
Digital Objects as Passwords∗

Mohammad Mannan and P.C. van Oorschot

Carleton University, Canada

Abstract

Security proponents heavily emphasize the importance
of choosing a strong password (one with high entropy).
Unfortunately, by design, most humans are apparently
incapable of generating such passwords, or memoriz-
ing a random-looking, machine-generated one for long-
term use. Infrequently used passwords pose even big-
ger security and usability problems. We exploit the
fact that many users now own or have access to a large
quantity of digitized personal or personally meaningful
content in designing an object-based password scheme
called ObPwd. ObPwd enables users to select a pass-
word generating object from their local collection or
from the web, and then converts the password object
(e.g. an image, a particular piece of music, excerpt
from a book) to a (potentially) high-entropy text pass-
word that can be used for regular or secondary web
authentication, or in local applications (e.g. encryp-
tion). Instead of requiring users to memorize an ex-
act password, ObPwd only requires one to remember
a hint or pointer to the password object used. We
believe that choosing digital objects as passwords is
an interesting alternative to explore, and may enable
users to create and maintain high quality passwords.
We have implemented a prototype, and solicit feed-
back from the research community in regard to using
digital objects as passwords.

1 Introduction and Motivation

Despite all their shortcomings, text-based passwords
are still heavily used by everyday users and secu-
rity experts. Decades apart independent studies
reveal that people consistently choose ‘weak’ pass-
words [14, 3, 21]. There are several apparent reasons
for such behaviour. Strong or high-entropy passwords
are difficult for users to generate, memorize, and re-
produce at a later point in time. Also as the ben-
efits of a strong password over a weak one are not
readily noticed, there is little apparent motivation for
users to spend extra effort in choosing strong pass-
words. Blaming users, or restricting password choice
with complex rules (see e.g. [13, 22]) usually do not

∗Version: July 14, 2008. Email: mmannan@scs.carleton.ca.

help. Alternatives to text-based passwords such as
biometrics, hardware tokens, and two-factor methods
are still far from being widely deployed, and password
use is likely to dominate user authentication in the
foreseeable future [6]. The existence and indeed re-
cent rise in SSH password-guessing attacks1 indicates
that stronger passwords still increase security despite
the proliferation of password stealing attacks, phishing
and keylogging (cf. [4]).

Let us assume that with continual education,
motivating efforts [5, 24], restrictions or proactive
checking [27], users are persuaded to choose strong
(random-looking, high entropy) passwords for every-
day use. These strong passwords generally remain us-
able (i.e. well-remembered) only if used often. How-
ever, passwords employed to access rarely-used ser-
vices, or in secondary authentication (e.g. when a
user has lost/forgot the primary password) are not
frequently recalled, motivating users to choose weak
passwords/secrets that are difficult to forget or obvi-
ous when given a hint. We introduce an Object-based
Password scheme called ObPwd which may be best used
for passwords that are (i) infrequently used, or (ii)
used for secondary or fall-back authentication, e.g.,
Password Verification Questions (PVQs); see for ex-
ample, Rabkin [17] for a discussion of serious security
weaknesses of PVQs as used in a number of current
online banking sites.

The basic idea of ObPwd is the following. Many
users currently possess a large collection of digital
content such as photos, mp3s, and videos. Much of
this content is mobile: users may keep it on per-
sonal devices (e.g. USB sticks, cellphones), or upload it
to personal sites (in some cases, password-protected).
Many users also have instant access to static content
from the web, e.g., Internet Archive (www.archive.
org), Project Gutenberg (www.gutenberg.org), and
Google Books (books.google.com). An ObPwd pass-
word can be generated from such digital content as fol-
lows: compute a hash of user selected content, such as
a photo file from the user’s USB stick, and then con-
vert the hashed bitstring to a password (a ‘random-

1One experimental setup [18] reported an average of 2,805
SSH login attempts per computer per day.

1



looking’ string of keyboard characters or as an option,
a human readable sequence of words using existing
techniques [9, 12, 8, 19]). Users keep a record (mem-
orized or written) of a pointer to their content used
in generating each password. Users can write down
the password in a ‘secure’ place, or re-create it from
the content when needed. ObPwd requires no mod-
ifications to the software interface of password-based
systems. Also, authenticating parties (remote or local)
are not required to be aware of ObPwd (e.g. storing of
a user’s password-generating objects is not required).

