Opportunistic Computing: A New Paradigm
for Scalable Realism on Many-Cores

Romain Cledat, Tushar Kumar,

Jaswanth Sreeram, and Santosh Pande

Georgia Caollege of
Tech | Compuiting

Speedup Is Not Always the End-Goal

e Immersive Applications intend to provide the richest, most engrossing

experience possible to the interactive user

® Gaming, Multimedia, Interactive Visualization

* With growing number of cores, or increasing clock-frequencies

® These applications want to do MORE, not just do it FASTER

o Design goal: maximize Realism

Must continually
update world
& respond to

Interactive User
(30 frames-per-sec)

Per-Frame Time

>

Fewer Cores

Idling CPUs,
No Benefit!

>

o More

>

" Faster

Computation

Computation

More, Faster Cores

Enhanced
Realism

|
Georgia | Collegzaff
W Gvar e
ech | Campuiing

What is Realism?

e Realism consists of

® Sophistication in Modeling

Example: Render/Animate as highly detailed a simulated world as possible
* Responsiveness

Example: Update world frequently, respond “instantly” to user inputs

Unit of world update: Frame

° Typical Programming Goal

® Pick models/ algorithms of as high a sophistication as possible that can execute within a
frame deadline of 1/30 seconds

* Flexibility: Probabilistic Achievement of Realism is Sufficient
® Most frames (say, >90%) must complete within 10% of frame deadline

e Relatively few frames (<10%) mav complete very early or very late
y (y comp y early y

|
Gec_:l_rgia || Collegreff

ech || Campuiing

How do we Maximize Realism?

Maximizing Realism

Two
complementary
techniques
#1: N-version Parallelism #2: Scalable Soft Real-Time
Speed up hard-to-parallelize Semantics (SRT) |
algorithms with high probability Sca_lle t<';1||0|olIcatlon semantics to
using more cores axalf e C?mpﬂte re}?ources |
) Applies to algori thms that make - Applies to a gorlt ms whose execution
: time, multi-core resource requirements
random choices
and sophistication are parametric
- Basic Intuition: Randomized Algorithms . N LTS
(but not limited to them) - Basic Intuition: Real-Time Systems
(but with different formal techniques)

Unified as Opportunistic Computing Paradigm:
N-versions creates slack for SRT to utilize for Realism

#1
N-Versions Parallelism:

Speedup Sequential Algorithms with
High Probability

1]

0=,
=0

(= —

:
@512

|
Georgia | Colegzef

Ce
Tech || Compuing

Bottleneck for Speedup

* Applications still have significant

sequential parts

— WV, ® Stagnation in processor clock frequencies
= %@@@dup makes sequential parts the major
ttleneck bottleneck to speedup (Amdahl’s Law)
(D)
)]
® A reduction in expected execution time for
5 'c% R sequential parts of an application will
c=£ D— provide more slack to improve realism
T O
a o)

Georgia | Collegs
och fi St

9
:
8

@
I~ s
Compuitine

o)
2

[E

Intuition

. Algorithms making random choices for a fixed input lead to
varying completion times

Run 2 instances in parallel under isolation

Bimodal E Uniform =
4 3
* EE, E, * Fastest among E, E;
* * 2 is faster than
average with
high probability

Completion time

Completion time

* Big opportunities for expected speedup
with increasing n

e Tradeoff S= % <N

® Requires knovsr;ledge of distribution

* Wider spread =» more speedup

—I—I—I—I*

1 2 3 4
n (# of cores) 7

Application Use Scenario

|
Georgia J“ College el
Tech || Campuiing

Input
'
a N
A
\ Program/

e Goal: Find the reasonable
n to reduce expected

cornpletion time of

PDH{A(1)]

Probability

S
d

E, E; (mean)

—— 15
Completion time

® Need knowledge of PDF[A(I].)] to compute the speedup S

e Determine PDF[A(I]._ 1). : A(IJ M)]

How do we do this?

e Assume PDF [A(IJ)] = PDF [A (I] 1) . A(I] M)l (stability condition)

Stability condition gives predictive power

When will this hold?

We want to determine the speedup S and the number of concurrent instances n

on A(I]) from PDF with no prior knowledge of the underlying distribution

PDF and Stability Condition

PDH{A(1)]

~
~

PDF[A(I_}).. .A(IJ_M)J/

I

* Holds statically over j for inputs

of the same “size”

® Graph algos: ’V| and |E|
* Holds for sufficiently slow
variations

o 1Lyl=.=|1 =]
* Example: TSP for trucks in
continental United States

e Fixed grid size

* Similar paths

e Randomized algorithms
o Analytically known PDF

Depends on input size and parameters
(referred to as “size”)

o “Size” might be unknown

e Other algorithms

e PDFis analytically
unknown/intractable

Runtime
Estimatio

Georgia | Collegs off

Tech || Compuing

N-version parallelism in C/C++

C++ can eliminate APl wrappers

intaf];—
void f(Input) {
Int b =
alk] =
!
Render each instance side-effect free

f(l) f(1) f(1)

Rl R2 R3
SRS I S W S
® X

-
commits
non-local

tate

(1)

R,

-----—-J

Shared<int> a[];

'/ Local state: leave as is
" Non-local state: wrap with API call

Start n-versions

n-versions completion time

10

|
Georgia | Collegs et
ech | Campuiing

Current Avenues of Research

e How broad is the class of algorithms that
e Make random choices

° Satisfy the stability condition

® Exploring common randomized algorithms
e TSP over a fixed grid
e Randomized graph algorithms

o Exploring applicability of our technique to application specitic
characteristics that indirectly benefit performance

° Reducing the number (f iterations in a Genetic Algorithm by minimizing
the expected score at each iteration

® Or, achieving a better final score (higher quality of result)

° Independent of performance gains

'E literation 1-16 —— | 'E lIteration 17-32 —— | 'E [Ilteration 289-304 —— |
l ‘A aaa hA A ddaaa. l AL_&LL‘* | h

11

|
Georgia | Collegzaif
i il

#2

Scalable Soft Real-Time Semantics (SRT):
Scale Application Semantics to

Available Compute Resources

|
Georgia | Collegzaf
Tech|/ 5

-y
| (SEineamdiig!

