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Abstract
We present nameless writes, a new interface that obviates

the need for indirection in modern solid-state storage de-

vices (SSDs). Nameless writes allow the device to pick

the location of a write and only then inform the client

above of the decision. Doing so keeps control of block

allocation decisions in the device, thus enabling it to per-

form important tasks such as wear-leveling, while remov-

ing the need for large and costly indirection tables. We

discuss the proposed interface as well as the requisite de-

vice and file-system support.

1 Introduction
Indirection is a core technique in file and storage systems

(and indeed, in computer systems in general). Whether

in the mapping of file names to blocks, or a virtual ad-

dress space to an underlying physical one, storage system

designers have applied indirection to improve the perfor-

mance, reliability, and capacity of storage for many years.

For example, modern hard disk drives use indirection

to improve reliability by hiding underlying write failures.

When a write to a particular physical block fails, the hard

disk will remap the block to another location on the drive,

and records the mapping such that future reads will re-

ceive the correct data. In this manner, the drive transpar-

ently improves reliability without requiring any changes

to the client above.

Indirection has many other benefits. In AutoRAID, for

example, a level of indirection allows the system to keep

“active” blocks to mirrored storage for performance rea-

sons, and move “inactive” blocks to RAID to increase

effective capacity [14]. Indirection further allows Au-

toRAID to write blocks in log-structured fashion, hence

overcoming the RAID small-update problem.

Indirection is particularly important in the new class of

flash-based storage commonly referred to as Solid State

Devices (SSDs). In modern SSDs, an indirection map in

the Flash Translation Layer (FTL) enables the device to

map writes in its virtual address space to any underlying

physical location.

FTLs use indirection for two reasons: first, to trans-

form the erase/program cycle into the more typical write-

based interface via copy-on-write techniques, and second,

to implement wear leveling, which is critical to increasing

SSD lifetime. Specifically, because a flash block becomes

unusable after a certain number of erase-program cycles

(10,000 or 100,000 cycles according to manufacturers,

but perhaps more in practice [2, 7]), such indirection is

needed to spread the write load across flashes evenly and

thus ensuring that no particularly popular block will cause

the device to fail sooner than expected.

Unfortunately, indirection such as found in many FTLs

comes at a high cost, which can manifest as performance

costs or space overheads or both. If the FTL can flexibly

map each virtual page in its address space (assuming a

typical page size of 2KB), an incredibly large indirection

table is required. For example, a 1-TB SSD needs 2 GB of

space simply to keep one 32-bit pointer per 2-KB page of

the device. Clearly, a completely flexible mapping is too

costly; putting vast quantities of memory (which usually

is SRAM) into an SSD is prohibitive.

Because of this high cost, most SSDs instead do not of-

fer a fully flexible per-page mapping. A simple approach

could provide only a pointer per block of the SSD (a block

typically containing 64 or 128 2-KB pages), which re-

duces overheads by the ratio of block size to page size (our

1-TB example above is thus reduced to 32 MB, which,

although more reasonable, is not stellar). However, as

clearly articulated by Gupta et al. [8], block-level map-

pings have high costs due to excessive garbage collection.

As a result, most FTLs today use a hybrid FTL, which

maps most data via block pointers and updates to the de-

vice via page pointers. Hybrid approaches keep space

overheads low while avoiding the high costs of garbage

collection, at the cost of additional device complexity.

Unfortunately, garbage collection can still be costly, thus

reducing the performance of the SSD, sometimes notice-

ably [8]. Regardless of the approach, FTL indirection

incurs a significant cost; as SSDs scale, even schemes

mostly based on block pointers will become infeasible.

In this paper, instead of advocating a subtly different

indirection scheme within an FTL, we suggest a new ap-

proach which removes the need for indirection altogether.

Our approach to de-indirection centers around a new type

of write to the storage system which we refer to as a name-

less write. Unlike most writes, which specify both the

data to write as well as a name (usually in the form of

a simple address), nameless writes simply pass the data
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to the device. The device is free to choose any underly-

ing physical block for the data; after the device names the

block, it informs the client of its choice, which the client

then can use to record the name for future reads.

Nameless writes offer great advantage over traditional

writes as they (largely) remove the need for indirection.

Instead of pretending that the device can receive writes in

any frequency to any block, a device that supports name-

less writes is free to assign any physical page to a write

when it is written; by returning the true name of the page

to the client above (e.g., the file system), the need for in-

direction is avoided, this reducing the cost of the SSD as

well as simplifying its internal structure dramatically.

