apparently used only
“well-connected” clients and so did not probe its utility for
poorly-connected clients. They also used RTT estimates
that included more samples than just each connection's ini-
tial RTT.

We therefore analyzed the ability of equation 1 to pre-
dict transfer bandwidths and latencies using only the ini-
tial RTT, and with the belief that our traces include some
poorly-connected clients.

Figure 7 shows an example scatter plot of measured
latency vs. predicted latency, for trace C2. Again, we in-
clude only status-200 responses at least one MSS in length.
We have superimposed two curves on the plot. (Since this
is a log-log plot, most linear equations result in curved
lines.) Any point above the line ]_^a` represents an under-
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Figure 7: Real vs. predicted latency, trace C2

prediction of latency; underpredictions are generally worse
than overpredictions, if (for example) we want to avoid ex-
posing Web users to unexpectedly long downloads. Most
of the points in the plot are above that line, but most are
below the curve ]�^/`:mon�ehg�p'q'r , implying that most of the
overpredictions (in this example) are less than 1 sec in ex-
cess. However, a significant number are many seconds too
high.

We extended our R program to compute statistics for the
predictive ability of equation 1. For each status-200 trace
record with a length between one MSS and 32K bytes,
we used the equation to predict a latency, and then com-
pared this to the latency recorded in the trace record. We
then computed the correlation between the actual and pre-
dicted latencies. We also computed a residual error value,
as the difference between the actual and predicted laten-
cies. Table 4 shows the results from this analysis, usingc ^sntehu and i jv^sn , a parameter assignment that worked
fairly well across all five traces.

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 261931 (45.4%) 0.581 -0.017 0.164
C2p 238948 (44.8%) 0.584 -0.015 0.176
R2 20546 (51.4%) 0.416 -0.058 0.261
R2p 15407 (49.0%) 0.421 -0.078 0.272
U2 312090 (53.7%) 0.502 -0.022 0.110
U2p 258049 (53.8%) 0.519 -0.024 0.124
U3 336443 (52.8%) 0.334 -0.018 0.152
U3p 259028 (52.7%) 0.353 -0.016 0.156
U4 414209 (54.2%) 0.354 -0.013 0.141
U4p 320613 (54.4%) 0.425 -0.010 0.136

Residual values are measured in seconds; 1 MSS w length w 32KB

Table 4: Quality of predictions based on equation 1

In Table 4, the median residuals are always negative, im-
plying that equation 1 overestimates the transfer latency
more often than it underestimates it. However, the mean
residuals are always positive, because the equation' s un-
derestimates are more wrong (in absolute terms) than its
overestimates. The samples in Figure 7 generally follow a
line with a steeper slope than ]-^�` , suggesting that equa-
tion 1 especially underestimates higher latencies.

One possible reason is that, for lower-bandwidth links,
RTT depends on packet size. For a typical 56Kb/s mo-
dem link, a SYN packet will see an RTT somewhat above
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100 msec, while a 1500 byte data packet will see an RTT
sevx eral times larger. This effect could cause equation 1 to
underestimate transfer latencies.

4.3 Can we improve on equation 1?
Given that equation 1 seems to systematically underes-

timate higher latencies, exactly the error that we want to
avoid, we realized that we could modify the equation to
reduce these errors.

We experimented with several modifications, including
a linear multiplier, but one simple approach is:

function ModifiedEqnOne(RTT, MSS, Length, ykz ,{ , CompWeight)
temp = EquationOne(RTT, MSS, Length, y z , { );
return(temp + (temp*temp*CompWeight));

That is, we “overpredict” by a term proportional to the
square of the original prediction. This is a heuristic, not the
result of rigorous theory.

