
Tessellation: Space-Time
Partitioning in a Manycore
Client OS

Rose Liu1,2, Kevin Klues1, Sarah Bird1, Steven
Hofmeyr3, Krste Asanovic1, John Kubiatowicz1

1Parallel Computing Laboratory, UC Berkeley
2Data Domain
3Lawrence Berkeley National Laboratory

Client Device

  Single-user device
  Runs a heterogeneous mix of interactive, real-time and batch

applications simultaneously
  Generally battery constrained

Why a new Client OS?
  Enter the Manycore world  Must address parallelism

  Current client OSs weren’t designed for parallel
applications

  Existing OSs addressing parallelism targets servers or
HPC contexts, not clients
   Servers – emphasis on throughput vs.
   Client – emphasis on user experience/responsiveness
   HPC – machine dedicated to one parallel application vs.
   Client – runs many heterogeneous parallel applications
   Client - Longer battery life

Outline
  Why a new OS for Manycore Clients?
  A Case for Space-time Partitioning

   Define space-time partitioning
   Use cases for space-time partitioning

  Implementing Space-Time Partitioning in a Manycore OS
  Status

Spatial Partitions

5

Memory

Radio

Isolated unit containing a subset of
physical machine resources

Spatial Partitions

6

Memory

Radio

Isolated unit containing a subset of
physical machine resources

Spatial Partitions

7

Memory

Radio

Isolated unit containing a subset of
physical machine resources

Spatial Partitions

8

Memory

Radio

Isolated unit containing a subset of
physical machine resources

QoS enforced
share of
interconnect
bandwidth

Spatial Partitions

9

Memory

Radio

Isolated unit containing a subset of
physical machine resources

Energy or Power
Budget

Machine divided into spatial partitions

10

Wireless
radio

Memory

Put applications in spatial partitions

11

Radio

Memory

Media Player

Browser

Benefits of spatial partitions

12

Radio

Memory

Media Player

Browser

•   Each app can run a custom user-level runtime for best performance
•   Provides apps with resource guarantees for performance predictability
•   Functional & Performance
 Isolation

•   Natural unit for fault
 containment, energy
 management

Put OS Services in spatial partitions

13

Wireless
radio

Memory

Media Player
Network
Driver

Filesystem

Browser

Put sub-components in spatial
partitions

14

Wireless
radio

Memory

Media Player Network
Driver

Filesystem

Browser

Video decoder GUI

Put virtual machines in spatial
partitions

15

Wireless
radio

Memory

Media Player Network
Driver

Filesystem

Browser

Video decoder GUI

Windows
VM

Partitions need to communicate

16

Wireless
radio

Memory

Media Player Network
Driver

Filesystem

Browser

Video decoder GUI

Windows
VM

Spatial Communication
occurs without a
context switch

Communication Challenges

17

Wireless
radio

Memory

Media Player Network
Driver

Filesystem

Browser

Video decoder GUI

Windows
VM

Communication relaxes the isolation boundaries of partitions and
introduces issues like:
•   Security
•   Service-level QoS and/or
 resource accounting of
 requestors within
 service partitions

Space-time partitioning virtualizes
spatial partitions

18

Wireless
radio

Memory

Media Player Network
Driver

Filesystem

Browser

Video decoder GUI

Windows
VM

De-scheduled
Partitions

•   Partition Context Switch
Cost ~ Process Context
Switch Cost
•   Time multiplex at a
coarse granularity to
allow for user-level
scheduling

Space-Time Partition Scheduling

Time

Partition resources
put in low power state

Descheduled
Partitions:

Real-time app
is always scheduled

Partitions are
dynamically
resized while
running without a
reboot or
application
restart

Space-Time Partition Scheduling

Time

Descheduled
Partitions:

Challenges:
1. How to determine the right
 resource allocation for a
 partition?

2. What granularity to time
 multiplex each partition? Don’t
 need to use same time quanta

for all partitions.

3. We can deschedule partitions
from each type of resource
independently. E.g. time
multiplex off cores more
frequently than multiplex
partition data off caches. How
to determine ‘best’ policy?

…

Partitions are dynamically resized
while running without a reboot or
application restart

Communication in space and time

21

Wireless
radio

Memory

Media Player Network
Driver

Filesystem

Browser

Video decoder GUI

Windows
VM

De-scheduled
Partitions

Outline
  Why a new OS for Manycore Clients?
  A Case for Space-time Partitioning
  Implementing Space-Time Partitioning in a Manycore OS

(Tessellation)
  Status

Tessellation OS

23

Wireless
radio

Memory

Media Player Network
Driver

Filesystem

Browser

Video decoder GUI

Windows
VM

De-scheduled
Partitions

Video
Driver

Virus
Checker

USB Driver

Tessellation Kernel

24

Hardware Partitioning Mechanisms

CPUs Physical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Application
Or

OS Service

Custom
Scheduler

Library OS
 Functionality

Message
Passing

Tessellation Kernel

25

Hardware Partitioning Mechanisms

CPUs Physical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Application
Or

OS Service

Custom
Scheduler

Library OS
 Functionality

Message
Passing

Marshalls syscalls into
messages for the respective
OS Service Partition

App-specific scheduler for
best parallel performance.
(See Lithe talk on user-level
scheduling.)