ObPwd may offer the following benefits over existing
techniques (see also Section 3).

1. Reduced Memory Load. Instead of re-
quiring users to remember exact passwords or
passphrases, ObPwd only expects them to recall
a semantic pointer to their password object (e.g.
hints for an image, video, entire/partial docu-
ment, executable, URL, or highlighted text pas-
sage from a web page).

2. Resistance to Offline Dictionary Attack.

Without having access to all of a user’s pos-
sible password objects (from local media and
web), attackers cannot build a password dictio-
nary. Assuming password objects significantly
vary among users (e.g. each user may have an in-
dependent collection of photos), creating a gener-
alized password dictionary for ObPwd seems im-
practical. In contrast, building a dictionary of
popular passphrases is apparently feasible [10],
and general password dictionaries are already
available [15].

3. Written Record of Passwords. In contrast
to most graphical passwords [23], users can eas-
ily keep a written copy of ObPwd passwords (e.g.
in a safe place as backup). Thus ObPwd enables
converting an image-based password into human
readable text (which also facilitates sharing – see
below), and benefits from the easy memorabil-
ity of object or image hints while keeping the
simplicity of text passwords (easy deployment,
written records).

4. Password Sharing. In cases where objects are
already shared (e.g. photos, documents), ObPwd
allows safer password sharing through a hint or
description of the password object, without trans-
mitting the actual password over the network.
This seems preferable to some current practices
such as sending shared passwords over email. It
also allows sharing of the text-form output, which
although often discouraged, may nonetheless be
an important usability feature.

2 Object-based Password

(ObPwd)

In this section, we discuss the ObPwd scheme in more
detail, threat model, variants of the basic idea, and a
prototype implementation.

Threat model, operational assumptions, and

notation. We assume that password-generating ob-
jects in ObPwd are selected from a large public collec-
tion, e.g., files (including pdf) from the ACM digital
archive (containing millions of archived documents),
or from personal digital content (inaccessible to oth-
ers). Hopefully either the large size of pools of such
source objects, or the inaccessibility of private con-
tent will impede attempts to build offline dictionaries.
Ideally users would not choose password objects from
their (publicly accessible) personal website or public
profiles as in Facebook/MySpace sites. (However, ap-
pending such objects with a salt apparently reduces
some risks; see under ‘Variants’ below.) To enable
access-from-anywhere, users either carry password-
generating objects with them, or have online access
to those objects. ObPwd passwords, and hints (text
reminders) to password objects can optionally be writ-
ten down. Passwords must be written down if a user
does not want to carry content files with her.

If a password is directly generated from the pass-
word object and users ‘copy-paste’ that password in-
stead of typing it in (see ‘Implementation’ below),
keylogging attacks on passwords may be restricted.
However, if ObPwd is used in regular web login, we
strongly suggest that the password objects should be
stored in local media (i.e. user devices) when pass-
words are generated on-the-fly (right before login). If
a password is re-created from (plaintext) web content
the following attack is possible. An attacker observes
or records traffic from the intermediate network look-
ing for a user to go into a content-hosting site right
after or before requesting an authenticating website;
thus the attacker can capture or narrow down can-
didates for the password-generating content. When
ObPwd is used for encryption/decryption in a user’s
local media, getting access to password-generating ob-
jects from the network does not allow the attacker to
gain any protected content (as the network attacker
does not have access to the user’s local encrypted
files). Of course if the attacker already controls the
user PC, neither ObPwd nor other password schemes
can help. Similarly, this scheme is vulnerable to shoul-
der surfing and phishing (but see ‘Variants’ below).
When a user has multiple password objects for differ-
ent accounts/applications, the usual issue of password
interference may also surface (which object is used for
which account). However, ObPwd is focused to in-

2



crease usability of a ‘strong’ password by leveraging
distinctive object choices that might be made by a
user, including leveraging their personal content. We
use the following notation:

U An ObPwd user.
M A password object selected by U

for a particular site or application.
h(·) An appropriate cryptographic

hash function.
Hash2Text(·) A function (e.g. based on [9, 12, 8,

19]) for converting hashed bits into
a string of keyboard characters, or
optionally, words.

pwd A password as generated by
Hash2Text(·).