We found by trial and error that a proportionality con-
stant, or “compensation weight,” | }�~����a�'�����������������
worked best for C2, but | }�~��*�a�$�����������'����� worked
better for R2 U2, and |3}�~_�*�a�$�����f�v�8�'����� worked best
for U3 and U4. For all traces, ����� got the best results,
and we set �3�k�o� for C2 and U2, and �3�k�a� for R2, U3,
and U4. We discuss the sensitivity to these parameters in
Section 4.5.
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Figure 8: Modified prediction results, trace C2

Figure 8 shows how the modified prediction algorithm
systematically overpredicts at higher latencies, while not
significantly changing the accuracy for lower latencies.
(For example, in this figure, | }�~����a�'�������¢�£���h��� ; if
equation 1 predicts a latency of 0.100 seconds, the mod-
ified prediction will be 0.1225 seconds). However, even
the modified algorithm significantly underpredicts a few
samples; we do not believe we can avoid this, especially
for connections that suffer packet loss (see Table 2).

Table 5 shows that the modifications to equation 1 gener-
ally worsen the correlations, compared to those in Table 4,
but definitely improves the residuals – the median error is
always less than 100 msec, and the mean error is less than
15 msec, except for traces U3p and U4p (our parameter
choices were tuned for the unpruned traces).

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 261931 (45.4%) 0.417 0.086 -0.002
C2p 238948 (44.8%) 0.423 0.092 -0.006
R2 20546 (51.4%) 0.278 0.015 0.002
R2p 15407 (49.0%) 0.311 0.019 0.013
U2 312090 (53.7%) 0.386 0.053 0.010
U2p 258049 (53.8%) 0.402 0.056 0.001
U3 336443 (52.8%) 0.271 0.034 0.011
U3p 259028 (52.7%) 0.302 0.036 -0.020
U4 414209 (54.2%) 0.279 0.035 0.003
U4p 320613 (54.4%) 0.337 0.038 -0.033

Residual values are measured in seconds; 1 MSS ¤ length ¤ 32KB

Table 5: Predictions based on modified equation 1

4.4 Text content and modem compression
Many people still use dialup modems. It has been ob-

served that to accurately model path bandwidth, one must
account for the compression typically done by modems [3].
However, most image Content-Types are already com-
pressed, so this correction should only be done for text
content-types.

HTTP responses normally carry a MIME Content-Type
label, which allowed us to analyze trace subsets for “text/*”
and “image/*” subsets. Table 6 shows the distribution of
these coarse Content-Type distinctions for the traces.

We speculated that the latency-prediction model of equa-
tion 1, which incorporates the response length, could be
further improved by reducing this length value when com-
pression might be expected. (A server making predictions
knows the Content-Types of the responses it plans to send.
Some servers might use a compressed content-coding for
text responses, which would obviate the need to correct pre-
dictions for those responses for modem compression. We
found no such responses in our traces.)

We cannot directly predict either the compression ra-
tio (which varies among responses and among modems)
nor can we reliably determine which clients in our traces
used modems. Therefore, for feasibility of analysis our
model assumes a constant compressibility factor for text
responses, and we tested several plausible values for this
factor. Also, we assumed that an RTT below 100 msec im-
plied a non-modem connection, and RTTs above 100 msec
implied the possible use of a modem. In a real system,
information derived from the client address might identify
modem-users more reliably. (In Section 5 we classify cli-
ents using hostnames; but this might add too much DNS-
lookup delay to be effective for latency prediction.)

Table 7 shows results for text content-types only, using
the modified prediction algorithm based on equation 1, but
without correcting for possible modem compression. We
set ���¥�f� � for C2 and U2, and �¢�8���h� for R2, U3, and
U4; � � ��� for C2 and � � �¦� for the other traces; and| }�~����a�'�����f�-�§� for all traces. (We have not tested a
wide range of |3}�~ ���a�'������� values to see if text content-
types would benefit from a different | }�~����a�'������� .) Com-
pared to the results for all content types (see Table 5), the
residuals for text-only samples are generally higher.
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Content-type C2 R2 U2 U3 U4

