
Towards Quantification of Network-Based Information Leaks via HTTP

Kevin Borders
Web Tap Security, Inc.
White Lake, MI 48383

kborders@webtapsecurity.com

Atul Prakash
University of Michigan
Ann Arbor, MI 48109

aprakash@eecs.umich.edu

Abstract

As the Internet grows and network bandwidth continues to increase, administrators are faced with the task of
keeping confidential information from leaving their networks. Today’s network traffic is so voluminous that manual
inspection would be unreasonably expensive. In response, researchers have created data loss prevention systems that
check outgoing traffic for known confidential information. These systems stop naïve adversaries from leaking data,
but are fundamentally unable to identify encrypted or obfuscated information leaks. What remains is a wide open
pipe for sending encrypted data to the Internet.

We present an approach for quantifying network-based information leaks. Instead of trying to detect the presence of
sensitive data—an impossible task in the general case—our goal is to measure and constrain its maximum volume.
We take advantage of the insight that most network traffic is repeated or determined by external information, such as
protocol specifications or messages sent by a server. By discounting this data, we can isolate and quantify true
information leakage. In this paper, we present leak measurement algorithms for the Hypertext Transfer Protocol
(HTTP), the main protocol for web browsing. When applied to real web traffic from different scenarios, the
algorithms show a reduction of 94–99.7% over a raw measurement and are able to effectively isolate true
information flow.

1. Introduction

Network-based information leaks pose a serious threat
to confidentiality. They are the primary means by
which hackers extract data from compromised
computers. The network can also serve as an avenue for
insider leaks, which, according to a 2007 CSI/FBI
survey, are the most prevalent security threat for
organizations [5]. Because the volume of legitimate
network traffic is so large, it is easy for attackers to
blend in with normal activity, making leak prevention
difficult. In one experiment, a single computer
browsing a social networking site for 30 minutes
generated over 1.3 MB of legitimate request data—the
equivalent of about 195,000 credit card numbers.
Manually analyzing network traffic for leaks would be
unreasonably expensive and error-prone. Limiting
network traffic based on the raw byte count would only
help detect large information leaks due to the volume of
normal traffic.

In response to the threat of network-based information
leaks, researchers have developed data-loss prevention
(DLP) systems [6, 8]. DLP systems work by searching
through outbound network traffic for known sensitive
information, such as credit card and social security
numbers. Some even catalog sensitive documents and

look for excerpts in outbound traffic. Although they are
effective at stopping accidental and plaint-text leaks,
DLP systems are fundamentally unable to detect
encrypted information flows. They leave an open
channel for leaking encrypted data to the Internet.

In this paper, we introduce a new approach for precisely
quantifying network-based information leaks. Rather
than searching for known sensitive data—an impossible
task in the general case—we aim to measure and
constrain its maximum volume. We exploit the fact that
a large portion of network traffic is repeated or
constrained by protocol specifications. By ignoring this
fixed data, we can isolate true information flows from a
client to the Internet, regardless of encryption or
obfuscation. The algorithms presented in this paper
yield results that are 94–99.7% smaller than raw request
sizes for several common browsing scenarios, and 75–
97% smaller than a simple calculation from prior
research [1]. They also measure information content
irrespective of data hiding techniques. The end result is
a small, evasion-proof bandwidth measurement that can
precisely quantify and isolate network-based
information leaks.

The leak measurement techniques in this paper focus on
the Hypertext Transfer Protocol (HTTP), the main

protocol for web browsing. They take advantage of
HTTP and its interaction with Hypertext Markup
Language (HTML) documents to identify information
originating from the user. The basic idea is to compute
the content of expected HTTP requests using only
externally available information, including previous
network requests, previous server responses, and
protocol specifications. Then, the amount of
unconstrained outbound bandwidth is equal to the edit
distance (edit distance is the size of the edit list required
to transform one string into another) between actual and
expected requests plus timing information. This
unconstrained bandwidth measurement represents the
maximum amount of information that could have been
leaked by the client, while minimizing the influence of
repeated or constrained data.