Steps in ObPwd. The steps in ObPwd are as fol-
lows; see also Fig. 1.

1. U selects an easy to remember object M from
her personal media or from the web. To preclude
offline dictionary attacks and predictable object
prefixes, M should be required to exceed a min-
imum size (perhaps 30 bytes). Considering the
time that may be required to hash very large ob-
jects (in step 2), such as a movie, M is ideally
truncated to an appropriate number n of bytes
(e.g. n = 100000).

2. U indicates the selected object to the ObPwd
tool, which generates the hash H of M using a
secure hash function h: H = h(M).

3. H is used to generate pwd = Hash2Text(H).

H may be truncated depending on the required
size of an output password. pwd (and M) should
not be stored at the same place or media as the
protected content. If used as a site password,
pwd may require special encoding depending on
the particular site; we do not address encoding is-
sues separately here (but note that encoding tech-
niques are addressed elsewhere [19]).

Variants. The basic idea of ObPwd can be extended
as follows. A user-selected, ideally memorable salt

string (s) may be appended as a second input to the
hash function h: H = h(M, s). The salt could be a
4-digit PIN, or a dictionary word. This enhancement
may impede attackers even when a user’s password ob-
ject is exposed, albeit at the cost of memorizing a salt
string. If used only rarely, then the salt need not be
memorized but rather could be looked up from where
it was written down. While the ObPwd scheme as pro-
posed is vulnerable to phishing attacks, this weakness
can be addressed, by appending the URL of a target
site (as in [19], this can be done without user involve-
ment) with the password object, i.e., H = h(M, url).

Figure 1: ObPwd steps with an example

Implementation. We have implemented a basic pro-
totype of ObPwd as a browser extension for Firefox
(Fig. 2), and also as a stand-alone application in Win-
dows XP (developed in C#). When a user clicks the
right mouse button on a web object (an image, high-
lighted text, or a file URL), the browser extension in-
serts a menu item (e.g. ‘Get ObPwd from Image’ in
Fig. 2) into the context menu; if selected, the exten-
sion generates a password from the underlying content
and displays the password in a dialog box (Fig .3). In
the local application, a user selects a particular file,
which is then used as the password-generating object,
and the password is displayed in a text box. For both
implementations, we use SHA-1 as the hash function,
and PwdHash [19] for converting hash values into a
password (12 characters long, alphanumeric). We use
at most n = 100000 bytes from a password object,
and require a minimum of 30 bytes. Both implemen-
tations are available online (see Section 4). For mo-
bility, if the ObPwd extension or application is not
available from a remote computer, a website for gen-
erating passwords from user objects could be designed
(cf. pwdhash.com [19]). We do not make any claims
about the usability of the present prototype, but if the
idea generates interest, would hope to pursue this and
to host such a site.

3 Related Work and
Comparison

There have been countless publications on passwords.
Here we discuss only a selective subset of schemes
designed to strengthen passwords (i.e. improving en-
tropy) or to enhance usability (i.e. improving the ease-
of-use). Infrequently used passwords such as Personal
Verification Questions (PVQs) are discussed sepa-
rately as ObPwd is apparently most suitable for these.

3



Figure 2: ObPwd extension menu in Firefox

Figure 3: Password generated from the selected image

3.1 Schemes for Improving Password
Strength/Usability

Cheswick [1] proposed an obfuscated challenge-
response based authentication scheme assuming peo-
ple can compute a simple response to a given chal-
lenge according to a (user-selected) pass-algorithm.
Both the challenge and response are obfuscated with
decoy information. This scheme offers several de-
sirable features (e.g. protection against keyloggers
and phishing). Challenges noted by the author in-
clude users may forget the pass-algorithm/obfuscation
technique more readily than a regular password, if
used infrequently.

Florêncio et al. [4] argue that relatively weak pass-
words (e.g. with 20 bits of entropy) may provide
enough security for web accounts assuming that: (i) a
“three-strike” type rule (i.e. login is blocked after three
failed attempts) is deployed to counter brute-force at-
tacks; (ii) the user ID space is much larger than the
IDs in actual use; and (iii) the valid user ID list is not
readily available to attackers. Meeting these assump-
tions requires assistance from authenticating sites.