Unknown 3 (0.00%) 26 (0.06%) 178 (0.03%) 157 (0.02%) 144 (0.02%)
TEXT/* 122426 (21.22%) 23139 (57.83%) 85180 (14.67%) 92108 (14.45%) 107958 (14.14%)
IMAGE/* 454458 (78.78%) 13424 (33.55%) 465160 (80.10%) 507330 (79.60%) 607520 (79.57%)
APPLICATION/* 0 (0.00%) 3410 (8.52%) 29733 (5.12%) 37581 (5.90%) 47765 (6.26%)
VIDEO/* 0 (0.00%) 4 (0.01%) 17 (0.00%) 10 (0.00%) 5 (0.00%)
AUDIO/* 0 (0.00%) 8 (0.02%) 446 (0.08%) 194 (0.03%) 140 (0.02%)

Table 6: Counts and frequency of content-types (excluding some rarely-seen types)

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 118217 (96.6%) 0.442 0.142 0.002
C2p 106120 (96.4%) 0.449 0.152 -0.003
R2 12558 (54.3%) 0.288 0.010 0.066
R2p 8760 (50.2%) 0.353 0.017 0.105
U2 70924 (83.3%) 0.292 0.100 0.073
U2p 56661 (83.0%) 0.302 0.110 0.066
U3 76714 (83.3%) 0.207 0.063 -0.021
U3p 56070 (83.2%) 0.198 0.072 -0.099
U4 90416 (83.8%) 0.281 0.065 -0.034
U4p 65708 (83.8%) 0.359 0.078 -0.122

Residual values are measured in seconds; 1 MSS ¨ length ¨ 32KB

Table 7: Predictions for text content-types only

Trace Samples Compression Correlation Median Mean
name included factor w/latency residual residual

C2 118217 1.0 0.442 0.142 0.002
C2p 106120 1.0 0.449 0.152 -0.003
R2 12558 4.0 0.281 0.013 0.002
R2p 8760 4.0 0.345 0.021 0.044
U2 70924 3.0 0.295 0.083 0.008
U2p 56661 3.0 0.306 0.096 -0.004
U3 76714 4.0 0.208 -0.002 0.001
U3p 56070 4.0 0.201 0.003 -0.063
U4 90416 4.0 0.277 -0.000 -0.011
U4p 65708 4.0 0.353 0.007 -0.083

Residual values are measured in seconds; 1 MSS ¨ length ¨ 32KB

Table 8: Predictions for text with compression

Table 8 shows results for text content-types when we as-
sumed that modems compress these by the factor shown
in the third column. Note that for C2 and C2p, we got
the best results using a compression factor of 1.0 – that is,
without correcting for compression. For the other traces,
correcting for compression did give better results. Here we
set the other parameters as: ©�ªF« (except for U3 and U4,
where ©�ª­¬�®°¯ worked best), ±3²kª³¬ (except for C2, where± ² ªN« worked best), and ´ µ�¶�·*¸a¹$º�»�¼�½-ª¾¬�® ¿ (except
for R2, where ´3µ�¶_·*¸a¹$º�»�¼f½�ª¾«�®�«�¯ worked best). We
experimented with assuming that the path did not involve a
modem (and thus should not be corrected for compression)
if the initial RTT was under 100 msec, but for R2 and U2
it turned out that we got the best results when we assumed
that all text responses should be corrected for compression.

Table 8 shows that, except for trace C2, correcting for
modem compression improves the mean residuals over
those in Table 7. We have not evaluated the use of com-
pression factors other than integers between 1 and 4, and
we did not evaluate a full range of ´3µ�¶�·�¸o¹�º�»�¼f½ values
for this section.

Image content As shown in Table 6, image content-types
dominate most of the traces, except for R2. Also, Web site

designers are more likely to have choices between rich and
simple content for image types than for text types. (Design-
ers often include optional “Flash” animations, but we found
almost no Flash content in C2 and R2, and relatively little
in U2, U3, and U4.) We therefore compared the predictab-
ility of transfer latencies for image content-types, but found
no clear difference compared to the results for all content
in general.

4.5 Sensitivity to parameters
How sensitive is prediction performance to the para-

meters © , ± ² , and ´ µ�¶_·*¸a¹$º�»�¼f½ ? That question can be
framed in several ways: how do the results for one server
vary with parameter values? If parameters are chosen based
on traces from server X, do they work well for server
Y? Are the optimal values constant over time, client sub-
population, content-type, or response length? Do optimal
parameter values depend on the performance metric? For
reasons of space, we focus on the first two of these ques-
tions.

