
Romain Cledat, Tushar Kumar,
Jaswanth Sreeram, and Santosh Pande

Opportunistic Computing: A New Paradigm
for Scalable Realism on Many-Cores

2

Speedup Is Not Always the End-Goal

Immersive Applications intend to provide the richest, most engrossing
experience possible to the interactive user

Gaming, Multimedia, Interactive Visualization

With growing number of cores, or increasing clock-frequencies
These applications want to do MORE, not just do it FASTER

Design goal: maximize Realism

Must continually
update world
& respond to

Interactive User
(30 frames-per-sec)

Pe
r-

Fr
am

e
Ti

m
e

Fa
st

er
Co

m
pu

ta
tio

n

More, Faster CoresFewer Cores

Idling CPUs,
No Benefit!

M
or

e
Co

m
pu

ta
tio

n

Enhanced
Realism

3

What is Realism?

Realism consists of
Sophistication in Modeling

Example: Render/Animate as highly detailed a simulated world as possible

Responsiveness
Example: Update world frequently, respond “instantly” to user inputs

Unit of world update: Frame

Typical Programming Goal
Pick models/algorithms of as high a sophistication as possible that can execute within a
frame deadline of 1/30 seconds

Flexibility: Probabilistic Achievement of Realism is Sufficient
Most frames (say, >90%) must complete within 10% of frame deadline

Relatively few frames (<10%) may complete very early or very late

4

How do we Maximize Realism?
Maximizing Realism

#1: N-version Parallelism
Speed up hard-to-parallelize
algorithms with high probability
using more cores
- Applies to algorithms that make

random choices

- Basic Intuition: Randomized Algorithms
(but not limited to them)

#2: Scalable Soft Real-Time
Semantics (SRT)
Scale application semantics to
available compute resources
- Applies to algorithms whose execution

time, multi-core resource requirements
and sophistication are parametric

- Basic Intuition: Real-Time Systems
(but with different formal techniques)

Two
complementary

techniques

Unified as Opportunistic Computing Paradigm:
N-versions creates slack for SRT to utilize for Realism

#1
N-Versions Parallelism:
Speedup Sequential Algorithms with
High Probability

6

Bottleneck for Speedup

Applications still have significant
sequential parts

Stagnation in processor clock frequencies
makes sequential parts the major
bottleneck to speedup (Amdahl’s Law)

A reduction in expected execution time for
sequential parts of an application will
provide more slack to improve realism

6

S
eq

ue
nt

ia
l

P
ar

al
le

l
S

pe
ed

up

Speedup
Bottleneck
Speedup

Bottleneck

7

Intuition
Algorithms making random choices for a fixed input lead to
varying completion times

7

Fastest among
n is faster than
average with

high probability

Sup
erl

ine
ar

sp
ee

du
p Big opportunities for expected speedup

with increasing n

Tradeoff

Requires knowledge of distribution
Wider spread more speedup

S = E1

En

↔ n

Uniform

Completion time

Bimodal

Completion time

E1 E1E2

E3

E4

E2E3

E4

Run n instances in parallel under isolation

2

2

E1

En

n (# of cores)
1 2 3

2
3
4
5

1

4

Speedup

8

Application Use Scenario

Need knowledge of PDF[A(Ij)] to compute the speedup S

Determine PDF[A(Ij-1)…A(Ij-M)]
Assume PDF[A(Ij)]≈ PDF[A(Ij-1)…A(Ij-M)] (stability condition)

Stability condition gives predictive power

8

ProgramProgram

Input

AA

Ij-1 … Ij-M
Goal: Find the reasonable
n to reduce expected
completion time of

PDF[A(Ij)]
Completion time

P
ro

ba
bi

lit
y

E1 (mean)E2

When will this hold?

We want to determine the speedup S and the number of concurrent instances n

on A(Ij) from PDF with no prior knowledge of the underlying distribution

How do we do this?

9

PDF and Stability Condition

Randomized algorithms
Analytically known PDF

Depends on input size and parameters
(referred to as “size”)

“Size” might be unknown

Other algorithms
PDF is analytically
unknown/intractable

9

Runtime
Estimation
Runtime

Estimation

Holds statically over j for inputs
of the same “size”

Graph algos: and

Holds for sufficiently slow
variations

|Ij-M|≈ …≈|Ij-1|≈|Ij|

Example: TSP for trucks in
continental United States

Fixed grid size

Similar paths

V E

PDF[A(Ij)] ≈ PDF[A(Ij-1)…A(Ij-M)]

10

N-version parallelism in C/C++

10

int a[];
void f(Input) {

int b = …;
a[k] = …;

}

Local state: leave as is
Non-local state: wrap with API call

C++ can eliminate API wrappers

Render each instance side-effect free

Start n-versions

n-versions completion time

Commits
non-local

state

Commits
non-local

state

f(I)

R1

f(I)

R2

f(I)

R3

f(I)

R4

Shared<int> a[];

11

Current Avenues of Research

How broad is the class of algorithms that
Make random choices
Satisfy the stability condition

Exploring common randomized algorithms
TSP over a fixed grid
Randomized graph algorithms

