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Functionality: Q\or

Resource Management:

REICAVEI(G:I Core0 Core1 Core2 Core3 Core4 Core5 Core6 Core7

Need both programmer productivity and performance!




code reuse modularity
same library implementation, different apps same app, different library implementations

Functional Composability
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fast(er)

Performance Composability




Problem: Efficient parallel composability is hard!
< Solution:

= Harts

= Lithe

% Evaluation
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Sparse QR Factorization
(Tim Davis, Univ of Florida)
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Performance of SPQR on 16-core Machine

Out-of-the-Box
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Out-of-the-Box Libraries
Oversubscribe the Resources

= Prefetch [ch h [
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virtualized kernel threads

Hardware




MKL Quick Fix

Using Intel MKL with Threaded Applications
http://www.intel.com/support/performancetools/libraries/mkl/sb/CS-017177 .htm

Software Products

Intel® Math Kernel Library (Intel® MKL)
Using Intel® MKL with Threaded Applications

Page Contents:

® Memory Allocation MKL: Memory appears t allocated and not released
when calling some Intel MKL routines .
ing Threading w S

library with Intel MKL. In this case, the safe approach is to set anﬂ "row\ta\tc\n");
OMP_NUM_THREADS=1. for ( =0:i<10:++){
SV OO —

Multiple programs are running on a multiple-CPU system. In cluster printf(*3d: I ALSAN" 1. (" SIZE]. of"SIZE]):
applications, the parallel program can run separate instances of the
program on each procassor. However, the threading software will see
multiple processors on the systam even though each processor has omp_set_num_threads(1):
separate process running on it. In this case OMP_NUM_THREADS should be
setto 1. for( i=0; i<SIZE: i++){
for( j=0: j<SIZE; j#+}

a[I*SIZE+]

bli*SIZE+]}

c[i*SIZE+j]= (double

If the variable OMP_NUM_THREADS environment variable is not set, then
the default number of threads will be assumed 1.

Setting the Number of Threads for OpenMP* (OMP)

ting the Numb
Changing the Nury

Memory Allocation MKIl M
some Intel® MKL routjpes
One of the advantagesff us|

allocation persists ugtil the 3|
will allocate a stackffqual to

===r={ that threading in Intel MKL be turned off.

Using Threadi‘ with BLA]

We list them here with recon
the problem fhdsts is approp|

=1 Set OMP_NUM_THREADS=1 in the environment.

¥] If more than one thread calls Intel MKL and the
== function being called is threaded, it is important

If the user Jhreads the orolam using OpenMP directives and uses the Intel® Compilers to
compile th program, Intel MKL and the user program will both use the same threading library
Intel MKLytries to detegffine i 1t is in a parallel region in the program, and it is, it does not
spread ijf operations over muitiple threads. But Intel MKL can be aware that it is in a parallel
region only if the thofaded program and Intel MKL are using the same threading library. If the
user prffgram is thr€aded by some other means, Intel MKL may operate in muttithreaded
mode 8nd the cophputations may be corrupted. Here are several cases and our
recommendatioffs:

ovesds the program using OS threads (pthreads on Linux*, Win32*

ads on Windows*). If more than one thread calls Intel MKL and the
fifiction being called is threaded, it is important that threading in Intel MKL
be turned off. Set OMP_NUM_THREADS=1 in the environment.

® User threads the program using OpenMP directives and/or pragmas and
compiles the program using a compiler other than a compiler from Intel.
This is more problematic because setting OMP_NUM_THREADS in the
environment affects both the compiler's threading library and the threading

prntf("row\ta n
void main(int args. char "argv]}{ for | <10+
printf(*%d:\t%At%MAn", i, a[i*SIZE].
double *a, *b. *c; .
3= new double [SIZE*SIZE]: cf"SIZE):
b = new double [SIZE"SIZ! }
¢ = new double [SIZE"
delete [] a;
double alpha=1, beta=1 delete [] b;
int m=SIZE. n=SIZE, 1da=SIZE, Idb=SIZE, ke=SIZE. i=0, j=0: delete []
char transa="ry, trans = .

for( i=0; i<SIZE; i++){
for( j=0: j<SIZE; j++){
3[1:§|Z +l= ldouble'!ll'n Can | use Intel MKL if | thread my application?
:[[:;EE:E: ::::::e'd‘ " The Intel Math Kernel Library is designed and compied for thread safety so it can be called
3 ’ from programs that are threaded. Calling Intel MKL routines that are threaded from multiple
y application threads can lead to confict (including incorrect answers or program failures), if the
;:bias_dgerrm CblasRowMajor, CblasNoTrans, CblasNoTrans, calling library differs from the Intel MKL threading library.
m. n, k, alpha, a, Ida. b, kib, beta, c. Idc):




@% Sequential MKL in SPQR B
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OpenMP
OS
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Sequential MKL Performance

Performance of SPQR on 16-core Machine

Out-of-the-Box - Sequential MKL
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No task-level parallelism!