To improve password strength while maintaining us-
ability, Forget et al. [5] proposed Persuasive Text Pass-
words (PTP) wherein system-generated characters are
inserted at random positions into a user-chosen initial
password. Users can accept the proposed password,

or request (until satisfied) alternate suggestions. PTP
essentially provides a middle ground between system-
chosen (strong but difficult to remember) and user-
chosen (weak but memorable) password schemes.

Yan et al. [26] conducted a user-study to com-
pare regular user-chosen passwords, random pass-
words and mnemonic phrases. They reported finding
that mnemonic phrases are as good as random pass-
words, and easier to remember. However, passphrases
(and mnemonic passwords generated from them) may
also be attacked by building a dictionary from com-
monly used phrases as available on the web [10].

Disk encryption software TrueCrypt allows users to
use any local file along with a possibly empty pass-
word as an encryption key.2 Users cannot write down
the actual encryption key as a backup, and the gen-
erated key is used only with TrueCrypt. ObPwd was
conceived independently.

Apparent advantages of ObPwd. In addition to
web authentication, ObPwd passwords can arguably
be used for applications which must withstand offline
dictionary attacks (e.g. file encryption). Also, the de-
ployment of ObPwd does not require any changes in
system-side processing or password verification, or to
the user interface in a web or local application.

ObPwd enables converting image-based passwords
into text, and thus may be viewed as a middle ground
between text and image-based password schemes.
ObPwd can use (memorable) images while retaining
simple advantages of text passwords (no-cost deploy-
ment, written records). While some people think writ-
ing passwords down and sharing passwords are poor
practice, this arguably depends on the threat model,
and usage. Certainly, being able to write down and
backup infrequently used passwords seems essential.
The fear of not writing down passwords may also en-
courage users to choose weak passwords.

Sharing of passwords (quite common in the real
world; see e.g. [16]) in most graphical schemes is awk-
ward if not impossible. ObPwd may enable better
password sharing than text and graphical schemes
without sacrificing confidentiality to third parties. For
example, if two users share a digital photo folder (e.g.
through personal media), then one user can choose a
specific image as the password object, and send the
other user a hint or description of the image (e.g.
“our whitewater kayaking photo”) over public media
or email. Now an eavesdropper can see the hint,3 but
cannot generate the shared password without having
access to the image object itself. Although this is in ef-

2This feature is apparently available since version 4.0 (Nov.
2005); see http://www.truecrypt.org/docs/?s=keyfiles.

3Here we assume that the hint is not an obvious link to a
publicly-accessible web object.

4



fect equivalent to sharing a list of secret keys, arguably
the advantage here is that we use more meaningful ob-
jects than randomly generated keys.

3.2 Personal Verification Questions
Personal Verification Questions (PVQs) are used for
resetting a forgotten password or as part of login.
While generally weaker than passwords, PVQ answers
are typically equally useful to access an account. The
availability of personal information on the web has
apparently made it easier to correctly guess PVQ an-
swers [17] (see also [7, 20]). As an example, Hollywood
actress Paris Hilton’s private photos and close con-
tacts’ phone numbers were exposed when an attacker
was able to log into her T-mobile web account by an-
swering her pet dog’s well-known name to a PVQ [11].

Academic work on PVQ. Early work on PVQs in-
cludes cognitive passwords4 and a related user study
by Zviran and Haga [28]. It was reported that users
could recall cognitive passwords more accurately than
regular passwords. The authors also tested guessing
attacks on cognitive passwords by significant-others of
a user. Fact-based questions such as ‘mother’s maiden
name’ and ‘name of your best friend in high school’
were correctly guessed by 57% and 43% of users re-
spectively. Opinion-based questions such as ‘favourite
colour’ and ‘last name of your favourite college instruc-
tor’ were correctly guessed 41% and 10% of the time,
respectively. The authors used 20 questions, of which
users must answer five randomly selected questions at
each login attempt.

Ellison et al. [2] proposed using personal questions
and answers for recovering secret keys. Instead of us-
ing a passphrase, they require a user to pre-register n

personal questions and answers (usually low-entropy),
and then recover the secret key by correctly answering
some t < n of the questions. Thus a user can forget
some answers, but still recover the secret.

