
Virtues and Obstacles of Hardware-assisted
Multi-processor Execution Replay

Cristiano Pereira, Gilles Pokam, Klaus Danne, Ramesh Devarajan, and Ali-Reza Adl-Tabatabai

Intel Corporation

{cristiano.l.pereira, gilles.a.pokam, klaus.danne, ramesh.devarajan, ali-reza.adl-tabatabai}@intel.com

ABSTRACT

The trend towards multi-core processors has spurred a
renewed interest in developing parallel programs. Paral-
lel applications exhibit non-deterministic behavior across
runs, primarily due to the changing inter-leaving of shared-
memory accesses from run to run. The non-deterministic
nature of these programs lead to many problems, which
will be described in this paper. In order to get a handle
on the non-determinism, techniques to record and replay
these programs have been proposed. These allow capturing
the non-determinism and repeat the execution of a pro-
gram, hence enabling better understanding and eliminating
problems due to non-determinism. In this paper, we argue
that an efficient record and replay (R&R) system must be
assisted by hardware support. However, adding support for
R&R in hardware requires strong justification, in terms of
added value to the processor. Up until now, debugging has
been the primary motivation used by previous work. We
argue that stronger usage models are required to justify the
cost of adding hardware support for R&R. Hence the first
contribution of this paper are additional usage models (the
virtues of R&R) and how we think they will add value to
future micro-processors. We think the current lack of focus
on wider and more applicable usage models is an obstacle
for its adoption. The other obstacle for implementation of
hardware-assisted R&R is that some complexities of such
endeavor have not been addressed and studied properly.
Current research approaches have shortcomings that prevent
them from becoming an implementable feature. In this
paper, we also identify those shortcomings and indicate
research directions to bridge the gap between the research
and a product implementation.

1. INTRODUCTION
The wide spread availability of shared-memory multi-core

processors compels application developers to write software
that explores the parallelism. This is done by dividing the
application in multiple threads of execution, which commu-
nicate and synchronize through shared-memory. However,
developing parallel applications is a complex and error-prone
activity. This is because it is impractical to predict and test
all possible inter-leavings of instructions that access shared-
memory, thus making it hard to ensure the correctness of
the program. In addition, contrary to many sequential
programs, the execution of a parallel program is non-
deterministic. That is, the execution of a program with the
same input is not repeatable from run to run; different inter-
leavings lead to different control flow and different behaviors

even with the same input.
The non-determinism and the difficulty to reason about

memory instruction inter-leavings are the source of many
problems in parallel programming [10]. Prior research work
has shown that test coverage of multi-threaded programs is
a hard task [16], given the large number of possible inter-
leavings. As a consequence, production code is subject to
untested inter-leavings in the field, which leads to concur-
rency bugs. These bugs are hard to understand and to fix.
In order to address this, developer tools to dynamically find
data-races [22, 23], atomicity violation [11], and other types
of concurrency bugs (e.g. deadlocks [27]) have been created,
both in academia and in the industry. In addition, when a
concurrency bug manifests in the field [18], it is often hard-
to-reproduce it and debug the root cause of the problem.
Therefore, parallel programming significantly complicates
the tasks of testing and debugging programs.

Furthermore, the non-deterministic nature of parallel
applications causes a number of other problems. It makes
it difficult to support high-availability system solutions,
because it increases the complexity to keep a replica syn-
chronized with a primary execution [13, 25, 26]. Non-
determinism also creates challenging problems for post-
silicon validation, which relies on techniques similar as
PSMI [24]. These techniques enable reproducing a bug,
observed in the silicon prototype, for debugging of a newly
produced silicon. It is becoming increasingly challenging to
repeat such a buggy execution in a functional simulator, in
order to identify problems with the prototype. Finally, non-
determinism opens up opportunities for vulnerability attacks
and makes it difficult to detect such attacks [6].

One prominent technique to cope with the problems
mentioned above is the ability to record and replay the
execution of a multi-threaded program in a shared memory
multi-processor environment. Record and replay (R&R)
records a number of events during the execution of a
program that enables repeating the execution as in the
original run. This enables many nice properties that help
mitigate the issues previously described. One obvious
application of R&R that has been the focus of academic
research is deterministic replay for debugging of parallel pro-
grams, which enables repeatability of bugs and other useful
debugging enhancements such as time-travel debugging.