Figure 9 shows how the absolute values of the mean
and median residuals vary with © , ±3² , and ´Àµ�¶�·*¸a¹$º�»�¼f½
for traces C2, R2, and U2. The optimal parameter choice
depends on whether one wants to minimize the mean or
the median; for example, for R2, ©�ªÁ«f®°¿ , ± ² ªÁÂ , and´ µ�¶�·�¸a¹'º�»�¼f½kª­¬'®hÃ�¯ yields an optimal mean of 1.5 msec
(and a median of 15 msec). The median can be further re-
duced to 0.2 msec, but at the cost of increasing the mean to
over half a second.

Figure 9 also shows how the optimal parameters vary
across several traces. (Results for traces U3 and U4 are
similar to those for U2, and are omitted to reduce clut-
ter.) It appears that no single choice is optimal across all
traces, although some choices yield relatively small mean
and medians for many traces. For example, ©�ªa« , ± ² ª/Â ,
and ´3µ�¶�·�¸a¹�º�»�¼f½vª¥¬�® «�¯ yields optimal or near-optimal
mean residuals for U2, U3, and U4, and decent results for
C2.

4.6 Training and testing on different data
The results we have presented so far used parameter

choices “trained” on the same data sets as our results were
tested on. Since any real prediction system requires ad-
vance training, we also evaluated predictions with training
and testing on different data sets.

Our trace collection was not carefully designed in this
regard; we have no pairs of data sets that are completely
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Figure 9: Sensitivity of residual absolute values to parameters, 1 MSS Ì length Ì 32KB (note different y-axis scales)

identical and adjacent in time. For the C2, R2, and U2
data sets, we chose the first three days as the training data
set, and the last four days as the testing data set. However,
because we collected data at different hours on each day,
and because there are day-of-week differences between the
training and testing sets (the testing sets includes two week-
end days), we suspect that these pairs of data sets might not
be sufficiently similar. We also used the U3 data set to train
parameters that we then tested on the U4 data set; these two
traces are more similar to each other.

Trained parameters Testing results
residual rank

Trace Comp in (of best
name Í Î�Ï Weight training 96) residual resid.

C2 2.0 4 2.50 -0.000 15 -0.098 -0.004
C2p 2.0 3 1.75 -0.004 12 -0.089 -0.002
R2 1.5 4 1.50 -0.004 20 0.136 0.000
R2p 1.5 3 1.00 0.003 16 0.125 0.003
U2 1.5 4 1.50 0.001 10 -0.072 0.012
U2p 2.0 2 0.75 -0.004 9 -0.081 -0.002
U3U4 2.0 2 0.75 -0.007 3 -0.013 0.003
U3U4p 2.0 1 0.25 0.000 2 -0.013 -0.010

Residual values are measured in seconds; 1 MSS Ð length Ð 32KB

Table 9: Training and testing on different data

Table 9 shows results for training vs. testing. We tested
and trained with 96 parameter combinations, based on the
two possible choices for Ä , the four choices for Ñ3Ò , and
twelve equally-spaced choices for Ó3Ô�Õ Ö�×aØ'Ù�Ú�Û�Ü . The
trained parameters are those that minimize the absolute
value of the mean residual in training. The columns under
testing results show how the results using the trained para-
meters rank among all of the testing results, the mean re-
sidual when using those parameters, and the residual for the
best possible parameter combination for the testing data.

These results suggest that the degree to which training
can successfully select parameter values might vary signi-
ficantly from site to site. Based on our traces, we would

have had the most success making useful predictions at the
University site (U3-U4), and the least success at the Re-
search site (R2).

However, the difference in “trainability” that we ob-
served might instead be the result of the much closer match
between the U3 and U4 datasets, compared to the time-of-
day and day-of-week discrepancies in the other train/test
comparisons. For C2, R2, and U2, we tried training just on
one day (Tue., May 4, 2004) and testing on the next day,
and got significantly better trainability (except for R2p,
which was slightly worse) than in Table 9; this supports the
need to match training and testing data sets more carefully.

