
Energy-efficient parallel software for mobile hand-held devices

Antti P. Miettinen
Nokia Research Center

Vesa Hirvisalo
Helsinki University of Technology

Abstract

Energy efficiency is an essential design criterion for mo-
bile hand-held devices. We underline the issue that paral-
lel programs for mobile devices must be efficiently exe-
cutable on the development platforms in addition to their
efficient execution on the target hardware. Further, we
argue that with the proliferation of increasingly com-
plex heterogeneous MPSoC architectures, seamless per-
formance and energy estimation needs to become an in-
tegral part of the software development flow.

We review the present reality of mobile software de-
velopment and the run-time behavior of the software on
the devices. Considering the future development envi-
ronments, we highlight how they can benefit from mod-
ern compiler technology and discuss the feasibility of
providing rapid feedback about performance and energy
consumption characteristics of the software while it is
being developed.

1 Introduction

In this paper, we consider the development of parallel
software for mobile hand-held devices. On one hand,
parallel programming has the potential to offerbothper-
formance and energy-efficiency gains for the devices.
On the other hand, parallel programming combined with
novel architectures (e.g., many-core with NUMA), raises
the risk of creating software with high energy consump-
tion and low performance. The outcome is often in the
hands of the software developer.

Cellular phones have for a long time employed multi-
processing and energy-efficient designs. Increasing par-
allelism is also the trend for the mobile application sub-
system [1]. Despite their small size, the descendants
of cellular phones include complex subsystems embed-
ded inside the device. Especially when the forthcom-
ing hardware architectures are considered, the complex-
ity of the software/hardware interactions is making the

performance and energy consumption behavior increas-
ingly non intuitive. Therefore the developer must rely on
the tools available even in the era of novel parallel pro-
gramming methods that are now emerging.

Cross-platform simulators are often used in the soft-
ware development flow for mobile hand-held devices.
Speed is essential for such simulators, but also diffi-
cult considering the forthcoming architectures. Recently,
simulators for massive parallelism have been studied and
demonstrated [2]. Also, using partial execution for per-
formance prediction has been studied [3]. Further, per-
formance prediction and regression models have been
considered to implement fast simulation [4]. Our work
is based on such developments, our experience with mo-
bile systems, and our previous research.

The structure of this paper is the following. In the
context of parallel programming (Section 2), we review
the hardware and software found in mobile hand-held
devices and the related software development practices
(Sections 3 and 4). Among the challenges in the de-
velopment (Section 5), we underline the importance of
efficient execution of programs on the development plat-
forms and the need for integrating seamless performance
and energy estimation into the normal software devel-
opment. After outlining the difficulties involved, we
discuss the use of parameterized abstract models and
highlight how the development environments can benefit
from modern compiler technology (Section 6) and then
present some concluding remarks.

2 Background

Energy efficiency is a central theme in the design of mo-
bile hand-held devices. The increasing use of always on-
line applications, multimedia, high speed wireless net-
working, large displays, etc. are making the challenge
continually more demanding. Also, software trends to-
wards increasing use of e.g., web applications and dy-
namic programming languages are making the optimiza-



tion of energy efficiency ever more important. Addition-
ally, even if the available energy would not be a limit-
ing factor, the power budget of roughly three Watts for a
hand-held device remains a valid rule because of thermal
concerns [5].

Figure 1: Clock speed per power for a collection of ARM pro-
cessor cores.

Even though parallel hardware is often viewed as a
challenge, it is also an opportunity for mobile devices
because of the better energy efficiency of parallel pro-
cessing when compared to sequential designs of com-
parable performance. Figure 1 shows an overview of
data collected from ARM public web pages about vari-
ous ARM processor cores with polynomial extrapolation
curves for cores with three data points. As can be seen,
the clock speed achievable with given power budget is
at least an order of magnitude higher for small low per-
formance cores than for bigger high performance cores.
Even though larger cores have the potential to perform
more work within one cycle, this advantage is often di-
luted by the fact that the performance of modern software
tends to be limited by memory effects as will be shown
later in this paper.