In this paper, our first major contribution is a detailed dis-
cussion of how R&R can add value to the micro-architecture
beyond the debugging usage model. We will describe
the usage scenarios that could greatly benefit from such
technology and how we envision its use. We believe that

debugging is not a strong value proposition to justify, by
itself, the cost and the risk of adding hardware support
for R&R, and hence other stronger value propositions are
required.

The other major contribution of this paper is an analysis
of how practical it is to implement R&R in today’s micro-
architectures. We will argue that the academic propos-
als [28, 18, 7, 14, 20, 9] currently existing are not practical
and lack solutions to many important problems. We will
discuss what are the major problems that separate the
academic proposals from a real implementation on today’s
micro-processors. We will also argue that software-only
solutions [21] cannot be efficient because the architecture
neither exposes nor provides an efficient way to record
key events that are needed to reproduce a multi-threaded
execution on a shared memory multi-processor.

2. VALUE PROPOSITION OF DETERMIN-

ISTIC REPLAY
Hardware support for R&R was proposed two decades

ago by Bacon et al [2]. Bacon motivated the need for R&R
for debugging by arguing that a bug can only be fixed if it
can be reproduced when running the program with the same
input. Since parallel program runs are not reproducible due
to shared-memory inter-leavings, Bacon proposed recording
the memory inter-leavings for replay. Since Bacon, many
other proposals for R&R were introduced [28, 18, 7, 14, 20,
9]. Most of the proposals also present debugging as the
major motivation for R&R.

The recorder of an R&R system needs to log two types of
events: 1) recording the input that is not deterministic, that
is, inputs that cannot be reproduced by simply executing the
program again, such as memory mapped I/O and DMAs
[21]; 2) recording the shared-memory interleaving across
multiple processors.

Recording the shared-memory dependencies is typically
the most complex because it involves observing cache coher-
ence events (e.g. invalidations, data request) in the memory
subsystem and interconnect. In today’s and past processors,
it is impossible to observe such events without hardware
modifications [17]. Because the hardware modifications
required involve changes in the memory subsystem and cache
hierarchy – components which are typically hard to validate
and change –, the justification for its implementation has
to be very compelling. Although we think R&R is a very
important component of debugging parallel programs, we
do not think debugging alone is a strong enough value
proposition to justify the cost of the implementation. The
market that would benefit from such a feature for debugging
is very limited (only parallel programmers directly benefit
from it). Since the feature is likely to increase the cost
and the power consumption of the processor, broader usage
models are necessary. In this section, we expand beyond
the debugging usage model and show how we envision the
technology will be useful.

2.1 High Availability Systems
High-availability (HA) of systems can be achieved at

multiple levels. In one extreme, systems with hot-swappable
components is one form of HA, which allows a system to
be available despite reconfiguration or exchange of some
components. On the other extreme, replication and fail-

over provides a full replica of the primary system, which
replicates both hardware and software, thus coping with
disruptions by moving the workload from the primary to
the replica. This ensures continuous availability or minimal
disruptions. The level of HA required depends on the
financial consequences of a down-time; if the cost (lost
lives for emergency-response organizations or money for
businesses; HRG - Harvard Research Group [8] estimates
an average of $10,000 per hour of down-time in the year
2000) outweighs the price of HA, then it makes sense. While
there are other levels of HA, we will not discuss them in
this paper. In this paper, we focus on the replication
and fail-over scenario, which we think is critical for many
enterprises. Applications that have built-in fault-tolerance
and high-availability features, such as many databases (e.g.
Oracle database), do not require additional HA solutions,
because the application itself can ensure continued service,
without any disruption. Other server applications, however,
may not have built-in solutions. These include web servers
and mail servers, for example. If those applications are
critical and service disruption means big fiscal consequences
for the company operating them, HA solutions which are
transparent to the application are fundamental.

There are companies that provide transparent HA solu-
tions in the market (e.g. Stratus [25], Marathon [13], and
VMWare [26]). Stratus, for example, uses proprietary
hardware to keep two running CPUs in lockstep, where
the instructions in each CPU are processed simultaneously,
in addition to special hardware to handle redundancy for
all other I/O components. If one CPU fails, the other
takes over. These solutions are expensive, hard to maintain
and are becoming increasingly complex, especially with the
proliferation of multi-core architectures. The sources of
non-determinism with multi-core architectures are hard to
capture, in particular maintaining the same order of shared-
memory accesses.