Tessellation Kernel

26

Tessellation
K

ernel

Hardware Partitioning Mechanisms

CPUs Physical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Application
Or

OS Service

Custom
Scheduler

Library OS
 Functionality

Message
Passing

Tessellation Kernel

27

Tessellation
K

ernel

Partition
Management

Layer

Hardware Partitioning Mechanisms

CPUs Physical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Partition
Mechanism

Layer
(Trusted)

Application
Or

OS Service

Custom
Scheduler

Library OS
 Functionality

Message
Passing

Partition Mechanism Layer

28

Tessellation
K

ernel

Partition
Management

Layer

Hardware Partitioning Mechanisms

CPUs Physical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Partition
Mechanism

Layer
(Trusted)

Application
Or

OS Service

Custom
Scheduler

Library OS
 Functionality

Configure Partition
Resources enforced by

HW at runtime

Message
Passing

Partition Mechanism Layer

29

Tessellation
K

ernel

Partition
Management

Layer

Hardware Partitioning Mechanisms

CPUs Physical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Partition
Mechanism

Layer
(Trusted)

Application
Or

OS Service

Custom
Scheduler

Library OS
 Functionality

Configure
HW-supported
Communication

Message
Passing

Configure Partition
Resources enforced by

HW at runtime

Partition Management Layer

30

Tessellation
K

ernel

Partition
Management

Layer

Hardware Partitioning Mechanisms

CPUs Physical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Partition
Mechanism

Layer
(Trusted)

Application
Or

OS Service

Custom
Scheduler

Library OS
 Functionality

Configure
HW-supported
Communication

Message
Passing

Configure Partition
Resources enforced by

HW at runtime

Partition
Allocator

Partition Management Layer

31

Tessellation
K

ernel

Partition
Management

Layer

Hardware Partitioning Mechanisms

CPUs Physical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Partition
Mechanism

Layer
(Trusted)

Application
Or

OS Service

Custom
Scheduler

Library OS
 Functionality

Configure
HW-supported
Communication

Message
Passing

Configure Partition
Resources enforced by

HW at runtime

Partition
Allocator

Partition
Resizing

Callback API

Partition Management Layer

32

Tessellation
K

ernel

Partition
Management

Layer

Hardware Partitioning Mechanisms

CPUs Physical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Partition
Mechanism

Layer
(Trusted)

Application
Or

OS Service

Custom
Scheduler

Library OS
 Functionality

Configure
HW-supported
Communication

Message
Passing

Configure Partition
Resources enforced by

HW at runtime

Partition
Allocator

Partition
Resizing

Callback API

Res.
Reqs.

Partition Management Layer

33

Tessellation
K

ernel

Partition
Management

Layer

Hardware Partitioning Mechanisms

CPUs Physical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Partition
Mechanism

Layer
(Trusted)

Application
Or

OS Service

Custom
Scheduler

Library OS
 Functionality

Configure
HW-supported
Communication

Message
Passing

Configure Partition
Resources enforced by

HW at runtime

Partition
Allocator

Partition
Scheduler

Comm
Reqs

Partition
Resizing

Callback API

Res.
Reqs.

Partition Management Layer

34

Tessellation
K

ernel

Partition
Management

Layer

Hardware Partitioning Mechanisms

CPUs Physical
Memory

Interconnect
Bandwidth Cache Performance

Counters

Partition
Mechanism

Layer
(Trusted)

Application
Or

OS Service

Custom
Scheduler

Library OS
 Functionality

Configure
HW-supported
Communication

Message
Passing

Configure Partition
Resources enforced by

HW at runtime

Partition
Allocator

Partition
Scheduler

Comm.
Reqs

Sched
Reqs.

Partition
Resizing

Callback API

Res.
Reqs.

Outline
  Why a new OS for Manycore Clients?
  A Case for Space-time Partitioning

   Define space-time partitioning
   Use cases for space-time partitioning

  Implementing Space-Time Partitioning in a Manycore OS
  Status

Implementation status
  Basics of Tessellation kernel and primitive OS service up

and running
   Provides rudimentary partition interface
   Boots on standard x86 hardware
   No I/O yet – statically linked applications and kernel

TOS
OS

Services

User
App 0

User
App 1

Manycore HW

Tesselation Kernel

  Build fast cross-core communication mechanisms for
system calls
   Context-switch free system calls
   APIC driven message notification with shared memory

  Add support for the 19 newLib system calls in TOS OS
Service partition

TOS
OS

Services

User
App 0

User
App 1

Next Steps

Syscall

Syscall

Newlib C Newlib C

Intermediate Infrastructure

Existing
I/O

Drivers

I/O
Server

Process

   TOS OS Service doesn’t have all drivers, so run BSD with
existing drivers on one core to service I/O from TOS OS
Service

   Tessellation runs on rest of the cores

TOS
OS

Service

User
App 0

User
App 1

Manycore HW

Syscall

Syscall

BSD
Kernel

Newlib C Newlib C

Pinned
Shared
Memory
Channel

Acknowledgements
  We would like to thank the entire ParLab OS group and

several people at LBNL for their invaluable contribution
to the ideas presented here.

  Research supported by Microsoft Award #024263 and
Intel Award #024894 and by matching funding from
U.C. Discovery (Award #DIG07-102270).

  This work has also been in part supported by an NSF
Graduate Research Fellowship.

Thanks! Questions?

40

Wireless
radio

Memory

Media Player Network
Driver

Filesystem

Browser

Video decoder GUI

Windows
VM

De-scheduled
Partitions