Exploring applicability of our technique to application specific
characteristics that indirectly benefit performance

Reducing the number of iterations in a Genetic Algorithm by minimizing
the expected score at each iteration

Or, achieving a better final score (higher quality of result)
Independent of performance gains

11

#2
Scalable Soft Real-Time Semantics (SRT):
Scale Application Semantics to
Available Compute Resources

13

Applications with Scalable Semantics
Games, Multimedia Codecs, Interactive Visualization

Possess scalable semantics

AI Physics
Game

Frame Time

1/30 sec

Frame# 0 - 10

Frame# 50 - 60
slack

compromises Realism
by not maximizing

Sophistication

Scale down AI complexity:
think-frequency, vision-range

Scale up AI & Physics complexity:
sim time-step, effects modeled

Frame# 80 - 90

Characteristic 1
User-Responsiveness is Crucial.

Model/Algorithmic Complexity
must be suitably adjusted / bounded

Game-Frames
at approx. 30 fps

Characteristic 2
Dynamic Variations
in Execution Time over Data Set.

To preserve Responsiveness
while maximizing Sophistication,
Continually Monitor Time and Scale
Algorithmic Complexity (semantics)

Missed deadline significantly
Responsiveness Affected

Scale down Physics complexity

14

Scaling Semantics with Multi-cores

Traditionally, benefiting from more cores required breaking up the
same computation into more parallel parts

Difficult problem for many applications, including gaming and multimedia

Scalable Semantics provide an additional mechanism to utilize more
cores

Asophisticated

Data D

Amedium

Data D

Asimple

Data D Scaling Algorithms
with Resources

Algo AAlgo AAlgo A

D1: Simple
Game Objects Scaling Data Sets

with Resources

D2
D3: Fine-grain
Polytope Objects

Scripted Game-World Interactions,
Unbreakable Objects

Open-Ended Game-World Interactions,
Dynamic Fracture Mechanics

15

Don’t Real-Time Methods Solve This Already?

Games, Multimedia,
Interactive Viz

Implement as
a Real-Time App

T0

T2 T3T1

T5T4

T6 T7
Real-Time Task-Graph
- Application decomposed

into Tasks and
Precedence Constraints

- Responsiveness
guaranteed by Real-time
semantics (hard or
probabilistic)

Implement with
High-Productivity,
Large Scale
Programming flows

C, C++, Java: Monolithic App
- 100Ks to Millions of LoC

- No analyzable structure for
responsiveness and scaling

- Responsiveness is entirely an
emergent attribute

(currently tuning this is an art) Need a new bag of tricks to Scale
Semantics in Monolithic Applications

16

Scaling Semantics in Monolithic Applications
Challenge for Monolithic Applications

C/C++/Java do not express user-responsiveness objectives and scalable semantics

Our Approach
Let Programmers specify responsiveness policy and scaling hooks using SRT API
Let SRT Runtime determine how to achieve policy by manipulating provided hooks

SRT API enables programmers to specify policy and hooks
Based purely on their knowledge of the functional design of individual algorithms and
application components
Without requiring them to anticipate the emergent responsiveness behavior of interacting
components

SRT Runtime is based on Machine Learning and System Identification (Control
Theory), enabling Runtime to

Infer the structure of the application
Learn cause-effect relationships across application structure
Statistically predicts how manipulating hooks will scale semantics in a manner that best achieves
desired responsiveness policy

17

Case Study: Incorporating SRT API
& Runtime in a Gaming Application

Typical Game Engine

run_frame()

AIPhysics Rendering

frameframe frame

frame “Game”

responsiveness objective:
Achieve 25 to 40 fps,
with probability > 90%

model

user
code

model
si

m
pl

e

co
m

pl
ex

,
pa

ra
lle

l

resp. objective:
Consume

< 40% of “Game”

choices affect
frame-times & objectives

SRT Runtime
- Monitors frame
- Learns Application-wide
Average Frame Structure
- Chooses between
user-codes in model

- Learns & Caches statistical relations:

- Reinforcement Learning: Which models predominantly
affect which objectives? (infer complex relationships, slowly)

- Feedback Control: Adjust choices in models (simple,
medium, complex, …) to meet objectives (fast reaction)

18

Torque Game Engine: Measured Behavior

objective:
25 to 42 fps

S
R

T
av

oi
ds

un

ac
ce

pt
ab

ly
 lo

w

FP
S

, b
y

re
du

ci
ng

 A
I

S
R

T
av

oi
ds

un
ne

ce
ss

ar
ily

 h
ig

h
FP

S
, b

y
in

cr
ea

si
ng

 A
I

19

Conclusion

Maximizing Realism is underlying design goal for an important class of
applications

Speedup is only one enabling factor

Realism provides avenues to utilize multi/many-cores, over and above
traditional task and data parallelism techniques

We introduced two complementary techniques that utilize extra cores
for maximizing Realism

N-versions Parallelism: Creates slack on hard to parallelize code
Semantics Scaling SRT: Utilizes dynamically available slack to maximize
realism

20

Thank you!

Questions?