The other, more prominent solution for high-availability
due to its reduced cost and flexibility, is virtualization. This
is the approach taken by Marathon and VMWare. Aca-
demics have also been looking into VM-based HA solutions
[5]. In this context, two virtual machines are kept in sync
with one another, both running the same operating system
and application. The VMs are kept in sync by either
frequently exchanging checkpoints or by exchanging logs
containing the non-deterministic events processed by one
machine, which are then used to keep the replica in sync.
The replica always runs a bit behind of the primary, but close
enough to be able to continue the execution. The primary
and the replica exchange data through an availability-link.
Cully et al [5] made a qualitative comparison between
the two approaches. Frequent check-pointing the state
of the VM was shown to have performance overhead and
bandwidth requirements that can affect performance of low-
latency applications. We speculate that Marathon [13]
offers a similar solution, though it is not clear. Cully et
al acknowledge R&R as an alternative, but point out that a
software only solution has overhead that is too prohibitive
because shared-memory communication order has to be
tracked and propagated from one machine to the other.

We conjecture that providing hardware support for track-
ing shared-memory communication solves this problem and
enables the use of R&R as a solution for high-availability.
VMWare [26] has shown that R&R can be done very

efficiently in software for single-processor machines. With
hardware support for R&R, tracking shared-memory com-
munication can be done with low overhead, hence enabling
the technology on modern processors. R&R can then be
used for HA, thus enabling another usage model, which
opens opportunities for new markets, therefore adding value
to the microprocessor.

2.2 Post-silicon validation
Post-silicon validation heavily relies on transfer of failures

from silicon to either RTL model or tester environment for
debug [24]. Processor state, event and pin trace information
collected using logic analyzers are used to reconstruct and
replay the complete processor execution. However, the
development of current generation of multi-core processor
and platform topologies has reached a stage wherein the
various bus structures are not economically viable points of
instrumentation for debug. In certain classes of validation
scenarios, the number of visibility points have increased from
observation of a single bus (like a FSB) to numerous inter-
processor or processor-memory links. In other validation
scenarios, due to tighter integration of the various building
blocks to a single system on chip, there is very limited
observation points for debug. This is a compound problem
which results in:

1. Increased cost for logic analyzer probes for observation;

2. Associated complex platform instrumentation;

3. No direct co-relation of bus observed data with the in-
ternal CPU activity due to inter-processor or memory
protocols;

4. Necessity to handle higher bus or link bandwidths
which leads to data collection errors.

5. Complex ordering of transactions obtained across mul-
tiple channels.

Hardware-assisted R&R coupled with hooks for probe-
less data extraction (without a logic analyzer) provides an
alternative to tackle the problem areas highlighted above for
validation. To facilitate logic debug, we will need R&R to
capture clock accurate information on asynchronous events,
shared memory interleaving transactions and any source
of non-determinism like DMA updates to memory. Bus
functional models can then be created to run along with RTL
to inject the memory/event information observed in order to
detect and debug logic issues. Architecturally valid models
can also be used to debug software, concurrency issues
which manifest in validation world due to incorrect inference
of architecture specification, porting issues when moving
test content from one family of processors to another, or
environment related issues which have not been accounted
for. In these scenarios, R&R can be used in a first triage
as a backbone to isolate the ”false alarms” due to software
test content issues. After initial triage, R&R can also be
used for a more deep-dive logic-based debug, if necessary.
In essence, time to debug and root-cause a sighting in post-
silicon validation environment can be decreased significantly
with hardware-assisted R&R.

As modern microprocessors and platform topologies be-
come more complex, with increased focus on reducing the
validation schedule, although hardware-assisted R&R comes

up with the overhead of extra silicon real-estate, design
and development time, this overhead will be compensated
with reduced validation costs and quicker triage of issues,
resulting in faster time to market.