4.7 A server's decision algorithm
To understand how a server might use the initial-RTT

approach in practice, Figure 10 presents pseudo-code for
generating predictions. (This example is in the context of
a Web server adapting its content based on predicted trans-
fer latency, but the basic idea should apply to other con-
texts.) If the server has Ý�ÞsÆ choices of response length
for a given request, it would invoke PredictLatency ÝNß/Æ
times, starting with the largest candidate and moving down
in size, until it either finds one with a small-enough pre-
dicted latency, or has only one choice left. The first three
arguments to the PredictLatency function (RTT, MSS, and
client IP address) are known as soon as the connection is
open. The last two (response content type and length) are
specific to a candidate response that the server might send.

The function ProbablyDialup, not shown here, is a heur-
istic to guess whether a client is connected via a modem
(which would probably compress text responses). It could
simply assume that RTTs above 100 msec are from dia-
lups, or it could use additional information based on the
client's DNS name or AS (Autonomous System) number
to identify likely dialups.
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1. function
PredictLatency(RTT, MSS, ClientIP, ContentType, Length)

2. if (ProbablyDialup(ClientIP, RTT)
and (ContentType àGà TEXT)) then

3. effectiveLength á à Length/TextCompressionFactor;
4. else
5. effectiveLength á à Length;
6. end

7. if (length â maxPredictableLength) then
8. return(NO PREDICTION); /* probably leaves slow-start */
9. else if (length ã MSS) then
10. return(NO PREDICTION); /* only one data packet to send */
11. end

12. return(ModifiedEqnOne(RTT, MSS, Length, äæå , ç ,
CompWeight));

è�éëê�ìîí�ï�ðÀñóò5é5ô�ô�õ�ïëö�÷�ø$ùúì�ïëò
is an estimate of the mean compression ra-

tio for modems on text files;í�ïëðûñ�üÉé�õþý$ÿ�ì
. ä¡å , and ç could themselves vary based on the server' s

observation of recent history, the ContentType, etc.

Figure 10: Pseudo-code for the decision algorithm

5 Detecting dialups
We speculated that a server could discriminate between

dialups and non-dialups using clues from the client's
“fully-qualified domain name” (FQDN). We obtained
FQDNs for about 75% of the clients in the U4 trace, and
then grouped them according to clues in the FQDNs that
implied geography and network technology. Note that
many could not be categorized by this method, and some
categorizations are certainly wrong.

Category Conns. 5%ile median mean 95%ile
By geography

All 326359 0.008 0.069 0.172 0.680
N. America 35972 0.003 0.068 0.124 0.436
S. America 2372 0.153 0.229 0.339 0.882
Europe 12019 0.131 0.169 0.262 0.717
Asia-Pacific 9176 0.165 0.267 0.373 0.885
Africa 2027 0.206 0.370 0.486 1.312

”Dialup” in FQDN
All 11478 0.144 0.350 0.664 2.275
Regional 5977 0.133 0.336 0.697 2.477
Canada 1205 0.208 0.460 0.751 2.060
US 575 0.189 0.366 0.700 2.210
Europe 566 0.183 0.216 0.313 0.861

”DSL” in FQDN
All 59211 0.003 0.023 0.060 0.210
Local 1816 0.011 0.022 0.034 0.085
Regional 47600 0.009 0.018 0.032 0.079
US 1053 0.071 0.085 0.117 0.249
Europe 118 0.148 0.162 0.178 0.313

”Cable” in FQDN
All 6599 0.039 0.077 0.132 0.338
Canada 2741 0.039 0.055 0.088 0.222
US 585 0.072 0.086 0.094 0.127
Europe 600 0.143 0.155 0.176 0.244

Times in seconds; bold entries are ������� sec.

Table 10: RTTs by geography and connection type

Table 10 shows how initial RTTs vary by geography and
connection type. For the connections that we could cat-

egorize, at least 95% of “dialup” connections have RTTs
above 100 msec, and most “cable” and “DSL” connections
have RTTs below 200 msec. These results seem unaffected
by further geographical subdivision, and support the hy-
pothesis that a threshold RTT between 100 and 200 msec
would discriminate fairly well between dialup and non-
dialup connections. We do not know if these results apply
to other traces.