Recently, Rabkin [17] analyzed over 200 PVQs as
used in 17 financial websites. Taking the ‘era of Face-
book’ into account, different classes of attacks are con-
sidered (e.g. random guessing, attacks automatically
using online information, dedicated human attackers,
and knowledge through personal acquaintance). As
a possible defense, the following use of personal con-
tent was suggested. A user may upload an image of a
person, and an answer to the question “what is the
name of this individual?” However, as noted, any
tagged photo of that person enables attackers to an-
swer the question.

ObPwd as PVQs. If ObPwd is used in certain

4These are questions and answers related to a user’s per-
sonal facts or opinions; they were designed to be used as
regular passwords.

types of PVQ schemes (which allow free-format ques-
tions/answers), attackers cannot succeed without get-
ting the actual password object. Many PVQ an-
swers have quite low entropy (“What is your favourite
colour?”). ObPwd password entropy is expected to be
significantly higher. Also ObPwd requires no upload-
ing of multimedia content to an authenticating site,
and an exact copy of the password object is required
for a successful attack (cf. [17]).

4 Concluding Remarks
Humans are not good at choosing high-entropy secrets
that are easily memorable for a long time. Arguably,
current password generation techniques and password-
restricting rules have largely failed to improve pass-
word strength. Creating passwords from personally
meaningful/memorable digital objects may be more
user-friendly than any existing password rules; we em-
phasize, however, that we have not yet carried out any
user testing. Depending on the application, variants
of the basic ObPwd scheme may be suitable; for ex-
ample, URLs can be appended to password objects (as
in PwdHash [19]) if phishing is a concern.

Apparently passwords generated by our method
would have more entropy than regular passwords. We
have yet to devote serious attention to the question of
determining defendable estimates of the security gains
that might result, or a method to quantify guessabil-
ity in the absence of very large-scale user trials (e.g.
of millions of users). Indeed, despite existing pass-
word crack papers (e.g. [25]), it is not clear that the
community even has a strong understanding of the
empirical security of existing text passwords chosen
by the mythical “typical user” for the mythical “typ-
ical password application”. Studies of even as many
as 500,000 users are too small for the long-tailed dis-
tribution of user-chosen passwords, and obtaining or
publishing cleartext passwords in such studies is com-
plicated by privacy concerns [3].

Our proposal has obvious limitations. Losing the
pointer or the password object itself (if no writ-
ten copy is kept) is equivalent to forgetting a reg-
ular password. Also, obvious and publicly acces-
sible choices of password objects, e.g., the profile
photo of a user’s Facebook account, could result
in even less security than text passwords. The
potential security of ObPwd relies on the richness
of the universe from which public objects are se-
lected, and/or the inaccessibility of personal ob-
jects. ObPwd is introduced here to solicit feedback
and promote discussion, to help advance the eternal
quest for a better password scheme. We encourage
readers to try out our implementation available at
http://www.ccsl.carleton.ca/∼mmannan/obpwd/.

5



Acknowledgements. We thank anonymous HotSec
2008 reviewers for their comments and members of Car-
leton’s Digital Security Group for enthusiastic discussion
on this topic, especially David Barrera and David Whyte.
The first author is supported in part by an NSERC CGS.
The second author is Canada Research Chair in Net-
work and Software Security, and is supported in part by
an NSERC Discovery Grant, and the Canada Research
Chairs Program.

References

[1] W. Cheswick. Johnny can obfuscate; beyond mothers
maiden name. In USENIX Workshop on Hot Top-
ics in Security (HotSec’06), Vancouver, BC, Canada,
July 2006.

[2] C. M. Ellison, C. Hall, R. Milbert, and B. Schneier.
Protecting secret keys with personal entropy. Future
Generation Computer Systems, 16(4), Feb. 2000.

[3] D. Florêncio and C. Herley. A large-scale study of
web password habits. In World Wide Web Conference
(WWW2007), Banff, Alberta, Canada, May 2007.

[4] D. Florêncio, C. Herley, and B. Coskun. Do strong
web passwords accomplish anything? In USENIX
Workshop on Hot Topics in Security (HotSec’07),
Boston, MA, USA, Aug. 2007.

[5] A. Forget, S. Chiasson, P. van Oorschot, and R. Bid-
dle. Improving text passwords through persua-
sion. In Symposium on Usable Privacy and Security
(SOUPS’08), Pittsburgh, PA, USA, July 2008.