The reasons that we chose to focus on HTTP in this
paper are twofold. First, it is the primary protocol for
web browsing. Many networks, particularly those in
which confidentiality is a high priority, will only allow
outbound HTTP traffic through a proxy server and
block other protocols. In this scenario, HTTP would be
the only option for an attacker to leak data over the
network. Second, a large portion of information in
HTTP requests is constrained by protocol
specifications. This is not the case for e-mail, where
most information is in the e-mail body—an
unconstrained field. Although the concepts in this paper
would not apply well to all network traffic, we believe
that they will yield much lower bandwidth
measurements for most protocols, including instant
messaging and domain name system (DNS) queries.
Applying techniques for unconstrained bandwidth
measurement to other protocols is future work.

The remainder of this paper discusses related work in
Section 2, a formal problem description in Section 3,
our measurement techniques in Section 4, the
evaluation in Section 5, and concluding remarks in
Section 6.

2. Related Work

Prior research on detecting covert web traffic has
looked at measuring information flow via the HTTP
protocol [1]. Borders et al. introduce a method for
computing bandwidth in outbound HTTP traffic that
involves discarding expected header fields. However,
they use a stateless approach and therefore are unable to
discount information that is repeated or constrained
from previous HTTP messages. In our evaluation, we
compare the leak measurement techniques presented in

this paper with the simple methods used by Web Tap
[1] and demonstrate a 75–97% measurement reduction
for legitimate traffic.

Research on limiting the capacity of channels for
information leakage has traditionally been done
assuming that systems deploy mandatory access control
(MAC) policies [2] to restrict information flow.
However, mandatory access control systems are rarely
deployed because of their usability and management
overhead, yet organizations still have a strong interest
in protecting confidential information.

One popular approach for protecting against network-
based information leaks is to limit where hosts with can
send data using a content filter, such as Websense [9].
Content filters may help in some cases, but they do not
prevent all information leaks. A smart attacker can post
sensitive information on any website that receives input
and displays it to other clients, including useful sites
such as www.wikipedia.org. We consider content filters
to be complimentary to our measurement methods, as
they reduce but do not eliminate information leaks.

Though little work has been done on quantifying
network-based information leaks, there has been a great
deal of research on methods for leaking data. Prior
work on convert network channels includes embedding
data in IP fields [3], TCP fields [7], and HTTP protocol
headers [4]. The methods presented in this paper aim to
quantify the maximum amount of information that an
HTTP channel could contain, regardless of the
particular data hiding scheme employed.

3. Problem Description

In this paper, we address the problem of quantifying
network-based information leaks by isolating
information from the client in network traffic. We will
refer to information originating from the client as UI-
layer input. From a formal perspective, the problem can
be broken down to quantifying the set U of UI-layer
input to a network application given the following
information:

• I – The set of previous network inputs to an
application.

• O – The set of current and previous network
outputs from an application.

• A – The application representation, which is a
mapping: U × I → O of UI-layer information

combined with network input to yield network
output.

By definition, the set I cannot contain new information
from the client because it is generated by the server. In
this paper, the application representation A is based on
protocol specifications, but it could also be derived
from program analysis. In either case, it does not
contain information from the client. Therefore, the
information content of set O can be reduced to the
information in the set U. If the application has been
tampered with by malicious software yielding a
different representation A’, then the information content
of tampered output O’ is equal to the information
content of the closest expected output O plus the edit
distance between O and O’. Input supplied to an
application from all sources other than the network is
considered part of U. This includes file uploads and
system information. Timing information is also part of
the set U. Though we do not attempt to quantify timing
bandwidth in this paper, we plan to extend the methods
presented by Cabuk et al. [3] in the future to measure
the bandwidth of active HTTP request timing channels.