2.3 Debugging and Testing
R&R was originally motivated by the cumbersome task

of debugging parallel programs on multi-processor archi-
tectures. It is notoriously difficult to reproduce concur-
rency bugs due to non-determinism. Even if the bug
is reproducible, it can be very hard to root cause the
source of the bug and fix it. Reproducing the bug in-
house is a difficult task faced by many parallel computing
programmers. Debugging tools and traditional addition of
statements to print out variables and values often hide the
occurrence of the problem, making the task time-consuming
and frustrating. An even more daunting task is to reproduce
the bug which manifests itself only in production environ-
ments due to specific environment configurations. R&R
assisted by hardware proposes a solution to all debugging
problems above, in a multi-processor environment, with
very low overhead. This enables the mechanism to be
“always on” during development of applications, in contrast
to previous software-only proposals. Whenever a test fails,
the programmer can use the logs to repeat the execution
exactly, as many times as necessary, and then root cause
the problem. Replay can be integrated with single-step
debuggers such as GNU GDB or Visual Studio and also
combined with tools for dynamic detection of concurrency
bugs (e.g. [23, 22, 11]). This significantly improves the
experience of debugging parallel code since the analysis is
conducted on a deterministic execution that guarantees the
bug is present. If the replay logs are independent of the
operating system, as in BugNet [18], a bug can be captured
at the customer site and debugged at the developer site.
This allows debugging customer problems in house, without
having to repeat the environment in which the bug was
exposed. In addition, it allows for dynamic analyses to be
executed during replay, hence decoupling the analysis from
the execution and minimizing perturbations to the original
program run [4]. Replay can also be used with tools that
aim at profiling and performance analysis of the execution
(e.g. PinPlay [19], based on Intel’s Pin framework [12]).

In addition to the integration with debuggers and dynamic
analysis tools for concurrency issues, R&R can also be
used to improve testing of parallel programs. In particular,
systematic testing of parallel programs has surged with new
momentum in this new era of multi-processors. Testing of
concurrent code has been shown to cover a limited number
of thread inter-leavings, hence limiting the efficacy and
predictability (due to non-determinism) of testing. Tools
for systematic testing such as Microsoft CHESS [16] aim
at overcoming this limitation by intelligently perturbing the
execution to generate buggy inter-leavings. Once a buggy
inter-leaving is detected, CHESS has methods to reproduce
it, provided the execution is on a single-processor machine.
One obvious contribution of R&R is the ability to capture
the buggy execution on a multi-processor machine, allowing
to replay-debug it as mentioned previously. Another usage
model is the ability to replay a non-buggy execution and
during replay intelligently choose where to perturb the
execution with the goal to expose more concurrency bugs.
The ability to replay and analyze the code enables profiling

the runs to better choose where to perturb.

2.4 Intrusion Detection
Maintaining computers systems secure is not an easy task.

The wide availability of anti-virus software and the stricter
security concerns of today’s enterprises are not enough to
keep systems from being broken into. As a result, the
ability to analyze attacks after the system intrusion occurs
is important because it enables understanding the vulner-
ability of the system and consequently allows the proper
fix of potential damage created by the attacker. Recording
non-deterministic events during execution allows a system
administrator to replay the execution in order to understand
the chain of events that led to the intrusion. Dunlap et
al introduced the concept of deterministic replay as a
potential solution for the intrusion detection problem [6].
As in previous examples, recording the execution in multi-
processors environment without hardware support incurs
prohibitive overhead. Therefore, in order to reproduce
the execution accurately and efficiently, R&R assisted by
hardware is required.

3. PRACTICAL ISSUES
In this section, we discuss the practicality of adding

hardware support for R&R into a microprocessor. There
exist two hardware approaches for recording the input
non-determinism. One relies on logging a subset of load
instructions values that cannot be reproduced during replay.
BugNet [18] is the state of the art. To identify which load
values to log, either the caches are modified with a bit to
indicate when to log or the cache lines have to be logged
for every load-miss. Another approach proposes OS specific
changes to record non-deterministic events such as memory
mapped I/O and interrupts. Capo [15] is a recent approach
and the state of the art.

Various software-only proposals of R&R were introduced
in the past [21]. Solutions that capture the data-race non-
determinism typically incur large run-time overhead. The
main reason is that events which reveal shared-memory
dependencies (i.e. cache coherence) are not exposed to
the software layer. As a result, the software has to
either monitor read and write instructions to memory
and emulate coherence or track dependencies at page-level
granularity. Both schemes are slow and would limit the
applicability of R&R. Nagarajan et al [17] proposed exposing
cache coherence to the software through interrupts. Even
so, the projected runtime overhead is still unacceptable
for some usage models. Hence we think the only way
to achieve reasonable performance is through hardware-
assisted recording of memory races.