Nameless writes remove the costs of indirection with-

out giving away the primary responsibility any SSD man-

ufacturer would like to have: wear leveling. If an SSD

simply exported the physical address space to clients, a

simplistic file system or workload could cause the device

to fail rather rapidly, simply by over-writing the same

block repeatedly. With nameless writes, no such failure

mode exists, as the device does not allow a named write

to a physical block. Because the device retains control

of naming, it retains control of block placement, and thus

can properly implement wear leveling to ensure a lengthy

device lifetime. We believe that any solution that does not

have this property is not viable, as no manufacturer would

like to be so easily exposed to failure.

Finally, nameless writes work well with devices that of-

fer true random access. Although a series of nameless

writes may often end up contiguous, if they do not, it is

less of a problem on a medium such as flash. Note an

added advantage: the physical block layout is immedi-

ately visible to the file system above. We believe this in-

formation is useful in a number of contexts (e.g., security,

reliability) and plan to investigate further in the future.

Of course, nameless writes are not without their diffi-

culties. Most importantly, nameless writes demand cer-

tain properties from file systems above. Specifically, we

believe that copy-on-write (or shadow-paging) file sys-

tems are more readily adopted to an SSD with name-

less writes, though perhaps other file systems can also be

“ported” to use nameless writes. Second, simply naming

each write at the device-level instead of at the file-system

level (a process we refer to as late binding) is not enough,

as the device may wish to later migrate a block to another

location during garbage collection. Thus, a renaming call-

back must also be apart of the new device interface, which

allows the device to inform the file system of a migration

of a particular block to a new physical location. In this

paper, we discuss these and other important issues, pre-

senting our initial thoughts as a starting point for further

discussion.

Read

down: address, length

up: status, data

Nameless Write

down: data, length

up: status, resulting target address(es)

Named Write

down: data, address, length

up: status

Free (or Trim)

down: address, length

up: status

Reclaim [Callback]

up: address, data(?)

Table 1: New Device Interface: Version 1. The table

shows the new interface to storage as dictated by name-

less writes.

2 The New Device Interface
In this section, we discuss the new device interface to sup-

port nameless writes. Table 1 summarizes the interface,

which we now present in more detail.

The interface to read a block remains unchanged: the

client sends an address and a length down to the device;

the device replies some time later with a status message

(e.g., success or failure), and if successful, the requested

data. Note that the name is essentially a physical address.

Next is the nameless write, which is different from a

typical write in two salient ways. First, the write does not

specify a target address (i.e., a name); this essential com-

ponent of the interface is key to letting the device select

the physical location without control from above. Second,

in response, the device writes the data to the device, and

returns the name (i.e., the physical address) to the calling

client (as well as a status indicator).

Note that in this incarnation of the interface, a sin-

gle write is not guaranteed to be mapped to contiguous

blocks. Thus, a “large” write may yield a number of re-

sulting names and lengths, as specified in the returned val-

ues. However, it is generally best if the file system issues

writes in multiple of device pages (i.e., 2 KB), as each

write can thus be easily redirected to a meaningful physi-

cal location without waste.

Because a nameless write is an allocating operation, the

device needs to also be informed of a deallocation of the

block by higher-level software. Most modern devices re-

fer to this interface as the free or trim command. Once a
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block has been freed/trimmed, the device can re-use it.

We also include a named write, which is just a typi-

cal write as one sees in today’s storage systems. As we

will see when discussing file system implementation be-

low, named writes are needed in the few cases when the

updated block must have a known location, so that the file

system can find it later (say, when mounting). This inter-

face should only be used sparingly; indeed, using it pri-

marily could revert the SSD with little demand for remap-

ping back into a typical remapping SSD (perhaps provid-

ing an upgrade path?). One small complication: because

nameless writes and reads generally deal with physical ad-

dresses, one needs a way to specify the address of a named

write. We imagine that the first so many (thousand? mil-

lion?) addresses in the address space will be thus reserved.

Finally, one of the more novel aspects of the inter-

face is the reclaiming callback, which allows the device

to inform the file system of its need to reclaim a physi-

cal block. This upcall allows the device to tell the client

above that it needs to write to the physical block again

(for the purpose of wear leveling), and thus informs the

client which address it wishes to reclaim (and perhaps

even hands the data to the client). We explain further via

example.

Imagine a scenario where a file system writes data to

the device and said data is bound to a specific physical ad-

dress. Unfortunately, the block that the data is within con-

tains data which soon becomes cold (but is all still live);

in this case, the block is fully live but not being written to,

and thus will soon become the target of the wear-leveling

desires of the device. If the device had an indirection map,

it could simply move the block and update the map; how-

ever, here we assume that one generally does not have

such a map. Thus, with nameless writes, the device in-

stead informs the client (i.e., the file system) that it wishes

to reclaim a particular physical block. At this point, it be-

comes the file system’s responsibility to rewrite the block

to a new location and then eventually trim the old block,

thus allowing the device to reclaim it.