4. Measurement Techniques

4.1 HTTP Request Overview

There are two main types of HTTP requests used by
web browsers, GET and POST. GET is typically used
to obtain resources and POST is used to send data to a
server. An example of an HTTP POST request can be
seen in Figure 1. This request is comprised of three
distinct sections: the request line, headers, and the
request body. GET requests are very similar except that
they do not have a request body. The request line
contains the path of the requested file on the server, and
it may also have script parameters. The next part of the
HTTP request is the header field section, which consists
of “<field>: <value>” pairs separated by line breaks.
Header fields relay information such as the browser
version, preferred language, and cookies. Finally, the
HTTP request body follows the headers and may
consist of arbitrary data. In the example message, the
body contains an encoded name and e-mail address that
was entered into a form.

4.2 HTTP Header Fields

The first type of HTTP header field that we examine is
a fixed header field. Fixed headers should be the same
for each request in most cases. Examples include the

preferred language and the browser version. We only
count the size of these headers for the first request from
each client, and count the edit distance from previous
requests on subsequent changes. Here, we treat all
HTTP headers except for Host, Referer, and Cookie as
fixed. Some of these header fields, such as
Authorization, may actually contain information from
the user. When these fields contain new data, we again
count the edit distance with respect to the most recent
request.

Next, we look at the Host and Referer header fields.
The Host field, along with the request path, specifies
the request’s uniform resource locator (URL). We only
count the size of the Host field if the request URL did
not come from a link in another page, which we discuss
more in the next section. Similarly, we only count the
Referer field’s size if does not contain the URL of a
previous request.

Finally, we examine the Cookie header field to verify
its consistency with expected browser behavior. The
Cookie field is supposed to contain key-value pairs
from previous server responses. Cookies should never
contain UI-layer information from the client. If the
Cookie differs from its expected value or we do not
have a record from a previous response (this could
happen if a mobile computer is brought into an
enterprise network), then we count the edit distance
between the expected and actual cookie values. At least
one known tunneling program, Cooking Channel [4],
hides information inside of the Cookie header in
violation of standard browser behavior. The techniques
presented here correctly measure outbound bandwidth
for the Cooking Channel program.

4.3 Standard GET Requests

HTTP GET requests are normally used to retrieve
resources from a web server. Each GET request
identifies a resource by a URL that is comprised of the
server host name, stored in the Hostname header field,
and the resource path, stored in the request line.
Looking at each HTTP request independently, one
cannot determine whether the URL contains UI-layer
information or is the result of previous network input
(i.e., a link from another page). If we consider the entire
browsing session, however, then we can discount
request URLs that have been seen in previous server
responses, thus significantly improving unconstrained
bandwidth measurements.

The first step in accurately measuring UI-layer
information in request URLs is enumerating all of the
links on each web page. In this paper, we only use
simple HTML parsing to extract link URLs. An
example of an HTML link is “Click
Here!” where the URL is
“http://www.example.com/page” and the link text is
“Click Here!”. In the future, we plan to handle
Javascript constructs such as such as “onclick =
‘this.document. location = <link>’”. We
also plan to employ program analysis techniques or run
Javascript through a full-fledged interpreter to handle
more advanced Javascript code related to links.
Although link extraction is undecidable in general,
these approaches are likely to be successful in
extracting links for most real cases. Currently, we count
URLs that we cannot identify with HTML parsing as
UI-layer information.

After the set of links has been determined for each
page, we can measure the amount of UI-layer
information conveyed by GET requests for those URLs.
The first step is dividing links up into two categories:
mandatory and voluntary. A mandatory link is one that
should always be loaded. Examples include images,
scripts, etc. A voluntary link is selected by the user after
the page has been loaded. Loading URLs from
mandatory links does not directly leak any information.
Omission of some mandatory links may directly leak up
to one bit of information per link (one bit for each link,
not just omitted links). Reordering mandatory links
(they have a predetermined order) may leak up to
log2(n!) bits where n is the number of mandatory
links that were loaded. If we encounter missing or
reordered mandatory links, we count log2(m!) + n

bits where n is the original number of links and m is
the number of links that were loaded. For voluntary
links, we count log2(n) for each request where n is
the number of voluntary links on the parent page. We
use this figure because selecting 1 of n links leaks up to
log2(n) bits of information. When the user has
multiple pages open, the number of available links may
be greater than those on one page. In practice, we count
log2(n) bits for a link only if it came from the last
page that was loaded. Otherwise, we count log2(n) +
log2(p) bits where n is the number of links on the
parent page and p is the number of pages in the user’s
browsing history.