For recording the shared-memory inter-leavings, most of
the past academic proposals [28, 29, 18, 7, 14, 20, 9] rely
on observing coherence requests to identify when a shared-
memory dependency occurs. Once detected, each technique
provides a clever way to decide when to log a dependency,
striving to imply as many dependencies as possible to
minimize log sizes and number of logged dependencies. The
combination of input non-determinism and shared-memory
inter-leavings is sufficient for deterministically replay a
parallel program on multi-core architectures.

While the previous proposals are a significant step towards
the implementation of R&R in hardware, we think there are
other complex challenges that need to be overcome to bridge

the gap between these proposals and a real implementation.
In this section, we will discuss these challenges and point
out research directions to overcome them.

3.1 Hardware Complexity and Intrusiveness
A feature proposal that requires changes in the hardware

needs to be carefully evaluated before deciding whether
the feature will be added or not. Minimal hardware
complexity and performance overhead are necessary require-
ments because the cost of development and validation of a
microprocessor is high. In addition to strong justification
and usage models to add value, which we discussed in
the previous section, an implementation that has minimal
complexity and intrusiveness is required. The current
proposals made significant advancements to simplify R&R
in hardware. Proposals such as [7, 20] do not require
modification to the cache. Instead, they use bloom-filters [3]
to track dependencies across processors. All these propos-
als rely on piggybacking timestamps on cache coherence
messages. This contributes to design complexities and
potential performance overhead. The scheme proposed
in [20] significantly minimizes the additional traffic overhead
due to piggybacking on cache coherence messages. We think
a viable implementation should strive to minimize coherence
traffic overhead to be acceptable. Nonetheless, a careful
and convincing evaluation of the performance impact and
perturbation of workload execution has not been properly
done yet.

While the performance of logging input data for single-
core processors using VMMs has been studied in the past [26],
the performance of logging memory-races using hardware
has been neglected. The hardware records the memory
race logs and keep them in a buffer, inside the processor.
However, those logs have to inevitably be written out to
memory, so that the logs can be stored in disk. The
performance and perturbation impact of writing logs to
memory has not been studied sufficiently. The performance
impact depends on the logging frequency (which depends on
the applications being recorded) and on the policy to write
the logs out. The addition memory operations to write the
logs will contend with the memory operations of the program
itself, hence perturbing the original execution.

3.2 Memory Consistency Models
All previous proposals, with the exception of [29] and [14],

assume a multi-core processor with sequential consistency
(SC) [1] memory model. Looking at most micro-architectures
available today, we cannot find a major processor which
implements sequential consistency as its memory model.
Hence there is a clear disconnect between the proposals and
the reality of current processors. RTR [29] provides one step
towards handling Total Store Order (TSO). The approach
suggests that one can detect a sequential consistency viola-
tion and then log the value of the violating load for correct
replay. While the strategy is sound, the mechanism to
implement sequential consistency violation is not described.
In addition, logging the values of sequentially consistent
violating loads can potentially add up to the complexity.
DeLorean [14], though not assuming traditional sequential
consistency, assumes a transaction memory based execution
substrate, which is not currently available in mainstream
processors.

The prior proposals rely on using committed instruction

counts to establish dependencies across cores. On a SC
system, this is not a problem because when a store instruc-
tion commits, it makes its value globally observable to other
cores. Hence the commit count matches the order in which
memory operations are executed and made available to other
cores. Handling a non-sequential consistent memory model
is hard for two reasons: 1) first it breaks the assumption
that committed instruction counts are enough to order
memory instructions, and as a consequence, it requires more
complex schemes to identify when instruction counts need to
be augmented with additional information to allow proper
replay; 2) it requires modification to the core in order
to properly identify when sequential consistency violations
happen and hence can potentially increase the complexity
of logging shared-memory inter-leavings.

3.3 Instruction Atomicity
With instruction atomicity violation, we refer to the fact

that some instructions in the processor do not execute
atomically, i.e. their side-effects can be exposed to other
processors before the instruction has completed execution.
For example, on a cache access, a load or a store operation
can result in several other individual memory operations
being executed. This is typically the case when a memory
operation on one processor updates data to a shared address
that splits over two cache lines. In that case, another
processor might read corrupted partially updated data. An
R&R system that tracks dependencies between instructions
cannot define a correct dependency between the two instruc-
tions. This is especially true for Intel processor families,
where macro instructions are visible to the programmer
but micro instructions are executed by the processor, hence
creating the problem.