6 Predictions from previous bandwidths:
results

In this section, we compare how well prediction based
on variants of equation 1 compares with predictions from
the older recent-transfers approach. We address these ques-
tions:

1. How well can we predict latency from previous band-
width measurements?

2. Does a combination of the two approaches improve on
either individual predictor?

Note that the recent-transfers approach cannot specific-
ally predict the latency for the very first transfer to a given
client, because the server has no history for that client. This
is a problem if the goal is to provide the best user experi-
ence for a client' s initial contact with a Web site. For ini-
tial contacts, a server using the recent-transfers approach to
predict latency has several options, including:� Make no prediction.� “Predict” the latency based on history across all

previous clients; for example, use an exponentially
smoothed mean of all previous transfer bandwidths.� Assume that clients with similar network locations,
based on routing information, have similar band-
widths; if a new client belongs to “cluster” of clients
with known bandwidths, use history from that cluster
to make a prediction. Krishnamurthy and Wang [8]
describe a technique to discover clusters of client IP
addresses. Krishnamurthy and Wills [9] then showed,
using a set of chosen Web pages with various charac-
teristics, that clustering pays off in prediction accuracy
improvements ranging up to about 50%. We speculate
that this approach would also work for our traces.� Use the initial-RTT technique to predict a client's first-
contact latency, and use the recent-transfers technique
to predict subsequent latencies for each client. We call
this the hybrid technique.

We first analyze the purest form of recent-transfers (making
no prediction for first-contact clients), and then consider
the mean-of-all-clients and hybrid techniques.

6.1 Does previous bandwidth predict latency?
We did a statistical analysis of the prediction ability of

several variants of the pure recent-tranfers technique. In
each case, we made predictions and maintained history
only for transfer lengths of at least one MSS. Table 11
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Correlation with
most mean weighted

Trace Samples recent previous mean
name included bandwidth bandwidth bandwidth

C2 262165 (45.4%) 0.674 0.742 0.752
C2p 238957 (44.8%) 0.658 0.732 0.737
R2 24163 (60.4%) 0.589 0.655 0.666
R2p 17741 (56.5%) 0.522 0.543 0.579
U2 310496 (53.5%) 0.527 0.651 0.654
U2p 254024 (52.9%) 0.437 0.593 0.561
U3 341968 (53.7%) 0.495 0.627 0.638
U3p 260470 (53.0%) 0.508 0.659 0.625
U4 421867 (55.3%) 0.521 0.690 0.647
U4p 323811 (55.0%) 0.551 0.690 0.656

Best correlation for each trace shown in bold

Table 11: Correlations: measured vs. recent bandwidths

shows the results. The first two columns show the trace
name and the number of samples actually used in the
analysis. The next three columns show the correlations
between the bandwidth (not latency) in a trace record and,
respectively, the most recent bandwidth for the same cli-
ent, the mean of previous bandwidths for the client, and
the exponential weighted mean

��	�

������	������������
��� �"!$#&%('&)*!*�+!$,.- 	

. We followed Krishnamurthy et al. [10]
in using

�/
103254
, although other values might work better

for specific traces.
These results suggest that some form of mean is the best

variant for this prediction technique; although the choice
between simple means and weighted means varies between
traces, these always outperform predictions based on just
the most previous transfer. Since Krishnamurthy et al. [10]
preferred the weighted mean, we follow their lead for the
rest of this paper.

Pruning the traces, as we had expected, does seem to
decrease the predictability of bandwidth values, except for
the U3 and U4 traces. This effect might be magnified for
the recent-transfers technique, since (unlike the initial-RTT
technique) it relies especially on intra-client predictability.

