
Parallel Programming Must Be
Deterministic by Default

Robert Bocchino, Vikram Adve,
Sarita Adve, and Marc Snir

University of Illinois at Urbana-Champaign
http://dpj.cs.uiuc.edu/

Parallel Programming Is Too Hard
Too many nondeterministic interleavings
Hard to reason about correctness

• Data races
• Deadlock
• Memory models

Hard to get testing coverage
• Must test multiple outputs per input
• Easy to miss corner cases

2

We Don’t Need All That Nondeterminism
Many programs are (intended to be) deterministic

• Non-interactive computation
• Accept input, compute, produce output
• Parallelism for performance, not part of specification

Same input always produces same visible output

3

We Don’t Need All That Nondeterminism
Many programs are (intended to be) deterministic

• Non-interactive computation
• Accept input, compute, produce output
• Parallelism for performance, not part of specification

Same input always produces same visible output

3

Parallel languages should be deterministic by default

We Don’t Need All That Nondeterminism
Many programs are (intended to be) deterministic

• Non-interactive computation
• Accept input, compute, produce output
• Parallelism for performance, not part of specification

Same input always produces same visible output

3

Parallel languages should be deterministic by default

Determinism should be guaranteed
unless nondeterminism is explicitly requested

Why Don’t We Already Do This?
Some languages do guarantee determinism

• Functional, SIMD, explicit dataflow

But mainstream, general-purpose languages do not
• Imperative, OO languages (Java, C++, C#)

Expressive features obscure data flow
• Pointers/references to mutable objects
• Reference aliasing
• Inheritance and polymorphism

4

Our Proposed Research Goal
Bring determinism by default to mainstream languages
Benefits of achieving this goal:

• Enable “almost sequential” reasoning
• Avoid subtle parallelism bugs

- No data races or deadlocks
- No complex memory models

• Simplify testing of parallel programs
- Test one output per input and you are done

• Simplify sequential to parallel porting
• Simplify bug reproduction and debugging

5

Our Proposed Research Agenda
1. How to guarantee determinism by default?
2. How to encapsulate nondeterministic behavior?
3. How to support explicit, controlled nondeterminism?
4. How to simplify development and porting?

6

Language (type system)
• Strengths: Programmer control and

documentation, modularity
• Weaknesses: Programmer effort (perceived),

coarse granularity

Compiler (auto parallelization)
• Strengths: Less programmer effort
• Weaknesses: Limited effectiveness, brittle,

opaque performance

Runtime (software and/or hardware)
• Strengths: Exploit runtime information
• Weaknesses: Overhead, complexity, opaque

performance, weak guarantee7

 Guaranteeing Determinism: Approaches

Language (type system)
• Strengths: Programmer control and

documentation, modularity
• Weaknesses: Programmer effort (perceived),

coarse granularity

Compiler (auto parallelization)
• Strengths: Less programmer effort
• Weaknesses: Limited effectiveness, brittle,

opaque performance

Runtime (software and/or hardware)
• Strengths: Exploit runtime information
• Weaknesses: Overhead, complexity, opaque

performance, weak guarantee7

 Guaranteeing Determinism: Approaches

Strong language
mechanisms are

essential

Language (type system)
• Strengths: Programmer control and

documentation, modularity
• Weaknesses: Programmer effort (perceived),

coarse granularity

Compiler (auto parallelization)
• Strengths: Less programmer effort
• Weaknesses: Limited effectiveness, brittle,

opaque performance

Runtime (software and/or hardware)
• Strengths: Exploit runtime information
• Weaknesses: Overhead, complexity, opaque

performance, weak guarantee7

 Guaranteeing Determinism: Approaches

Strong language
mechanisms are

essential

Supplement with
compiler and runtime

techniques for
greater expressivity

Effect Systems

8

class Tree<region P> {
int data in P;
region Left, Right, Links;
Tree<Left> leftChild in Links;
Tree<Right> rightChild in Links;

}

Effect Systems

8

class Tree<region P> {
int data in P;
region Left, Right, Links;
Tree<Left> leftChild in Links;
Tree<Right> rightChild in Links;

}

Class region parameter P

Effect Systems

8

class Tree<region P> {
int data in P;
region Left, Right, Links;
Tree<Left> leftChild in Links;
Tree<Right> rightChild in Links;

}

Class region parameter P
data declared in region P

Effect Systems

8

class Tree<region P> {
int data in P;
region Left, Right, Links;
Tree<Left> leftChild in Links;
Tree<Right> rightChild in Links;

}

Class region parameter P
data declared in region P

Region names Left, Right, Links

Effect Systems

8

class Tree<region P> {
int data in P;
region Left, Right, Links;
Tree<Left> leftChild in Links;
Tree<Right> rightChild in Links;

}

Class region parameter P
data declared in region P

Region names Left, Right, Links
Field in Links points to

Tree<Left>

Effect Systems

8

class Tree<region P> {
int data in P;
region Left, Right, Links;
Tree<Left> leftChild in Links;
Tree<Right> rightChild in Links;

}

Class region parameter P
data declared in region P

Region names Left, Right, Links
Field in Links points to

Tree<Left>
Tree<P>

int data P

Tree<Left> leftChild Links

Tree<Right> rightChild Links
Tree<Left>

int data Left

Tree<Left> leftChild Links

Tree<Right> rightChild Links

Tree<Right>

int data Right

Tree<Left> leftChild Links

Tree<Right> rightChild Links

Deterministic Parallel Java (DPJ)
Explicit type and effect system [see our Tech Reports]

• Recursive parallelism on linked data structures
• Array computations

- Flat parallel traversals
- Recursive partitioning (divide and conquer)

• Support for object-oriented frameworks

Runtime support [ongoing work]
• Fine-grain synchronization
• Fail-stop checks for greater expressivity

9

http://dpj.cs.uiuc.edu/

Hidden Nondeterminism
Programmer provides trusted annotation (e.g., library API)

• class Set<E> {
 commutative void add(E e); // add commutes with itself...
 ...
}

Compiler uses annotation to prove determinism
• foreach (int i in 0, n) {

 set.add(A[i]); // ...so this code is safe
}

10

Visible Nondeterminism
Sometimes necessary for high performance

• Example: Branch and bound, graph clustering

Carefully controlled
• Explicitly requested by programmer
• Atomic and race free
• Isolated: Nondeterministic and deterministic code do not interfere

11

foreach_nd (...) {
 // Potentially nondeterministic code
}

Will a Language Solution Be Usable?
Benefits outweigh the costs

• Effect annotations aid reasoning the programmer must do anyway
• Checkable contracts at interfaces enhance modularity

Technical solutions can reduce the costs
• Effect inference
• Runtime checks
• Integrated development environment

12

Summary
Guaranteed determinism can ease parallel programming
For mainstream OO languages we need

• Strong language solutions (type and effect)
• Supplemented by runtime checks and tools

Deterministic Parallel Java project at Illinois
• Java-based
• Applicable to other OO languages (C++, C#)

13

http://dpj.cs.uiuc.edu/