In such case, the R&R system must be able to record
dependencies on finer granularity, e.g. at micro-architecture
execution level. For the same reason, a software-based
replayer cannot simply execute one instruction before the
other, but instead must emulate the same behavior that
occurred during the instruction atomicity violation. There-
fore it is clear that R&R needs to detect the occurrence
of instruction atomicity violation and properly log how it
should be replayed.

3.4 Replay Speed
The replay speed refers to how fast the execution of a

program can be replayed as non-deterministic events are
injected and threads are controlled to enforce the proper
order of shared-memory accesses. Since the most focused
usage model for R&R has been debugging, there is always
an implicit assumption that the replay speed in which a
program is executed does not matter. While this is generally
true for debugging in some contexts, we do not think replay
speed can be neglected. For instance, if we are applying
dynamic analysis to find bugs during replay, we do not
want to compound the slowdown of the analysis with the
slowdown of replay. For the testing scenario where we want
to explore different thread inter-leavings, a fast replay would
benefit and maximize the number of candidate inter-leavings
to try out. This adds convenience and improves the types
of techniques that can be applied. More importantly, for
other usage models such as high-availability, replay speed
is not only desirable, but it is essential to enable the
technology. A replica needs to execute at a speed that is

fast enough to catch up with the primary, so that down-
time is minimized. The issue of fast replay speed is not
trivial and warrants careful investigation. For example, for
VM-based replay, synchronizing cores can be an expensive
operation if the execution has to fall-back into the VMM
every time a synchronization is required. To mitigate
this, speculative techniques or even hardware support could
provide a solution.

4. CONCLUSIONS
R&R is a technique that allows recording non-determinism

during the execution of a parallel program on a multi-core
processor. The run of the program is then reproduced
by injecting these non-deterministic events during replay.
Hardware assisted R&R has the potential for capturing
the non-determinism with very little overhead. However,
hardware modifications require strong justification to offset
the risks of implementing it. In this paper, we argued
that multiple usage models for such technology are required
to justify its implementation. Therefore, we described
multiple usages for hardware-assisted R&R that would make
a stronger case for its deployment. In particular, we
described the following usage models: 1) Implementation of
high-availability systems, using replication and fail-over; 2)
Optimization and cost reduction of post-silicon validation;
3) How it can improve debugging (we do think debugging
is a useful usage model, but we do not think debugging by
itself is a strong enough justification) and testing of parallel
programs, by allowing capturing hard to reproduce and
understand concurrency bugs, and by having the potential
to expose concurrency bugs from a parallel program run;
4) And finally by allowing intrusion detection analysis,
during replay, to better understand how a vulnerability was
exploited.

Various proposals for the implementation of hardware-
assisted R&R were presented in the past. However, we still
believe many technical obstacles still need to be overcome
so that one can exploit all the potential virtues of the
technology. We think the complexity and intrusiveness of
the implementation need more careful analysis. We also
pointed out that an implementable solution for systems
that assume relaxed memory models has not been proposed,
hence preventing the technology to become mainstream.
Another source of complexity is a problem we refer to
as instruction atomicity violation, which exposes the side-
effects of not-yet-completed instructions execution to other
processors. This adds complications to both the recorder
and the replayer. This problem has not been addressed at
all. Finally, we discussed how replay speed is fundamental
to enable some of the usage models proposed, in particular
high-availability.

5. REFERENCES

[1] S. V. Adve and K. Gharachorloo. Shared memory
consistency models: A tutorial. IEEE Computer,
29(12):66 – 76, 1996.

[2] D. F. Bacon and S. C. Goldstein. Hardware-assisted
replay of multiprocessor programs. In Proceedings of
the 1991 ACM/ONR workshop on Parallel and
distributed debugging, pages 194–206. ACM Press,
1991.

[3] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7), July 1970.

[4] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling
dynamic program analysis from execution in virtual
environments. In ATC’08: USENIX 2008 Annual
Technical Conference on Annual Technical
Conference, pages 1–14, Berkeley, CA, USA, 2008.
USENIX Association.