Table 11 showed correlations between bandwidth meas-
urements and predictions. To predict a response's
latency, one can combine a bandwidth prediction with
the known response length. Table 12 shows how well
the weighted mean bandwidth technique predicts laten-
cies. Table 12(a) includes responses with length at least
one MSS; Table 12(b) excludes responses longer than
32 Kbytes. Because short responses and long responses
may be limited by different parameters (RTT and bot-
tleneck bandwidth, respectively), we hypothesized that it
might not make sense to predict short-response latencies
based on long-response history. Indeed, the residuals in
Table 12(b) are always better than the corresponding val-
ues in Table 12(a), although the correlations are not always
improved.

The correlations in Table 12(a) are better than those from
the modified equation 1 as shown in Table 5, except for
trace U4. However, the mean residuals in Table 12 are
much larger in magnitude than in Table 5; it might be pos-

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 262165 (45.4%) 0.514 -0.042 -0.502
C2p 238957 (44.8%) 0.515 -0.046 -0.529
R2 24163 (60.4%) 0.525 -0.066 -4.100
R2p 17741 (56.5%) 0.560 -0.140 -5.213
U2 310496 (53.5%) 0.475 -0.028 -1.037
U2p 254024 (52.9%) 0.460 -0.033 -1.142
U3 341968 (53.7%) 0.330 -0.025 -1.138
U3p 260470 (53.0%) 0.374 -0.029 -1.288
U4 421867 (55.3%) 0.222 -0.021 -0.957
U4p 323811 (55.0%) 0.251 -0.024 -1.111

(a) 1 MSS 6 length

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 256943 (44.5%) 0.516 -0.038 -0.485
C2p 234160 (43.9%) 0.516 -0.043 -0.512
R2 17445 (43.6%) 0.317 -0.018 -0.779
R2p 12741 (40.6%) 0.272 -0.054 -0.959
U2 287709 (49.5%) 0.256 -0.020 -0.407
U2p 235481 (49.1%) 0.247 -0.024 -0.454
U3 314965 (49.4%) 0.447 -0.017 -0.300
U3p 239843 (48.8%) 0.484 -0.020 -0.336
U4 390981 (51.2%) 0.338 -0.015 -0.274
U4p 299905 (50.9%) 0.312 -0.017 -0.314

(a) 1 MSS 6 length 6 32KB

Table 12: Latency prediction via weighted mean bandwidth

sible to correct the bandwidth-based predictor to fix this.
The previous-bandwidth approach consistently over-

predicts latency, which in some applications might be better
than underprediction. Figure 11 shows an example scatter
plot, for R2. In the Web-server content adaptation applic-
ation, excessive overprediction increases the chances that
a well-connected user will fail to receive rich content, al-
though this is less harmful than sending excessive content
to a poorly-connected user.
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Figure 11: Real vs. bandwidth-predicted latency, trace R2

6.2 Combining predictors
Given that the initial-RTT approach seems more accurate

at predicting first-contact latencies, for many thresholds,
than the recent-transfers approach, we speculated that a hy-
brid of the two predictors might yield the best results. This
hybrid would use the modified equation 1 predictor for a
client's first-contact transfer, and the smoothed mean of the
client's previous bandwidths for its subsequent transfers.
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We found that the overall (all-transfers) accuracy of this
hybr9 id is nearly indistinguishable from the overall accuracy
of the recent-transfers approach because, as the statistics
in Table 1 imply, only a small fraction of transfers in our
traces are first contacts.

7 Summary and conclusions
We conducted a study, based on traces from several dif-

ferent user communities, to demonstrate how well two dif-
ferent approaches can predict the latency of short TCP
transfers. We found that by making a minor modification
to a previously-described formula, we could greatly reduce
its absolute prediction errors. We showed that predictions
based on observation of past history generally yield better
overall correlations than our formula-based predictor, but
the formula-based predictor has lower mean prediction er-
rors. We also show that the formula-based predictor could
be improved to handle the specific case of text content,
where modem-based compression can affect latency. Fi-
nally, we reported results from a study on the relationship
between round-trip time and the use of modems, suggesting
that this relationship might be exploited to improve predic-
tion accuracy.

This paper has not quantified how much a real applica-
tion, such as a Web server, could improve end-to-end per-
formance by using our prediction techniques. Our tech-
nical report [1] provides some additional analysis of this
and other details that do not fit here.
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