Want to exploit

maltrix-level parallelism.




@% Share Resources Cooperatively i
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TBB_NUM_THREADS =2 OMP_NUM_THREADS = 2

Hardware

Tim Davis manually tunes libraries to effectively partition the resources.




Performance of SPQR on 16-core Machine

Out-of-the-Box . Sequential MKL . Manually Tuned
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Manual Tuning Cannot Share
Resources Effectively

Give resources to OpenVIP

Give resources to TBB




Manual Tuning Destroys
Functional Composability

Tim Davis =/ omp_num_THREADS = 4




Manual Tuning Destroys
Performance Composability




<+ Problem: Efficient parallel composability is hard!
< Solution:

= Harts: better resource abstraction

= Lithe: framework for sharing resources

% Evaluation




Virtualized Threads are Bad

I App 1 (TBB) [] App 1 (OpenMP)

EEE

OS

Core 0 Core1 Core2 Core 3 Core4 Core5 Core6 Core?7

Different codes compete unproductively for resources.




Partition 2

Core 0 Core1 Core2 Core 3 Core4 Core5 Core6 Core?7

Space-time partitions isolate diff apps.

What to do within an app?
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Harts

<+ Represent real hw resources.
<+ Requested, not created.
<+ OS doesn’t manage harts for app.

OS

Core 0 Core1 Core2 Core 3 Core4 Core5 Core6 Core?7
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Sharing Harts

Hardware
Partition
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@g& Cooperative Hierarchical Schedulers

BERKELEY PAR LAB

application call graph library (scheduler) hierarchy

o TBB
OpenMP

Cilk

< Modular: Each piece of the app scheduled independently.
< Hierarchical: Caller gives resources to callee to execute on its behalf.

< Cooperative: Callee gives resources back to caller when done.




TBB Sched: next?

execute TBB task /

TBB
TBB Sched: next? Tasks

execute TBB task

TBB Sched: next?
nothing left to do, give hart back to parent

Cilk Sched: next?
don't start new task, finish existing one first

Ct Sched: next?




TBB| . Scheduler Caller

register | unregister return

—

interface for sharing harts interface for exchanging values

pd

return

OpenMP, ;. Scheduler

< Analogous to function call ABI for enabling interoperable codes.

<+ Mechanism for sharing harts, not policy.




@%L Lithe Runtime

current
scheduler

OpenMP ;..

scheduler hierarchy

/’\/ \

TBB, ithe OpenMP ;..

OS

Hardware




TBB, . Scheduler matmult(}

register(OpenMP, ... .);

unregister(OpenMP, .....);
}

time

Register dynamically adds the new scheduler to the hierarchy.




TBB, .. Scheduler matmult(X

register(OpenMP, ... .);

request|register | unregister

request(n);

unregister(OpenMP, .....);

}

time

Request asks for more harts from the parent scheduler.




TBB, ;. Scheduler
enter(OpenMP ;..);

reqister | unregister

OpenMP, ;. Scheduler

Enter/Yield transfers additional harts between the parent and child.
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SPQR with Lithe
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@?j& SPQR with Lithe

atmult atmult atmult atmult

eg eg
eq eq

nreg nreg




@CE% Talk Roadmap

<+ Problem: Efficient parallel composability is hard!
< Solution:

= Harts

= Lithe

< Evaluation




Harts: simulated using pinned Pthreads on x86-Linux
~600 lines of C & assembly

Lithe: user-level Iibrary (register, unregister, request, enter, yield, ...)
~2000 lines of C, C++, assembly

TBBjthe

~1500 / ~8000 relevant lines added/removed/modified
OpenMP ;.. (GCC4.4)

~1000 / ~6000 relevant lines added/removed/modified

TBB . OpenMP, ..

Harts




All results on Linux 2.6.18, 8-core Intel Clovertown.

<+ TBB . Performance (pbench included with release)

tree sum preorder fibonacci
TBBthe 54.80ms 228.20ms 8.42ms
TBB 54.80ms 242.51ms 8.72ms

< OpenMP_ . Performance (NAS parallel benchmarks)

conjugate gradient (cg) LU solver (lu) multigrid (mg)

OpenMP iihe 57.06s 122.15s 9.23s

OpenMP 57.00s 123.68s 9.54s




Performance Characteristics of
SPQR (Input = ESOC)
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Performance Characteristics of VAN
SPQR (Input = ESOC) /A
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Performance Characteristics of
SPQR (Input = ESOC)
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Performance Characteristics of
SPQR (Input = ESOC)
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. Out-of-the-Box . Manually Tuned
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OpenMP, ;..




Conclusion

< Composability essential for parallel programming to
become widely adopted.

(gy\é%v functionality
sz

O (
‘?F {;:»7 — resource management

< Parallel libraries need to share resources cooperatively.

< Lithe project contributions
= Harts: better resource model for parallel programming

= Lithe: enables parallel codes to interoperate by
standardizing the sharing of harts
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