[5] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield. Remus: high
availability via asynchronous virtual machine
replication. In NSDI’08: Proceedings of the 5th
USENIX Symposium on Networked Systems Design
and Implementation, pages 161–174, Berkeley, CA,
USA, 2008. USENIX Association.

[6] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. Revirt: enabling intrusion analysis
through virtual-machine logging and replay. In OSDI
’02: Proceedings of the 5th symposium on Operating
systems design and implementation, pages 211–224,
New York, NY, USA, 2002. ACM.

[7] D. Hower and M. Hill. Rerun: Exploiting episodes for
lightweight memory race recording. In Proceedings of
the International Symposium on Computer
Architecture, 2008.

[8] HRG. Hrg insight: The total cost of downtime.
http://www.hrgresearch.com.

[9] D. Lee, M. Said, S. Narayanasamy, Z. Yang, and
C. Pereira. Offline symbolic analysis for
multi-processor execution replay. In Micro-42:
Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages
564–575, New York, NY, USA, 2009. ACM.

[10] E. A. Lee. The problem with threads. Computer,
39:33–42, 2006.

[11] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting
atomicity violations via access interleaving invariants.
In ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming
languages and operating systems, pages 37–48, New
York, NY, USA, 2006. ACM.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In
Proceedings of the Conference on Programming
Language Design and Implementation, 2005.

[13] Marathon. Marathon technologies website.
http://www.marathontechnologies.com.

[14] P. Montesinos, L. Ceze, and J. Torrellas. Delorean:
Recording and deterministically replaying
shared-memory multiprocessor execution efficiently. In
Proceedings of the International Symposium on
Computer Architecture, 2008.

[15] P. Montesinos, M. Hicks, S. King, and J. Torrellas.
Capo: A software-hardware interface for practical
deterministic multiprocessor replay. In Proceedings of
the International Conference on Architectural Support
for Programming Languages and Operating Systems,
2009.

[16] M. Musuvathi. Systematic concurrency testing using

chess. In PADTAD ’08: Proceedings of the 6th
workshop on Parallel and distributed systems, pages
1–1, New York, NY, USA, 2008. ACM.

[17] V. Nagarajan and R. Gupta. Ecmon: exposing cache
events for monitoring. In ISCA ’09: Proceedings of the
36th annual international symposium on Computer
architecture, pages 349–360, New York, NY, USA,
2009. ACM.

[18] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet:
Continuously recording program execution for
deterministic replay debugging. In Proceedings of the
International Symposium on Computer Architecture,
2005.

[19] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and
J. Cownie. Pinplay: A framework for deterministic
replay and reproducible analysis of parallel programs.
In International Symposium on Code Generation and
Optimization (CGO), pages 2–11, April 2010.

[20] G. Pokam, C. Pereira, K. Danne, R. Kassa, and A.-R.
Adl-Tabatabai. Architecting a chunk-based memory
race recorder in modern cmps. In Proceedings of the
International Symposium on Microarchitecture, 2009.

[21] G. Pokam, C. Pereira, K. Danne, L. Yang, S. King,
and J. Torrellas. Hardware and software approaches
for deteministic multi-processor replay of concurrent
programs. Intel Technology Journal, 13(4):20–41, Fall
2009.

[22] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and
J. Torrellas. Accurate and efficient filtering for the
intel thread checker race detector. In ASID ’06:
Proceedings of the 1st workshop on Architectural and
system support for improving software dependability,
pages 34–41, New York, NY, USA, 2006. ACM.

[23] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

[24] I. Silas, I. Frumkin, E. Hazan, E. Mor, and G. Zobin.
System-level validation of the intel pentium m
processor. Intel Technology Journal, 07(2):20–41, May
2003.

[25] Stratus. Stratus technologies website.
http://www.stratus.com.

[26] VMWare. vsphere availability guide.
http://www.vmware.com.

[27] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and
S. Mahlke. Gadara: Dynamic deadlock avoidance for
multithreaded programs. In OSDI ’08 Proceedings. 8th
USENIX Symposium on Operating Systems Design
and Implementation, pages 281–294, December 2008.

[28] M. Xu, R. Bodik, and M. Hill. A flight data recorder
for enabling full-system multiprocessor deterministic
replay. In Proceedings of the International Symposium
on Computer Architecture, 2003.

[29] M. Xu, R. Bodik, and M. D. Hill. A regulated
transitive reduction (rtr) for longer memory race
recording. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