[6] S. Furnell. Authenticating ourselves: will we ever es-
cape the password? Network Security, 2005(3).

[7] V. Griffith and M. Jakobsson. Messin’ with
Texas, deriving mother’s maiden names using public
records. In Applied Cryptography and Network Secu-
rity (ACNS’05), New York, NY, USA, June 2005.

[8] S. Halevi and H. Krawczyk. Public-key cryptography
and password protocols. ACM Trans. on Information
and System Security (TISSEC), 2(3), Aug. 1999.

[9] N. Haller. The S/KEY one-time password system. In
Symposium on Network and Distributed System Secu-
rity (NDSS), San Diego, CA, USA, Feb. 1994.

[10] C. Kuo, S. Romanosky, and L. F. Cranor. Human se-
lection of mnemonic phrase-based passwords. In Sym-
posium On Usable Privacy and Security (SOUPS’06),
Pittsburgh, PA, USA, July 2006.

[11] MacDevCenter.com. How Paris got hacked? News
article (Feb. 22, 2005), http://www.macdevcenter.

com/pub/a/mac/2005/01/01/paris.html.

[12] D. McDonald. A convention for human-readable 128-
bit keys, Dec. 1994. RFC 1751 (Informational). http:
//www.ietf.org/rfc/rfc1751.txt.

[13] Microsoft. Strong passwords: How to create
and use them. Online article (Mar. 22, 2006).
http://www.microsoft.com/protect/yourself/

password/create.mspx.

[14] R. Morris and K. Thompson. Password security: A
case history. Communications of the ACM, 22(11),
Nov. 1979.

[15] OpenWall.com. John the Ripper password cracker.
http://www.openwall.com/john/.

[16] A. S. Patrick. Monitoring corporate password sharing
using social network analysis. In International Sunbelt
Social Network Conference, St. Pete Beach, Florida,
USA, Jan. 2008.

[17] A. Rabkin. Personal knowledge questions for fallback
authentication. In Symp. on Usable Privacy and Se-
curity (SOUPS’08), Pittsburgh, PA, USA, July 2008.

[18] D. Ramsbrock, R. Berthier, and M. Cukier. Pro-
filing attacker behavior following SSH compromises.
In IEEE/IFIP Dependable Systems and Networks
(DSN’07), Edinburgh, UK, June 2007.

[19] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger password authentication using
browser extensions. In USENIX Security Symposium,
Baltimore, MD, USA, 2005.

[20] B. Schneier. The curse of the secret question. Blog
post (Feb. 11, 2005), http://www.schneier.com/

blog/archives/2005/02/the curse of th.html.

[21] B. Schneier. Real-world passwords. Analysis of
34,000 MySpace.com userid-password pairs. Blog post
(Dec. 14, 2006). http://www.schneier.com/blog/

archives/2006/12/realworld passw.html.

[22] R. E. Smith. The strong password dilemma.
Chapter 6 in “Authentication: From Passwords
to Public Keys”, Addison-Wesley, 2002. Excerpt
available at http://www.cryptosmith.com/sanity/

pwdilemma.html.

[23] X. Suo and Y. Zhu. Graphical passwords: A survey. In
Annual Computer Security Applications Conference
(ACSAC’05), Tucson, AZ, USA, Dec. 2005.

[24] D. Weirich and M. A. Sasse. Pretty good persua-
sion: A first step towards effective password security
in the real world. In New Security Paradigms Work-
shop (NSPW), Cloudcroft, NM, USA, Sept. 2001.

[25] T. Wu. A real-world analysis of Kerberos password
security. In Network and Distributed System Security
Symp. (NDSS’99), San Diego, CA, USA, Feb. 1999.

[26] J. Yan, A. Blackwell, R. Anderson, and A. Grant.
Password memorability and security: Empirical re-
sults. IEEE Security & Privacy, 2(5), Sept.-Oct. 2004.

[27] J. J. Yan. A note on proactive password checking. In
New Security Paradigms Workshop (NSPW), Cloud-
croft, NM, USA, Sept. 2001.

[28] M. Zviran and W. J. Haga. Cognitive passwords: The
key to easy access control. Computers & Security,
9(8), Dec. 1990.

6