2.1 Alternate Interfaces
We came to this first proposed interfaces after considering

a number of alternatives; thus, this interface represents

our current “best”, although it is by no means final and

absolutely represents a place where we hope for feedback

through the workshop.

One aspect of the interface where we engaged in much

discussion was around the nature of the callback interface.

Our current approach we think is simplest, but many other

possibilities exist. For example, one idea of ours built

upon the type-safe disks work of Sivathanu et al. [13].

In this variant of type-safe disks, updates were presented

to the device in such a way that the device knew which

entities were pointers to other blocks; this made it quite

simple for the reclaiming callback to not only inform the

client above of a reclaim, but also of the location of the

blocks that point to the reclaimed block.

Another variant of the callback was more forceful, not

only telling the file system of the desire to move a block

but rather already moving it and then telling the file sys-

tem the result. This may indeed be a reasonable approach,

but we felt forced the file system to act too quickly upon

the request.

3 Device Implications
We now discuss device-side implications of our current

interface proposal. Overall, the device is likely to be

somewhat simpler as a result of our changes. Instead of

a complex hybrid page/block remapping FTL, a leaner,

simpler, less costly device arises.

Because the device handles allocation (on writes), and

freeing (on trims), clearly the device must track block

liveness. The simplest data structure to support such

tracking is a bitmap (used as far back as FFS [11] if not

earlier), but more compact and yet fully-functional data

structures to track free-space certainly exist (e.g., extent

maps as found in XFS and ZFS). However, this is no dif-

ferent that the status quo in SSDs today, which need to

track liveness information to perform proper garbage col-

lection.

The new device must also track wear information.

However, tracking such usage information is also no dif-

ferent than before and thus exacts a similar overhead in

traditional SSDs.

The device must include a small amount of remapping

support for named writes, which is similar to remapping

support current FTLs provide but much smaller in scale.

The device may further decide to remap some “physical”

blocks that it has reclaimed via callback, but which the file

system has yet to trim. In those cases, the remapping in-

formation is only needed until the trim at which point the

file system will have written the data to another location.

Finally, the major new interaction for the device is the

implementation of an upcall to inform the client that the

device wishes to reclaim a block. There are many pos-

sible approaches to implementing the callback, including

via a simple stand-alone interrupt, or more likely as ex-

tra information piggybacked onto some other request. It

may particularly be useful to inform the file system that

a block that has just been read is a good candidate to re-

claim; because it just read the block, the file system must

already have in memory the requisite information to write

the block again, and thus a timely re-write of the block

may be particularly painless at that time.
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4 File System Implications
It is likely that the greatest cost in supporting nameless

writes is borne by the file system. We now discuss how a

file system can be designed with nameless writes in mind.

4.1 Basic Organization: COW
We believe the most straightforward file system to “port”

to use nameless writes is a file system that employs a

copy-on-write (COW) or what database researchers would

call a shadow paging approach. A COW file system es-

sentially never overwrites data in place. Rather, an up-

date, which is comprised of a number of blocks, is writ-

ten to a completely new location on the persistent store;

only a final update to a “root” block is in-place and must

be done carefully to avoid problems in the case of failure

during said writes. Examples of this type of file system in-

clude Sun’s ZFS [3], NetApp’s WAFL [10], and even the

confusingly-named log-structured file system (LFS) [12].

Let us illustrate how an update works in such a sys-

tem, and then discuss how said update would work with

nameless writes. Imagine we have a root block of the file

system (similar to the “uberblock” in ZFS, or the “check-

point region” in LFS) which tells us the physical locations

of each inode in the system. Each inode then tells us the

location of each block of each inode, and so forth. Imag-

ine that we are writing out a new file F ; this means we

will need to write out a data block D, an inode I (which

refers to the location of D), and a new version of the root

block R (which refers to the location of I).

The file system will issue the writes in bottom-up fash-

ion. First, a nameless write of D will be issued. Assume

the device allocates physical block 1000 to D and writes

it; the device then returns 1000 as the bound name. The

file system then updates the in-memory inode I with 1000

as the pointer to D and issues a nameless write of I; the

device writes I to 1001 and returns that address as well.

Finally, the file system updates R with the mapping, and

then commits R to a known location via a named (not

nameless) write. LFS alternated between two checkpoint

regions in case a crash occurred during the update of one;

imagine a similar approach here.

In this manner, most writes to the device can use name-

less writes quite naturally. Only at the top level, when we

wish to commit a block to a known location so that it may

be found later (during mount) must we use a named write;

the bulk of I/O is nameless and thus needs no remapping.

