BERKELEY PAR LAB

Lithe: Enabling Efficient Composition
of Parallel Libraries

Heidi Pan, Benjamin Hindman, Krste Asanovi¢

xoxo@mit.edu {¥] {benh, krste}@eecs.berkeley.edu
Massachusetts Institute of Technology [¥} UC Berkeley

HotPar {¥] Berkeley, CA (¥] March 31, 2009

Functionality: Q\or

Resource Management:

REICAVEI(G:I Core0 Core1 Core2 Core3 Core4 Core5 Core6 Core7

Need both programmer productivity and performance!

code reuse modularity
same library implementation, different apps same app, different library implementations

Functional Composability

Vil
_—

BERKELEY PAR LAB

fast(er)

Performance Composability

Problem: Efficient parallel composability is hard!
< Solution:

= Harts

= Lithe

% Evaluation

@E& Motivational Example T
CSATL BE;P-(ELEY PAR:_AB

Sparse QR Factorization
(Tim Davis, Univ of Florida)

Column
Elimination

Tree
Frontal Matrix

Factorization

~
A S
A S
~\
~
Hardware AN ﬁg&
\\
A S
N\

System Stack Software Architecture

Performance of SPQR on 16-core Machine

Out-of-the-Box

25; 85;

20; 80;

sequential | 75

Time (sec)

70

3.5;
3
2.5
2.
1.5
1

65;

S
bl

b

landmark deltaX

Input Matrix

Out-of-the-Box Libraries
Oversubscribe the Resources

= Prefetch [ch h [

EEEEEEE

virtualized kernel threads

Hardware

MKL Quick Fix

Using Intel MKL with Threaded Applications
http://www.intel.com/support/performancetools/libraries/mkl/sb/CS-017177 .htm

Software Products

Intel® Math Kernel Library (Intel® MKL)
Using Intel® MKL with Threaded Applications

Page Contents:

® Memory Allocation MKL: Memory appears t allocated and not released
when calling some Intel MKL routines .
ing Threading w S

library with Intel MKL. In this case, the safe approach is to set anﬂ "row\ta\tc\n");
OMP_NUM_THREADS=1. for (=0:i<10:++){
SV OO —

Multiple programs are running on a multiple-CPU system. In cluster printf(*3d: I ALSAN" 1. (" SIZE]. of"SIZE]):
applications, the parallel program can run separate instances of the
program on each procassor. However, the threading software will see
multiple processors on the systam even though each processor has omp_set_num_threads(1):
separate process running on it. In this case OMP_NUM_THREADS should be
setto 1. for(i=0; i<SIZE: i++){
for(j=0: j<SIZE; j#+}

a[I*SIZE+]

bli*SIZE+]}

c[i*SIZE+j]= (double

If the variable OMP_NUM_THREADS environment variable is not set, then
the default number of threads will be assumed 1.

Setting the Number of Threads for OpenMP* (OMP)

ting the Numb
Changing the Nury

Memory Allocation MKIl M
some Intel® MKL routjpes
One of the advantagesff us|

allocation persists ugtil the 3|
will allocate a stackffqual to

===r={ that threading in Intel MKL be turned off.

Using Threadi‘ with BLA]

We list them here with recon
the problem fhdsts is approp|

=1 Set OMP_NUM_THREADS=1 in the environment.

¥] If more than one thread calls Intel MKL and the
== function being called is threaded, it is important

If the user Jhreads the orolam using OpenMP directives and uses the Intel® Compilers to
compile th program, Intel MKL and the user program will both use the same threading library
Intel MKLytries to detegffine i 1t is in a parallel region in the program, and it is, it does not
spread ijf operations over muitiple threads. But Intel MKL can be aware that it is in a parallel
region only if the thofaded program and Intel MKL are using the same threading library. If the
user prffgram is thr€aded by some other means, Intel MKL may operate in muttithreaded
mode 8nd the cophputations may be corrupted. Here are several cases and our
recommendatioffs:

ovesds the program using OS threads (pthreads on Linux*, Win32*

ads on Windows*). If more than one thread calls Intel MKL and the
fifiction being called is threaded, it is important that threading in Intel MKL
be turned off. Set OMP_NUM_THREADS=1 in the environment.

