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Abstract 

As the Internet grows and network bandwidth continues to increase, administrators are faced with the task of 
keeping confidential information from leaving their networks. Today’s network traffic is so voluminous that manual 
inspection would be unreasonably expensive. In response, researchers have created data loss prevention systems that 
check outgoing traffic for known confidential information. These systems stop naïve adversaries from leaking data, 
but are fundamentally unable to identify encrypted or obfuscated information leaks. What remains is a wide open 
pipe for sending encrypted data to the Internet. 

We present an approach for quantifying network-based information leaks. Instead of trying to detect the presence of 
sensitive data—an impossible task in the general case—our goal is to measure and constrain its maximum volume. 
We take advantage of the insight that most network traffic is repeated or determined by external information, such as 
protocol specifications or messages sent by a server. By discounting this data, we can isolate and quantify true 
information leakage. In this paper, we present leak measurement algorithms for the Hypertext Transfer Protocol 
(HTTP), the main protocol for web browsing. When applied to real web traffic from different scenarios, the 
algorithms show a reduction of 94–99.7% over a raw measurement and are able to effectively isolate true 
information flow. 

1. Introduction 

Network-based information leaks pose a serious threat 
to confidentiality. They are the primary means by 
which hackers extract data from compromised 
computers. The network can also serve as an avenue for 
insider leaks, which, according to a 2007 CSI/FBI 
survey, are the most prevalent security threat for 
organizations [5]. Because the volume of legitimate 
network traffic is so large, it is easy for attackers to 
blend in with normal activity, making leak prevention 
difficult. In one experiment, a single computer 
browsing a social networking site for 30 minutes 
generated over 1.3 MB of legitimate request data—the 
equivalent of about 195,000 credit card numbers. 
Manually analyzing network traffic for leaks would be 
unreasonably expensive and error-prone. Limiting 
network traffic based on the raw byte count would only 
help detect large information leaks due to the volume of 
normal traffic.  

In response to the threat of network-based information 
leaks, researchers have developed data-loss prevention 
(DLP) systems [6, 8]. DLP systems work by searching 
through outbound network traffic for known sensitive 
information, such as credit card and social security 
numbers. Some even catalog sensitive documents and 

look for excerpts in outbound traffic. Although they are 
effective at stopping accidental and plaint-text leaks, 
DLP systems are fundamentally unable to detect 
encrypted information flows. They leave an open 
channel for leaking encrypted data to the Internet. 

In this paper, we introduce a new approach for precisely 
quantifying network-based information leaks. Rather 
than searching for known sensitive data—an impossible 
task in the general case—we aim to measure and 
constrain its maximum volume. We exploit the fact that 
a large portion of network traffic is repeated or 
constrained by protocol specifications. By ignoring this 
fixed data, we can isolate true information flows from a 
client to the Internet, regardless of encryption or 
obfuscation. The algorithms presented in this paper 
yield results that are 94–99.7% smaller than raw request 
sizes for several common browsing scenarios, and 75–
97% smaller than a simple calculation from prior 
research [1]. They also measure information content 
irrespective of data hiding techniques. The end result is 
a small, evasion-proof bandwidth measurement that can 
precisely quantify and isolate network-based 
information leaks. 

The leak measurement techniques in this paper focus on 
the Hypertext Transfer Protocol (HTTP), the main 



protocol for web browsing. They take advantage of 
HTTP and its interaction with Hypertext Markup 
Language (HTML) documents to identify information 
originating from the user. The basic idea is to compute 
the content of expected HTTP requests using only 
externally available information, including previous 
network requests, previous server responses, and 
protocol specifications. Then, the amount of 
unconstrained outbound bandwidth is equal to the edit 
distance (edit distance is the size of the edit list required 
to transform one string into another) between actual and 
expected requests plus timing information. This 
unconstrained bandwidth measurement represents the 
maximum amount of information that could have been 
leaked by the client, while minimizing the influence of 
repeated or constrained data. 