This approach does have some performance differences

as compared to a typical COW file system. Specifically,

it orders writes up the file system tree, whereas a typical

COW file system can issue all writes at once (except the

write to the root). However, there is still plenty of con-

currency available (e.g., different updates to different files

have no dependency ordering) and thus we do not expect

major performance problems.

4.2 Crash Recovery
One difficult issue that the device must now handle is

crash recovery, i.e., what to do when a series of blocks

have been allocated at device level but the file system now

thinks them free because of a crash. We refer to this prob-

lem as an “allocation leak”, as the file system’s behavior

led the device to mistakenly allocate a block that then goes

unused. From our example above, this could occur when

block D has been written out but a crash occurs before I

or R are written.

From the perspective of the (COW) file system, a crash

during an update is not a problem because it simply loses

all the updates that were on-going; however, any writes

that occurred during the update the device now thinks of

as “allocated” and thus must be told to “free” them, oth-

erwise the device may forever think them allocated when

in fact they are not in use.

We note that allocation leaks occur in current sys-

tems as well as with nameless writes. However, because

nameless-writing devices have a reclaim callback (dis-

cussed further below) which lets the file system know

which blocks to free, it is in this sense made easier with

nameless writes; the file system may thus occasionally see

a reclaim request for a block it thinks free, at which point

it should simply trim the block.

4.3 Dealing With Callbacks
Another major challenge a file system on nameless writes

must handle is what to do when a callback informs it that

the device wishes to reclaim a particular physical block.

The natural response is to immediately rewrite the block

to a new location, but first there is a problem to overcome:

which block points to this block? Only by knowing this

can the file system rewrite it and then trim the block for

the device to freely reuse.

We thus believe that a nameless-writing file system will

likely contain additional data structures to help it find

blocks that the device told it to stop using. Specifically,

the file system might wish to use some kind of per-inode

bloom filter to provide a quick answer on whether to scan

all the block pointers to determine whether a file owns a

specific block (particularly useful for big files). Further, a

complete file system scan for integrity purposes (such as

that done by ZFS) should likely incorporate block recla-

mation into its priorities, thus helping the device reclaim

blocks as needed.

4.4 Other File Systems
Beyond copy-on-write, there are other update strategies

for modern file systems, including journaling [9] (or

write-ahead logging) and soft updates [5]. Of the two,

soft updates seems to more naturally fit into the update

sequence that is natural to nameless writes; however, for

both types of file systems, more consideration is required.
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5 Related Work

Most similar to this proposal for nameless writes is our

own work on range writes, which proposes a less radical

variant of the write interface [1]. With range writes, a file

system presents the underlying storage with a set of possi-

ble addresses (instead of just one), and thus allows the de-

vice to pick the one most suitable given current low-level

information (e.g., the exact position of the disk head). In

that work it is shown that under certain workloads, such

freedom can greatly improve performance. Range writes,

however, still give the file system (or other client of the de-

vice) ultimate control over block placement, e.g., a client

could simply specify a range of just one block. Because

of this fact, range writes are not flexible enough to support

the demands of modern wear-leveling SSDs and thus not

suitable for our purposes here.

Earlier proposals in object-based disks (OSDs) [6] bear

some similarities to our approach. However, OSDs by

their very nature imply a great deal of metadata overhead

(as they must manage the detailed layout of each object),

and thus exacerbate the very problem nameless writes at-

tempt to solve. One particular proposal within this space

suggests a new write interface without an address [4] to

improve performance, and thus represents an early form

of nameless writes. Without a paired rewriting callback,

such an interface is insufficient to solve the problems pre-

sented in this paper.

In other work on improving Flash FTLs, Gupta et al.

show how to build a more flexible and performant page-

level mapping FTL by taking advantage of temporal lo-

cality common within many workloads. Such an approach

thus only keeps part of the full mapping in SRAM, putting

the “inactive” mappings on flash and keeping them there

until needed. Unfortunately, an unexpected workload can

cause trouble for this approach, and, in the worst case,

lead to two I/O operations on every read, thus halving per-

formance. Indeed, any approach which keeps part of the

mapping table on flash will have this property, and thus

may not be suitable in circumstances where the design as-

sumptions do not mesh with workload realities.

6 Conclusions

The problem we put forth herein is real: as SSDs grow

in size, large remapping tables will become an increasing

cost and performance problem. Nameless writes present

one possible solution path; by providing a new interface

to storage, one level of indirection can be de-indirected,

leaving the benefits of indirection in place without its high

costs. Much work remains to be done; what we present

here is just a first step towards what we hope will be a

fruitful path towards leaner, simpler SSD-based storage.
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