Applications with Scalable Semantics

® Games, Multimedia Codecs, Interactive Visualization

® Possess scalable semantics

G Game-Fram Characteristic 1
ame ame-riames User-Responsiveness is Crucial.
at approx. 30 fps

Al PhySiCS =>» Model/Algorithmic Complexity
must be suitably adjusted / bounded

Frame Time
| I Frame# 0 - 10 Characteristic 2
- Scale down Al complexity. Dynamic Variations
1/30 sec think-frequency, vision-range)) .
IN Execution Time over Data Set.

| Erame# 50 - 60 =» To preserve Responsiveness
I o Scale up Al & Physics complexity Whlle_maX|m|2|ng Sop_hlstlcanon,

compromises Realism sim time-step, effects modeled ~ Continually Monitor Time and Scale

by not maximizing Algorithmic Complexity (semantics)
Sophistication

| | Frame# 80 - 90

| _I—> o Scale down Physics complexity
Missed deadline significantly

Responsiveness Affected

13

|
Georgia | Collegsef
Wi ==
Tech || Campuing

Scaling Semantics with Multi-cores

® Traditionally, benefiting from more cores required breaking up the
same computation into more parallel parts

* Difficult problem for many applications, including gaming and multimedia

® Scalable Semantics provide an additional mechanism to utilize more

COores

Scaling Algorithms

Asimple Amedium Asophisticated Wlth Resources
= H Wl EE NN
Game Object ol topeKOAb ec Scaling Data Sets
Algo A Algo A Algo A with Resources
o mm EEEN
Scripted Game-World Interactions, Open-Ended Game-World Interactions,
Unbreakable Objects wm===2> Dynamic Fracture Mechanics

14

|
Georgia | Collegsof

ech | Campuiing

Don’t Real-Time Methods Solve This Already?

Games, Multimedia, % CT0
cibt@ i

Interactive Viz
— Implement as CT4> CT5D
a Real-Time App

Implement with CT6> IO

High-Productivity, Real-Time Task-Graph
Large Scale - Application decomposed
\/ Programming flows Into Tasks and

. Precedence Constraints
C, C++, Java: Monolithic App

- 100Ks to Millions of LoC - Responsiveness
guaranteed by Real-time

semantics (hard or
probabilistic)

- No analyzable structure for
responsiveness and scaling

- Responsiveness is entirely an

emergent attribute

(currently tuning this is an art) Need a new bag of tricks to Scale

Semantics in Monolithic Applications

|
Georgia | Collegeaff
N Gormaitime
ech | Campuiing

Scaling Semantics in Monolithic Applioations

Challenge for Monolithic Applications

® C/C++/Java do not express user-responsiveness objectives and scalable semantics

Our Approach
® et Programmers specify responsiveness policy and scalz’ng hooks using SRT API
® [et SRT Runtime determine how to achieve policy by manipulating provided hooks

SRT API enables programmers to specify policy and hooks

® Based purely on their knowledge of the functional design of individual algorithms and
application components

e Without requiring them to anticipate the emergent responsiveness behavior of interacting
components

SRT Runtime is based on Machine Learning and System Identification (Control
Theory), enabling Runtime to

® Infer the structure of the application

® Learn cause-effect relationships across application structure

® Statistically predicts how manipulating hooks will scale semantics in a manner that best achieves
desired responsiveness policy

16

Case Study: Incorporating SRT API cogug | i
& Runtime in a Gaming Application

i i responsiveness objective:
Typlcal Game Englne Achieve 25 to 40 fps,

frame “Game” with probabiILty > 90%

run_frame()

L choices affect
resp. objectiye

consume/ frame-times & objectives
< 40% of “Game”
frame frame frame
4 ¢ ¢
Physics Al ’ Rendering
SRT Runtime - Learns & Caches statistical relations:

- Monitors frame

- Learns Application-wide
Average Frame Structure

- Chooses between . .
user-codes in model

- Reinforcement Learning: Which models predominantly
affect which objectives? (infer complex relationships, slowly)

- Feedback Control: Adjust choices in models (simple,
medium, complex, ...) to meet objectives (7ast reaction)

|
Georgia | Cellegzef
Joch || Gomy uting

Torque Game Engine: Measured Behavior

80

Torgque with SRT
Baseline Torque —

70 F

a0

50 —f\ m -
: "+ objective:

200 \ y _I_ 25 10 42 fps

10

unnecessarily high
FPS, by increasing Al

g

unacceptably low
FPS, by reducing Al

SRT avoids
SRT avoids

FPS
19
]
"E____I_

100 300 500° 700 0 900 © 1100 1300 1500 1700
1 l 1 . 1 . 1 . l M 1 1

UL

AT Levels
[W NS
T T

[

L]

18

|
Georgia | Collegzaff
Wi ShE
ech | Campuiing

Conclusion

® Maximizing Realism is underlying design goal for an important class of
applications

® Speedup is only one enabling factor

* Realism provides avenues to utilize multi/many-cores, over and above

traditional task and data parallelism techniques

®* We introduced two complementary techniques that utilize extra cores
for maximizing Realism
e N-versions Parallelism: Creates slack on hard to parallelize code

e Semantics Scaling SRT: Utilizes dynarnically available slack to maximize

realism

19

|
Georgia | Collegzaif
i

Thank you!

® Questions’

20

