Pre-Patched Software

Jianing Guo Jun Yuan Rob Johnson
Stony Brook University

http://www.splat.cs.sunysb.edu/

STONY
BRO'SK

RETY OF WEW YORK

Bugs In Deployed Software

e The problem with patches:
¢ Slow and error-prone to develop

¢ Long “window of vulnerability” that exposes users to a
possible “zero day exploit”

e The problem with run-time checks
¢ High overhead
¢ Compatibility issues

e Pre-Patched Software
¢ Uses latent run-time checks
¢ Low run-time overhead
¢ Rapid response to new vulnerabillities
¢ Backwards compatible

STONY

8/16/2009 Security, Programming Languages, and Theory Lab 2 BR‘\"‘I{-@K
STATE LN oF

IVERSITY OF NEW YOR#

Zero Day Exploit Problem

&

(I

Oy! Too Slow
& too late!

STONY
8/16/2009 Security, Programming Languages, and Theory Lab 3 BR‘\ Q\‘K

UNNVERSTY OF MEW YORK

Pre-Patched Software

Security
Checks

—————

Whew! Good
thing that | have
the check on.

.r—‘T .r—‘T .r—‘T .r—‘T .r—‘T
in_x in_x in_x in_x in_x i !
- — - — - — - — - — -

STONY

8/16/2009 Security, Programming Languages, and Theory Lab 4 BR‘\"@;‘\‘K
STATE LN oF

IVERSITY OF NEW YOR#

Benefits

e Provides immediate response to
vulnerabillities

e Prevents “zero day exploit”

e Users don't pay a visible overhead until it
becomes necessary

e Shipping instrumented binaries allows
users to test in advance

STONY
BRO'SK

IVERSITY OF NEW YOR#

Prototype: Memsafe

e Checks against bounds violations

e Based on Jones & Kelly's [Jones 97]
approach to C bounds checking

e Implemented using CIL [Necula 02]
platform

STONY

8/16/2009 Security, Programming Languages, and Theory Lab 6 BR‘\"‘I{-Q,DK
STATE LUNIVE oF

FESITY OF NEW YOR#

8/16/2009

Memsafe Example

Md foo () { \
int arr[5];

(B_arr = Register(arr);

intn=1;
~ B_arr = LookUp(arr + 0);

Check(arr+0, " B arr);

arr[0] = n;

N = bar(n, arr, EBZaiY);
}

int bar(int n, int*a, bounds BBEEN) {
inti, s =0;
Check(a+0,i B a);
s = a[0];
for(i=0;i<=n;i++){
a++;

}
return s; Not a
& Problem /
"

Security, Programming Languages, and Theory Lab

eRegister only
necessary variables

eCaching bounds info

eBounds passing
across functions.

e Support manipulation
for OOB ptrs

STONY
. BRAWSK

STATE UNIVERSTY OF MEW YORK

Memsafe Optimizations

e Bounds caching

e Bounds passing

e Loop optimization

e Static check elimination

STONY

8/16/2009 Security, Programming Languages, and Theory Lab 8 BR‘\"‘I{-Q,DK
STATE LN

IVERSITY OF NEW YOR#

Run-time Check Activation

e Selectively turn on checks — reduces patch
overhead

e [nstrumentation dependency -- enables
metadata maintenance

e Fast path/Slow path — saves time on
branch checking

Not memsafe specific
STONY

8/16/2009 Security, Programming Languages, and Theory Lab 9 BR‘\"‘I{-Q,DK
STATE LN oF

IVERSITY OF NEW YOR#

Selective Check Activation

void foo () {
int arr[5];
1 = Register(arr);
intn =1,

~

arr[0] = n;
n = bar (arr, JBZ0);
}
int bar (int n, int*a, bounds @BfN)
{

inti,s=0;

s = a[0];
for(i=0;i<=n;i++){
a++;

}
\)\return s; /

e Checks can be activated
Independently based on the
bit map.

STONY

8/16/2009 Security, Programming Languages, and Theory Lab 10 BR‘\"Q‘\‘K

STATE UNIVERSTY OF MEW YORK

Dependencies

How do we
determine the
bounds for the

/Aﬁhnmo{

1 Register(arr); activated
check?
2
J |
|{nt bar (int , e Dependency within a
ntis=0: single function
3| Check(a+0, B-a e Dependency across
s = a[0]; functions
for(i=0;i<=n;i++){
a++:
}
\)\return S; /
STONY
8/16/2009 Security, Programming Languages, and Theory Lab 11 BR‘\"@;‘\‘K

STATE UNIVERSTY OF MEW YORK

Fast-Path/Slow-Path

How to reduce
the number of
checks
performed at
run time?

If (any active checks)

/ \

Slow Path Fast Path
i Nt)
int arr[5]; int arr[5];
B arr = Register(arr);
intn=1; intn=1;
Check(arr+0, B arr
arr[O] —(n) arr[0] = n;
n = bar (arr,fB=&aY); n = bar (arr,fB=&aY);

\d AN J

STONY

8/16/2009 Security, Programming Languages, and Theory Lab 12 BR‘W;\‘K

STATE UMNVERSTY OF MEW YORK

Performance Evaluation

e Three scenarios:
¢ All checks off (common case)
¢ One check on (occasional case)
¢ All checks on (only for testing)

e Benchmark programs:
¢ Gzip and Gunzip
¢ Olden Benchmark [Rogers 95, Carlisle 95]

STONY

8/16/2009 Security, Programming Languages, and Theory Lab 13 BR‘\"‘I{-Q,DK
STATE LN oF

IVERSITY OF NEW YOR#

Results

All Qo

55.9 48.48

e All checks on

o All éAh glmes slo
Under 10% overhea

ERADOff

AN
SR

© o oo
N-PBCTCWOOOO—‘

::r./\E
Ratio to GCC co_-mplled version

(=)
|

Olden Benchmark Gzip

STONY
8/16/2009 Security, Programming Languages, and Theory Lab 14 BR‘\'\}K‘K

STATE UNIVERSTY OF MEW YORK

Results

" Performance
may vary
One Check | gepending on
2 check locations)
1.5
® One Check On: < ---
About 33% overhead 1 -
0.5] I I [B One Check
Overhead is e e B B R
negligib_le In = ~<9°<& é,,b N é@« & ,bbb R One Check
comparison oY e ¢ é\@ S & On
to all checks \ Q J
on
Olden Benchmark
STONY

8/16/2009 Security, Programming Languages, and Theory Lab 15 BR‘\"&{-@K

STATE UNIVERSTY OF MEW YORK

Limitations

e Not as efficient & complete as patches
e Depends on compiler auto-generation
e Only applicable to low level security bugs

STONY

8/16/2009 Security, Programming Languages, and Theory Lab 16 BR‘\"‘I{-@K
STATE LN oF

IVERSITY OF NEW YOR#

Conclusion

e Pre-patched software provides immediate
response to vulnerabillities

e Latent run-time checks incur low overhead
while providing full coverage

e Pre-patched software makes code
transformations usable by reducing
overheads to a fraction

STONY
BRO'SK

IVERSITY OF NEW YOR#

Q&A

Pre-Patched Software

Jianing Guo Jun Yuan Rob Johnson
Stony Brook University

http://www.splat.cs.sunysb.edu/

STONY
BRO'SK

RETY OF WEW YORK