The reasons that we chose to focus on HTTP in this 
paper are twofold. First, it is the primary protocol for 
web browsing. Many networks, particularly those in 
which confidentiality is a high priority, will only allow 
outbound HTTP traffic through a proxy server and 
block other protocols. In this scenario, HTTP would be 
the only option for an attacker to leak data over the 
network. Second, a large portion of information in 
HTTP requests is constrained by protocol 
specifications. This is not the case for e-mail, where 
most information is in the e-mail body—an 
unconstrained field. Although the concepts in this paper 
would not apply well to all network traffic, we believe 
that they will yield much lower bandwidth 
measurements for most protocols, including instant 
messaging and domain name system (DNS) queries. 
Applying techniques for unconstrained bandwidth 
measurement to other protocols is future work. 

The remainder of this paper discusses related work in 
Section 2, a formal problem description in Section 3, 
our measurement techniques in Section 4, the 
evaluation in Section 5, and concluding remarks in 
Section 6. 

2. Related Work 

Prior research on detecting covert web traffic has 
looked at measuring information flow via the HTTP 
protocol [1]. Borders et al. introduce a method for 
computing bandwidth in outbound HTTP traffic that 
involves discarding expected header fields. However, 
they use a stateless approach and therefore are unable to 
discount information that is repeated or constrained 
from previous HTTP messages. In our evaluation, we 
compare the leak measurement techniques presented in 

this paper with the simple methods used by Web Tap 
[1] and demonstrate a 75–97% measurement reduction 
for legitimate traffic. 

Research on limiting the capacity of channels for 
information leakage has traditionally been done 
assuming that systems deploy mandatory access control 
(MAC) policies [2] to restrict information flow. 
However, mandatory access control systems are rarely 
deployed because of their usability and management 
overhead, yet organizations still have a strong interest 
in protecting confidential information. 

One popular approach for protecting against network-
based information leaks is to limit where hosts with can 
send data using a content filter, such as Websense [9]. 
Content filters may help in some cases, but they do not 
prevent all information leaks. A smart attacker can post 
sensitive information on any website that receives input 
and displays it to other clients, including useful sites 
such as www.wikipedia.org. We consider content filters 
to be complimentary to our measurement methods, as 
they reduce but do not eliminate information leaks. 

Though little work has been done on quantifying 
network-based information leaks, there has been a great 
deal of research on methods for leaking data. Prior 
work on convert network channels includes embedding 
data in IP fields [3], TCP fields [7], and HTTP protocol 
headers [4]. The methods presented in this paper aim to 
quantify the maximum amount of information that an 
HTTP channel could contain, regardless of the 
particular data hiding scheme employed. 

3. Problem Description 

In this paper, we address the problem of quantifying 
network-based information leaks by isolating 
information from the client in network traffic. We will 
refer to information originating from the client as UI-
layer input. From a formal perspective, the problem can 
be broken down to quantifying the set U of UI-layer 
input to a network application given the following 
information: 

• I – The set of previous network inputs to an 
application. 

• O – The set of current and previous network 
outputs from an application. 

• A – The application representation, which is a 
mapping: U × I → O of UI-layer information 



combined with network input to yield network 
output. 

By definition, the set I cannot contain new information 
from the client because it is generated by the server. In 
this paper, the application representation A is based on 
protocol specifications, but it could also be derived 
from program analysis. In either case, it does not 
contain information from the client. Therefore, the 
information content of set O can be reduced to the 
information in the set U. If the application has been 
tampered with by malicious software yielding a 
different representation A’, then the information content 
of tampered output O’ is equal to the information 
content of the closest expected output O plus the edit 
distance between O and O’. Input supplied to an 
application from all sources other than the network is 
considered part of U. This includes file uploads and 
system information. Timing information is also part of 
the set U. Though we do not attempt to quantify timing 
bandwidth in this paper, we plan to extend the methods 
presented by Cabuk et al. [3] in the future to measure 
the bandwidth of active HTTP request timing channels. 