4.4 Form Submission Requests

The primary method for transmitting information to a
web server is form submission. Form submission
requests send information that the user enters into input
controls such as text boxes and radio buttons. They may
also include information originating from the server in
hidden or read-only fields. Form submissions contain a
sequence of delimited <name, value> pairs, which can
be seen in the body of the POST request in Figure 1a.
The field names, field ordering, and delimiters between
fields can be derived from the page containing the form
seen in Figure 1b and thus do not convey UI-layer
information. Field values may also be taken from the
encapsulating page in some circumstances. Check
boxes and radio buttons can transmit up to one bit of
information each, even though the value representing
“on” is often several bytes. Servers can store client-side
state by setting data in “hidden” form fields, which are
echoed back by the client upon form submission.
Visible form fields may also have large default values,

1 POST /download HTTP/1.1
2 Host: www.webtapsecurity.com
2 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1;
en-US; rv:1.8.1.12) Gecko/20080201 Firefox/2.0.0.12

2 Keep-Alive: 300
2 Connection: keep-alive
2 Referer: http://www.webtapsecurity.com/download.html
2 Content-Type: application/x-www-form-urlencoded
2 Content-Length: 73
3 FirstName=John&LastName=Doe&Email=johndoe%40example.
com&Submit=Download

<html>

<body>

 <form action=”/download” method=”post”>

 <input type=”text” name=”FirstName”>

 <input type=”text” name=”LastName”>

 <input type=”text” name=”Email”>

 <input type=”submit” value=”Download”>

 </form>

</body>

</html>

 (a) (b)
Figure 1. (a) A sample HTTP POST request for submitting contact information to download a file. Line 1 is the

HTTP request line. Lines marked 2 are request headers, and line 3 is the request body. Bytes counted by a
simple algorithm are highlighted in gray. UI-layer data is highlighted in black with white text.

(b) A sample HTML document at http://www.webtapsecurity.com/download.html that generated request (a).

as is the case when editing a blog post or a social
networking profile. For fields with default values, we
measure the edit distance between the default and
submitted values. We measure the full size of any
unexpected form submissions or form fields, which
may result from active Javascript.

4.5 Custom Web Requests and Edit
Distance

Custom network applications, Active Javascript, and
malicious software may send arbitrary HTTP requests
that do not conform to the behavior of a web browser.
This leads us to the problem of measuring UI-layer
information U for an unknown application
representation A’. In this case, we reduce the effects of
repetition by counting the edit distance between each
new request and recent requests to the same server from
the same client, rather than counting the entire size of
each request. In the future, we plan to explore the use of
an incremental compression algorithm on custom web
requests to further isolate true outbound information
flows. Analyzing active Javascript to derive its
application representation may also help to generate
more accurate measurements for custom web
applications.

5. Evaluation

We evaluated our leak quantification techniques on web
traffic from several legitimate web browsing scenarios.
The scenarios were 30-minute browsing sessions that
included web mail (Yahoo), social networking
(Facebook), news (New York Times), sports (ESPN),
shopping (Amazon), and personal blog websites. The
results are shown in Table 1. The precise measurements
show a major reduction compared to the raw byte
counts, ranging from 0.3–6.0% of the original values.
The precise methods also perform much better than

simple bandwidth measurements from prior research
[1], demonstrating a reduction to 3–25% of the original
values. In the first five scenarios, the precise
measurements were still significantly larger than the
amount of UI-layer information, which we
approximated by recording the number of link
traversals and size of form submissions. After
examining the web pages in those scenarios, we found
this overestimate to be a direct result of Javascript code
and Flash objects, particularly from advertisements. For
the Web Mail scenario, the median request size was 5
bytes. When compared to the average of 73.3, this
indicates that there were a few large requests whose
URLs did not appear as links in web pages. We believe
that more advanced Javascript and Flash processing
will allow us to correctly extract many of these links in
the future. Our goal is to approach an optimal case
where we correctly read all links in each document. The
Blog reading scenario is representative of this best case
because no links came from Javascript code. We hope
to refine the precise analysis techniques so that the
average count is only a few bytes across all browsing
scenarios. In the future, we also plan on establishing
long-term byte count thresholds similar to those in Web
Tap [1] for identifying clients that leak suspiciously
large amounts of data.

