
Exceptions and Transactions in C++

Ali-Reza Adl-Tabatabai1, Victor Luchangco2,
Virendra J. Marathe2, Mark Moir2, Ravi Narayanaswamy1,

Yang Ni1, Dan Nussbaum2, Xinmin Tian1, Adam Welc1, Peng Wu3

1Intel 2Sun 3IBM

2

Background

TM requires language support

Multiple projects extend C/C++ with TM constructs

Adoption requires common TM language extensions

Intel, Sun, IBM discussions on C++ extensions

•

Agree where possible on a specification

•

Understand differences

How to define semantics of TM extensions in C++?

Today’s talk: TM & C++ exceptions interaction

3

TM extensions

What happens if an exception is thrown out of the
atomic block?

__tm_atomic {
<stmts>
if (cond)
__tm_abort;

}

Atomic block executes as a
transaction

Abort rolls back atomic block

4

The problem

When MyException

escapes the atomic statement

•

Should the effects of x++ be committed?

•

Or should they be rolled back?

Active debate in the community

__tm_atomic {

x++;
if (cond)
throw MyException();

}

5

To commit?

“Commit-on-escape”

Exception is just another exit from atomic block

Similar to the behavior expected for locks or
single-threaded programs
−

Exception safety up to the programmer
−

Fits naturally with lock-based TM semantics

Easier to implement

Exceptions & concurrency control should be
orthogonal

But …

6

Against commit

Invariant: Total balance remains constant

Commit exposes broken invariants to other threads
−

Programmer can easily overlook hidden exceptions paths

Concurrency exacerbates exception safety issues

__tm_atomic {
withdraw(euro_amount,euro_account);
dollar_amount = convert(euro_amount);
deposit(dollar_amount,dollar_account);

}

Throws
Exception

7

Or not to commit?

“Abort-on-escape”

On exception: Rollback atomic block

Leaves program state as it was before atomic block

Automatic strong exception safety guarantee

Programmers can reason about atomic statements
as “all-or-nothing”
−

Failure atomicity: A key value proposition of transactions

But …

8

Against abort

Exception reports incorrectly converted amount

But state of atomic statement is rolled back
including exception object
−

What exception object should propagate out of atomic?

Overkill if code already provides exception safety

__tm_atomic {
...
if (amount < 0)
throw ConvertException(amount);

}

9

Both sides are right

Some programs behave surprisingly under
commit-on-escape

Others under abort-on-escape

Observations:

•

Exceptions that can escape an atomic statement
without being clear are potentially dangerous

•

No single behavior appropriate for all cases
−

Only the programmer can determine what’s appropriate

10

Our approach

Support both semantics & let programmer decide

New syntax for

•

Exception specifications on atomic blocks

•

Throwing exceptions that abort

Significant progress towards an agreement

•

An open issue still remains

11

Exception specification

Specify which exceptions may escape an atomic

Terminate if exception does not match specification

No specification?

Default behavior still under debate
−

As if no exceptions allowed to escape
−

As if all exceptions allowed to escape

__tm_atomic throw(E1,E2){…}// E1 or E2
__tm_atomic throw() {…}// no exceptions
__tm_atomic throw(…) {…}// all exceptions

__tm_atomic {…}// default ???

12

Commit-on-escape

Standard syntax for exception throw

Easy to specify that any exception commits

__tm_atomic throw(MyException) {
...
throw MyException();

}

__tm_atomic throw(…) {
exception_throwing_fun();

}

13

Abort-on-escape

New syntax for exception throw

Exception object is not rolled back

Programmer must ensure exception object makes
sense after rollback
−

E.g., avoid dangling pointers

__tm_atomic throw(MyException) {
...
__tm_abort throw MyException();

}

14

Aborting on any exception

Any exception aborts atomic block & propagates
exception

__tm_atomic throw(...) {
try {
<stmts>

} catch (...) {
__tm_abort throw;

}
}

15

Conclusion

We need common C++ language extensions for TM

Flexible integration of exceptions & atomic blocks in
C++

Worked out jointly by Sun, IBM, and Intel
−

Debate continues over default for no exception
specification

−

More work remains to complete full specification

Try it out using the Intel C++ STM compiler
−

Download from whatif.intel.com
−

32-bit & 64-bit Windows & Linux
−

Compiler-runtime ABI specification also available

	Exceptions and Transactions in C++��Ali-Reza Adl-Tabatabai1, Victor Luchangco2, �Virendra J. Marathe2, Mark Moir2, Ravi Narayanaswamy1, �Yang Ni1, Dan Nussbaum2, Xinmin Tian1, Adam Welc1, Peng Wu3��1Intel 2Sun 3IBM�
	Background
	TM extensions
	The problem
	To commit?
	Against commit
	Or not to commit?
	Against abort
	Both sides are right
	Our approach
	Exception specification
	Commit-on-escape
	Abort-on-escape
	Aborting on any exception
	Conclusion