4. Measurement Techniques 

4.1 HTTP Request Overview 

There are two main types of HTTP requests used by 
web browsers, GET and POST. GET is typically used 
to obtain resources and POST is used to send data to a 
server. An example of an HTTP POST request can be 
seen in Figure 1. This request is comprised of three 
distinct sections: the request line, headers, and the 
request body. GET requests are very similar except that 
they do not have a request body. The request line 
contains the path of the requested file on the server, and 
it may also have script parameters. The next part of the 
HTTP request is the header field section, which consists 
of “<field>: <value>” pairs separated by line breaks. 
Header fields relay information such as the browser 
version, preferred language, and cookies. Finally, the 
HTTP request body follows the headers and may 
consist of arbitrary data. In the example message, the 
body contains an encoded name and e-mail address that 
was entered into a form. 

4.2 HTTP Header Fields 

The first type of HTTP header field that we examine is 
a fixed header field. Fixed headers should be the same 
for each request in most cases. Examples include the 

preferred language and the browser version. We only 
count the size of these headers for the first request from 
each client, and count the edit distance from previous 
requests on subsequent changes. Here, we treat all 
HTTP headers except for Host, Referer, and Cookie as 
fixed. Some of these header fields, such as 
Authorization, may actually contain information from 
the user. When these fields contain new data, we again 
count the edit distance with respect to the most recent 
request.  

Next, we look at the Host and Referer header fields. 
The Host field, along with the request path, specifies 
the request’s uniform resource locator (URL). We only 
count the size of the Host field if the request URL did 
not come from a link in another page, which we discuss 
more in the next section. Similarly, we only count the 
Referer field’s size if does not contain the URL of a 
previous request. 

Finally, we examine the Cookie header field to verify 
its consistency with expected browser behavior. The 
Cookie field is supposed to contain key-value pairs 
from previous server responses. Cookies should never 
contain UI-layer information from the client. If the 
Cookie differs from its expected value or we do not 
have a record from a previous response (this could 
happen if a mobile computer is brought into an 
enterprise network), then we count the edit distance 
between the expected and actual cookie values. At least 
one known tunneling program, Cooking Channel [4], 
hides information inside of the Cookie header in 
violation of standard browser behavior. The techniques 
presented here correctly measure outbound bandwidth 
for the Cooking Channel program. 

4.3 Standard GET Requests 

HTTP GET requests are normally used to retrieve 
resources from a web server. Each GET request 
identifies a resource by a URL that is comprised of the 
server host name, stored in the Hostname header field, 
and the resource path, stored in the request line. 
Looking at each HTTP request independently, one 
cannot determine whether the URL contains UI-layer 
information or is the result of previous network input 
(i.e., a link from another page). If we consider the entire 
browsing session, however, then we can discount 
request URLs that have been seen in previous server 
responses, thus significantly improving unconstrained 
bandwidth measurements. 



The first step in accurately measuring UI-layer 
information in request URLs is enumerating all of the 
links on each web page. In this paper, we only use 
simple HTML parsing to extract link URLs. An 
example of an HTML link is “<a 
href=“http://www.example.com/page”>Click 
Here!</a>” where the URL is 
“http://www.example.com/page” and the link text is 
“Click Here!”. In the future, we plan to handle 
Javascript constructs such as such as “onclick = 
‘this.document. location = <link>’”. We 
also plan to employ program analysis techniques or run 
Javascript through a full-fledged interpreter to handle 
more advanced Javascript code related to links. 
Although link extraction is undecidable in general, 
these approaches are likely to be successful in 
extracting links for most real cases. Currently, we count 
URLs that we cannot identify with HTML parsing as 
UI-layer information. 