6. Conclusions and Research Challenges

In this paper, we presented methods for precisely
quantifying information leaks in outbound web traffic.
These methods exploit protocol knowledge to filter
repeated and constrained message fields, thus isolating
true information flows from the client. The resulting
measurements can help identify leaks from spyware and
malicious insiders. We evaluated the precise analysis
techniques by applying them to web traffic from several
browsing scenarios, including web mail, online
shopping, and social networking. They produced
request size measurements that were 94–99.7% smaller

Scenario Total Req. Count Raw (bytes) Simple (bytes/%) Precise (bytes/%) Avg. Precise Size
Web Mail 508 619,661 224,259 / 36.2% 37,218 / 6.01% 73.3 bytes
Sports News 911 1,187,579 199,119 / 16.8% 49,785 / 4.19% 54.6 bytes
News 547 502,208 74,497 / 14.8% 16,582 / 3.30% 30.3 bytes
Shopping 1,530 913,226 156,882 / 17.2% 26,390 / 2.89% 17.2 bytes
Social Networking 1,175 1,404,251 91,270 / 6.5% 15,453 / 1.10% 13.2 bytes
Blog 191 108,565 10,996 / 10.1% 351 / 0.32% 1.8 bytes

Table 1. Bandwidth measurement results for six web browsing scenarios using three different measurement
techniques, along with the average bytes/request for the precise technique.

than raw bandwidth values, demonstrating their ability
to filter out constrained information.

The main research challenge we encountered was
measuring web requests from pages with active
Javascript code or Flash objects. Correctly extracting
links from Javascript and Flash is undecidable in
general, and may require running scripts in a full-
fledged interpreter or performing complex static
analysis, even in common cases. Both of these
approaches would have a significant impact on
performance. Optimizing the precise bandwidth
measurement techniques to handle large traffic volumes
will be another research challenge. Caching parse
results and storing hash values instead of full strings
will reduce CPU and memory overhead but hurt
accuracy for dynamic content and edited responses. In
the future, we plan to quantify these performance
tradeoffs and introduce more powerful Javascript
analysis techniques.

7. References

[1] K. Borders and A. Prakash. Web Tap: Detecting
Covert Web Traffic. In Proc. of the 11th ACM
Conference on Computer and Communications
Security (CCS), 2004.

[2] S. Brand. DoD 5200.28-STD Department of
Defense Trusted Computer System Evaluation
Criteria (Orange Book). National Computer
Security Center, 1985.

[3] S. Cabuk, C. Brodley, and C. Shields. IP Covert
Timing Channels: Design and Detection. In Proc.
of the 11th ACM Conference on Computer and
Communications Security (CCS), 2004.

[4] S. Castro. How to Cook a Covert Channel. hakin9,
http://www.gray-world.net/projects/ cooking_channels/
hakin9_cooking_channels_en.pdf, 2006.

[5] R. Richardson. CSI Computer Crime and Security
Survey. http://i.cmpnet.com/v2.gocsi.com/pdf/
CSISurvey2007.pdf, 2007.

[6] RSA Security, Inc. RSA Data Loss Prevention
Suite. RSA Solution Brief, http://www.rsa.com/
products/EDS/sb/DLPST_SB_1207-lowres.pdf, 2007.

[7] S. Servetto and M. Vetterli. Communication Using
Phantoms: Covert Channels in the Internet. In
Proc. of the IEEE International Symposium on
Information Theory, 2001.

[8] VONTU. Data Loss Prevention, Confidential Data
Protection – Protect Your Data Anywhere.
http://www.vontu.com, 2008.

[9] Websense, Inc. Web Security, Internet Filtering,
and Internet Security Software.
http://www.websense.com/global/en/, 2008.