® User threads the program using OpenMP directives and/or pragmas and
compiles the program using a compiler other than a compiler from Intel.
This is more problematic because setting OMP_NUM_THREADS in the
environment affects both the compiler's threading library and the threading

prntf("row\ta n
void main(int args. char "argv]}{ for | <10+
printf(*%d:\t%At%MAn", i, a[i*SIZE].
double *a, *b. *c; .
3= new double [SIZE*SIZE]: cf"SIZE):
b = new double [SIZE"SIZ! }
¢ = new double [SIZE"
delete [] a;
double alpha=1, beta=1 delete [] b;
int m=SIZE. n=SIZE, 1da=SIZE, Idb=SIZE, ke=SIZE. i=0, j=0: delete []
char transa="ry, trans = .

for(i=0; i<SIZE; i++){
for(j=0: j<SIZE; j++){
3[1:§|Z +l= ldouble'!ll'n Can | use Intel MKL if | thread my application?
:[[:;EE:E: ::::::e'd‘ " The Intel Math Kernel Library is designed and compied for thread safety so it can be called
3 ’ from programs that are threaded. Calling Intel MKL routines that are threaded from multiple
y application threads can lead to confict (including incorrect answers or program failures), if the
;:bias_dgerrm CblasRowMajor, CblasNoTrans, CblasNoTrans, calling library differs from the Intel MKL threading library.
m. n, k, alpha, a, Ida. b, kib, beta, c. Idc):

@% Sequential MKL in SPQR B
CSATL BEI;P-(ELEY PAR:_AB

OpenMP
OS

Hardware

Sequential MKL Performance

Performance of SPQR on 16-core Machine

Out-of-the-Box - Sequential MKL

25; 85;

20; 801

151 75

Time (sec)

70;

3.5;
3
2.5
2.
1.5
1

65;

o
3]

b

landmark deltaX

Input Matrix

No task-level parallelism!

Want to exploit

maltrix-level parallelism.

@% Share Resources Cooperatively i
CSATL BERP-(ELEYPARLAB

TBB_NUM_THREADS =2 OMP_NUM_THREADS = 2

Hardware

Tim Davis manually tunes libraries to effectively partition the resources.

Performance of SPQR on 16-core Machine

Out-of-the-Box . Sequential MKL . Manually Tuned

25. 85 1200-

20- 80- 1000

800
15; 75

600

Time (sec)

70;

3.5;
3
2.5
2.
1.5
1

400

65 2001

S
bl

b

. 60- 0-
landmark deltaX

Input Matrix

Manual Tuning Cannot Share
Resources Effectively

Give resources to OpenVIP

Give resources to TBB

Manual Tuning Destroys
Functional Composability

Tim Davis =/ omp_num_THREADS = 4

Manual Tuning Destroys
Performance Composability

<+ Problem: Efficient parallel composability is hard!
< Solution:

= Harts: better resource abstraction

= Lithe: framework for sharing resources

% Evaluation

Virtualized Threads are Bad

I App 1 (TBB) [] App 1 (OpenMP)

EEE

OS

Core 0 Core1 Core2 Core 3 Core4 Core5 Core6 Core?7

Different codes compete unproductively for resources.

Partition 2

Core 0 Core1 Core2 Core 3 Core4 Core5 Core6 Core?7

Space-time partitions isolate diff apps.

What to do within an app?

BERKELEY PAR LAB

v
_—

BERKELEY PAR LAB

Harts

<+ Represent real hw resources.
<+ Requested, not created.
<+ OS doesn’t manage harts for app.

OS

Core 0 Core1 Core2 Core 3 Core4 Core5 Core6 Core?7

i

CSAIL

Sharing Harts

Hardware
Partition

Vil
_—

BERKELEY PAR LAB

@g& Cooperative Hierarchical Schedulers

BERKELEY PAR LAB

application call graph library (scheduler) hierarchy

o TBB
OpenMP

Cilk

< Modular: Each piece of the app scheduled independently.
< Hierarchical: Caller gives resources to callee to execute on its behalf.

< Cooperative: Callee gives resources back to caller when done.

TBB Sched: next?

execute TBB task /

TBB
TBB Sched: next? Tasks

execute TBB task

TBB Sched: next?
nothing left to do, give hart back to parent

Cilk Sched: next?
don't start new task, finish existing one first

Ct Sched: next?

TBB| . Scheduler Caller

register | unregister return

—

interface for sharing harts interface for exchanging values

pd

return

OpenMP, ;. Scheduler

< Analogous to function call ABI for enabling interoperable codes.