After the set of links has been determined for each 
page, we can measure the amount of UI-layer 
information conveyed by GET requests for those URLs. 
The first step is dividing links up into two categories: 
mandatory and voluntary. A mandatory link is one that 
should always be loaded. Examples include images, 
scripts, etc. A voluntary link is selected by the user after 
the page has been loaded. Loading URLs from 
mandatory links does not directly leak any information. 
Omission of some mandatory links may directly leak up 
to one bit of information per link (one bit for each link, 
not just omitted links). Reordering mandatory links 
(they have a predetermined order) may leak up to 
log2(n!) bits where n is the number of mandatory 
links that were loaded. If we encounter missing or 
reordered mandatory links, we count log2(m!) + n 

bits where n is the original number of links and m is 
the number of links that were loaded. For voluntary 
links, we count log2(n) for each request where n is 
the number of voluntary links on the parent page. We 
use this figure because selecting 1 of n links leaks up to 
log2(n) bits of information. When the user has 
multiple pages open, the number of available links may 
be greater than those on one page. In practice, we count 
log2(n) bits for a link only if it came from the last 
page that was loaded. Otherwise, we count log2(n) + 
log2(p) bits where n is the number of links on the 
parent page and p is the number of pages in the user’s 
browsing history.  

4.4 Form Submission Requests 

The primary method for transmitting information to a 
web server is form submission. Form submission 
requests send information that the user enters into input 
controls such as text boxes and radio buttons. They may 
also include information originating from the server in 
hidden or read-only fields. Form submissions contain a 
sequence of delimited <name, value> pairs, which can 
be seen in the body of the POST request in Figure 1a. 
The field names, field ordering, and delimiters between 
fields can be derived from the page containing the form 
seen in Figure 1b and thus do not convey UI-layer 
information. Field values may also be taken from the 
encapsulating page in some circumstances. Check 
boxes and radio buttons can transmit up to one bit of 
information each, even though the value representing 
“on” is often several bytes. Servers can store client-side 
state by setting data in “hidden” form fields, which are 
echoed back by the client upon form submission. 
Visible form fields may also have large default values, 

1 POST /download HTTP/1.1 
2 Host: www.webtapsecurity.com 
2 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; 
en-US; rv:1.8.1.12) Gecko/20080201 Firefox/2.0.0.12 

2 Keep-Alive: 300 
2 Connection: keep-alive 
2 Referer: http://www.webtapsecurity.com/download.html
2 Content-Type: application/x-www-form-urlencoded 
2 Content-Length: 73 
3 FirstName=John&LastName=Doe&Email=johndoe%40example.
com&Submit=Download 

<html> 

<body> 

 <form action=”/download” method=”post”> 

  <input type=”text” name=”FirstName”> 

  <input type=”text” name=”LastName”> 

  <input type=”text” name=”Email”> 

  <input type=”submit” value=”Download”> 

 </form> 

</body> 

</html> 

     (a)                  (b) 
Figure 1. (a) A sample HTTP POST request for submitting contact information to download a file. Line 1 is the 

HTTP request line. Lines marked 2 are request headers, and line 3 is the request body.  Bytes counted by a 
simple algorithm are highlighted in gray. UI-layer data is highlighted in black with white text. 

(b) A sample HTML document at http://www.webtapsecurity.com/download.html that generated request (a). 



as is the case when editing a blog post or a social 
networking profile. For fields with default values, we 
measure the edit distance between the default and 
submitted values. We measure the full size of any 
unexpected form submissions or form fields, which 
may result from active Javascript. 

4.5 Custom Web Requests and Edit 
Distance 

Custom network applications, Active Javascript, and 
malicious software may send arbitrary HTTP requests 
that do not conform to the behavior of a web browser. 
This leads us to the problem of measuring UI-layer 
information U for an unknown application 
representation A’. In this case, we reduce the effects of 
repetition by counting the edit distance between each 
new request and recent requests to the same server from 
the same client, rather than counting the entire size of 
each request. In the future, we plan to explore the use of 
an incremental compression algorithm on custom web 
requests to further isolate true outbound information 
flows. Analyzing active Javascript to derive its 
application representation may also help to generate 
more accurate measurements for custom web 
applications. 

