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Client Device 

  Single-user device 
  Runs a heterogeneous mix of interactive, real-time and batch 

applications simultaneously  
  Generally battery constrained 



Why a new Client OS? 
  Enter the Manycore world  Must address parallelism  

  Current client OSs weren’t designed for parallel 
applications 

  Existing OSs addressing parallelism targets servers or 
HPC contexts, not clients 
   Servers – emphasis on throughput vs. 
   Client – emphasis on user experience/responsiveness 
   HPC – machine dedicated to one parallel application vs. 
   Client – runs many heterogeneous parallel applications 
   Client - Longer battery life 



Outline 
  Why a new OS for Manycore Clients? 
  A Case for Space-time Partitioning 

   Define space-time partitioning 
   Use cases for space-time partitioning 

  Implementing Space-Time Partitioning in a Manycore OS 
  Status  
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Benefits of spatial partitions 
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•   Each app can run a custom user-level runtime for best performance 
•   Provides apps with resource guarantees for performance predictability 
•   Functional & Performance  
  Isolation  

•   Natural unit for fault  
         containment, energy  
         management  



Put OS Services in spatial partitions 
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Put sub-components in spatial 
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Put virtual machines in spatial 
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Partitions need to communicate 
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Communication Challenges 
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Communication relaxes the isolation boundaries of partitions and 
introduces issues like: 
•   Security 
•   Service-level QoS and/or  
  resource accounting of 
  requestors within  
  service partitions 



Space-time partitioning virtualizes 
spatial partitions 
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De-scheduled  
Partitions 

•   Partition Context Switch 
Cost ~ Process Context 
Switch Cost 
•   Time multiplex at a  
coarse granularity to  
allow for user-level  
scheduling 



Space-Time Partition Scheduling 

Time


Partition resources 
put in low power state  

Descheduled 
Partitions: 

Real-time app 
is always scheduled 

Partitions are 
dynamically 
resized while 
running without a 
reboot or 
application 
restart 



Space-Time Partition Scheduling 

Time


Descheduled 
Partitions: 

Challenges: 
1. How to determine the right 
    resource allocation for a 
    partition? 

2.  What granularity to time  
     multiplex each partition? Don’t  
     need to use same time quanta 

for all partitions. 

3.  We can deschedule partitions 
from each type of resource 
independently.  E.g. time 
multiplex off cores more 
frequently than multiplex 
partition data off caches. How 
to determine ‘best’ policy?  

… 

Partitions are dynamically resized 
while running without a reboot or 
application restart 



Communication in space and time 
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Outline 
  Why a new OS for Manycore Clients? 
  A Case for Space-time Partitioning 
  Implementing Space-Time Partitioning in a Manycore OS 

(Tessellation) 
  Status  
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Marshalls syscalls into  
messages for the respective  
OS Service Partition 

App-specific scheduler for  
best parallel performance.  
(See Lithe talk on user-level 
scheduling.) 
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Outline 
  Why a new OS for Manycore Clients? 
  A Case for Space-time Partitioning 

   Define space-time partitioning 
   Use cases for space-time partitioning 

  Implementing Space-Time Partitioning in a Manycore OS 
  Status  



Implementation status 
  Basics of Tessellation kernel and primitive OS service up 

and running 
   Provides rudimentary partition interface 
   Boots on standard x86 hardware 
   No I/O yet – statically linked applications and kernel 
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  Build fast cross-core communication mechanisms for 
system calls 
   Context-switch free system calls 
   APIC driven message notification with shared memory 

  Add support for the 19 newLib system calls in TOS OS 
Service partition 
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Next Steps 
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Intermediate Infrastructure 
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   TOS OS Service doesn’t have all drivers, so run BSD with 
existing drivers on one core to service I/O from TOS OS 
Service 

   Tessellation runs on rest of the cores 
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