<+ Mechanism for sharing harts, not policy.

@%L Lithe Runtime

current
scheduler

OpenMP ;..

scheduler hierarchy

/’\/ \

TBB, ithe OpenMP ;..

OS

Hardware

TBB, . Scheduler matmult(}

register(OpenMP,);

unregister(OpenMP,);
}

time

Register dynamically adds the new scheduler to the hierarchy.

TBB, .. Scheduler matmult(X

register(OpenMP,);

request|register | unregister

request(n);

unregister(OpenMP,);

}

time

Request asks for more harts from the parent scheduler.

TBB, ;. Scheduler
enter(OpenMP ;..);

reqister | unregister

OpenMP, ;. Scheduler

Enter/Yield transfers additional harts between the parent and child.

i

CSAIL

SPQR with Lithe

atmult
eg
eq

@?j& SPQR with Lithe

atmult atmult atmult atmult

eg eg
eq eq

nreg nreg

@CE% Talk Roadmap

<+ Problem: Efficient parallel composability is hard!
< Solution:

= Harts

= Lithe

< Evaluation

Harts: simulated using pinned Pthreads on x86-Linux
~600 lines of C & assembly

Lithe: user-level Iibrary (register, unregister, request, enter, yield, ...)
~2000 lines of C, C++, assembly

TBBjthe

~1500 / ~8000 relevant lines added/removed/modified
OpenMP ;.. (GCC4.4)

~1000 / ~6000 relevant lines added/removed/modified

TBB . OpenMP, ..

Harts

All results on Linux 2.6.18, 8-core Intel Clovertown.

<+ TBB . Performance (pbench included with release)

tree sum preorder fibonacci
TBBthe 54.80ms 228.20ms 8.42ms
TBB 54.80ms 242.51ms 8.72ms

< OpenMP_ . Performance (NAS parallel benchmarks)

conjugate gradient (cg) LU solver (lu) multigrid (mg)

OpenMP iihe 57.06s 122.15s 9.23s

OpenMP 57.00s 123.68s 9.54s

Performance Characteristics of
SPQR (Input = ESOC)

' M 300-350
“‘ ' l l 250-300
e ==
S

—
)
Q
0

S’
<)

E

-

"i’. [J100-150
‘

D e 150-100
=

Performance Characteristics of VAN
SPQR (Input = ESOC) /A

BERKELEY PAR LAB

Sequential
300 TBB=1, OMP=1
172.1 sec |
250+~ “ | W 300-350

~ B 250-300
200- B 200-250
= 150-200
9 100-150
100¢° /= L 150-100

—
o
Q
")

~
Q

£
=

150-

Performance Characteristics of
SPQR (Input = ESOC)

' W 300-350
AL e

E 200-250
Out-of-the-Box @ 150-200

TBB=8, OMP=8 1 100-150

111.8 sec 150-100
ey 4 _

—
)
Q
0

S’
<)

E

-

Performance Characteristics of
SPQR (Input = ESOC)

BERKELEY PAR LAB

350

300+
250- / B 300-350

Manually Tuned ‘ W 250-300
70.8 sec [200-250

@ 150-200
0 100-150
100- — = @ 50-100

—
o
Q
")

~
Q

£
=

1504~

. Out-of-the-Box . Manually Tuned

30; 120;

25 100

20 80

15 60

—
o
Q
2z

N
o

£

-

40
20-

] 0-
landmark deltaX

Input Matrix

BERKELEY PAR LAB

OpenMP, ;..

Conclusion

< Composability essential for parallel programming to
become widely adopted.

(gy\é%v functionality
sz

O (
‘?F {;:»7 — resource management

< Parallel libraries need to share resources cooperatively.

< Lithe project contributions
= Harts: better resource model for parallel programming

= Lithe: enables parallel codes to interoperate by
standardizing the sharing of harts

Acknowledgements

We would like to thank George Necula and the rest of Berkeley
Par Lab for their feedback on this work.

Research supported by Microsoft (Award #024263) and Intel
(Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227). This work has also been

in part supported by a National Science Foundation Graduate
Research Fellowship. Any opinions, findings, conclusions, or
recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the National
Science Foundation. The authors also acknowledge the support
of the Gigascale Systems Research Focus Center, one of five
research centers funded under the Focus Center Research
Program, a Semiconductor Research Corporation program.

Microsoft: (inteD GSRC