5. Evaluation 

We evaluated our leak quantification techniques on web 
traffic from several legitimate web browsing scenarios. 
The scenarios were 30-minute browsing sessions that 
included web mail (Yahoo), social networking 
(Facebook), news (New York Times), sports (ESPN), 
shopping (Amazon), and personal blog websites. The 
results are shown in Table 1. The precise measurements 
show a major reduction compared to the raw byte 
counts, ranging from 0.3–6.0% of the original values. 
The precise methods also perform much better than 

simple bandwidth measurements from prior research 
[1], demonstrating a reduction to 3–25% of the original 
values. In the first five scenarios, the precise 
measurements were still significantly larger than the 
amount of UI-layer information, which we 
approximated by recording the number of link 
traversals and size of form submissions. After 
examining the web pages in those scenarios, we found 
this overestimate to be a direct result of Javascript code 
and Flash objects, particularly from advertisements. For 
the Web Mail scenario, the median request size was 5 
bytes. When compared to the average of 73.3, this 
indicates that there were a few large requests whose 
URLs did not appear as links in web pages. We believe 
that more advanced Javascript and Flash processing 
will allow us to correctly extract many of these links in 
the future. Our goal is to approach an optimal case 
where we correctly read all links in each document. The 
Blog reading scenario is representative of this best case 
because no links came from Javascript code. We hope 
to refine the precise analysis techniques so that the 
average count is only a few bytes across all browsing 
scenarios. In the future, we also plan on establishing 
long-term byte count thresholds similar to those in Web 
Tap [1] for identifying clients that leak suspiciously 
large amounts of data. 

6. Conclusions and Research Challenges 

In this paper, we presented methods for precisely 
quantifying information leaks in outbound web traffic. 
These methods exploit protocol knowledge to filter 
repeated and constrained message fields, thus isolating 
true information flows from the client. The resulting 
measurements can help identify leaks from spyware and 
malicious insiders. We evaluated the precise analysis 
techniques by applying them to web traffic from several 
browsing scenarios, including web mail, online 
shopping, and social networking. They produced 
request size measurements that were 94–99.7% smaller 

Scenario Total Req. Count Raw (bytes) Simple (bytes/%) Precise (bytes/%) Avg. Precise Size
Web Mail 508 619,661 224,259 / 36.2% 37,218 / 6.01% 73.3 bytes
Sports News 911 1,187,579 199,119 / 16.8% 49,785 / 4.19% 54.6 bytes
News 547 502,208 74,497 / 14.8% 16,582 / 3.30% 30.3 bytes
Shopping 1,530 913,226 156,882 / 17.2% 26,390 / 2.89% 17.2 bytes
Social Networking 1,175 1,404,251 91,270 /   6.5% 15,453 / 1.10% 13.2 bytes
Blog 191 108,565 10,996 / 10.1% 351 / 0.32% 1.8 bytes

Table 1. Bandwidth measurement results for six web browsing scenarios using three different measurement 
techniques, along with the average bytes/request for the precise technique. 

 



than raw bandwidth values, demonstrating their ability 
to filter out constrained information. 

The main research challenge we encountered was 
measuring web requests from pages with active 
Javascript code or Flash objects. Correctly extracting 
links from Javascript and Flash is undecidable in 
general, and may require running scripts in a full-
fledged interpreter or performing complex static 
analysis, even in common cases. Both of these 
approaches would have a significant impact on 
performance. Optimizing the precise bandwidth 
measurement techniques to handle large traffic volumes 
will be another research challenge. Caching parse 
results and storing hash values instead of full strings 
will reduce CPU and memory overhead but hurt 
accuracy for dynamic content and edited responses. In 
the future, we plan to quantify these performance 
tradeoffs and introduce more powerful Javascript 
analysis techniques. 
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