Performance scaling is an important aspect to paral-
lelism for mobile workloads, which exhibit varying lev-
els of required performance. DVFS [6] has been used
to optimize the device operation based on this varia-
tion. Figure 2 shows the energy per compressed data for
the deflate compression algorithm at various operating
points for an ARM11 based SoC along with the corre-
sponding data point for a statically clocked ARM9 based
SoC. Even with voltage scaling, the ARM11 based chip
fails to achieve the energy efficiency of the ARM9 based
one. This suggests that controlling the activity of cores
could offer a more efficient performance scaling mecha-
nism than DVFS.

Figure 2: Deflate compression energy efficiency.

3 Mobile hardware

Parallel architectures are common for mobile hand-held
devices. A general purpose processor coupled with a dig-
ital signal processor has been the standard configuration
for even the most basic mobile phones. Energy efficiency
optimization requirements have steered the configura-
tions towards heterogeneous designs where each core has
been dedicated for a particular purpose. However, trends
in hardware development are towards employing parallel
processing also within the subsystems of a device.

In contemporary mobile hand-held devices, the two
major subsystems requiring high processing perfor-
mance are the application subsystem and the wireless
modem. Despite similarities in their deployment struc-
ture, the design process behind the subsystems has sig-
nificant differences. The wireless modem is a reason-
ably well defined specialized environment where for ex-
ample model-based system-level design can be relatively
painlessly applied. Contrary to that, the application sub-
system is often an open environment which should be
more aligned towards software development paradigms
allowing more freedom in many respects.

In addition to programmable processor cores, mobile
devices employ hardware acceleration for the function-
alities requiring high computational processing power.
Within the wireless subsystem, these include signal fil-
ters and channel coding. For the application subsystem,
it is also desirable to utilize hardware acceleration, e.g.,
for multimedia codecs and 3D rendering.

4 Mobile software

A distinctive characteristic for the mobile software devel-
opment environments is theircross-developmentsetup.
As e.g., the input and output capabilities of physically
small devices are not optimal for software development,

2



native development is a rare practice. The software de-
velopment kits employ simulators for testing and debug-
ging while the software is developed on a separate host
system.

Even though the cross-development setup seems to be
a persistent feature for mobile software development, the
emphasis ondesign for a particular purposeis currently
under rapid change towards more open ended software
development process [7]. The software, the development
practices and the tools commonly used in desktop envi-
ronment are finding their ways into mobile hand-held de-
vices. Therefore, the mobile domain shares many trends
with mainstream software development.

These trends have clear implications for the comput-
ing architecture. Table 1 shows an example highlight-
ing the significance of the dynamic content in current
browser workloads. As has been demonstrated by e.g.,
the recently introduced Google V8 JavaScript engine,
high gains can be achieved with dynamic compilation.

Module cycles / % comment
libflashplayer 43 Adobe Flash
libxul 27 XML UI
libmozj 7 Javascript
libc 6 C library
libgcc 5 compiler support
libpthread 2 threading
libm 2 math
libnspr 2 porting layer

Table 1: CPU cycle distribution within the browser process
while opening CNN.com in Nokia N810.

As mobile devices are by nature embedded systems
interacting in many ways with their environment, the
processing that they perform should have more inher-
ent parallelism than for example batch mode computa-
tion. However, the software development tools and pro-
gramming models used for developing software for mo-
bile devices do not offer any better support for express-
ing the parallelism than what is common in e.g., desktop
world. This means that the parallelism of mobile work-
loads does not differ radically from general purpose ap-
plication software. Figure 3 shows the histogram for the
operating system ready queue length for various work-
loads running in an OMAP2420 based device. As can
be seen, some workloads show potential for decent uti-
lization on a few cores. However, for higher levels of
parallelism, operating system scheduling alone is clearly
not enough.

Figure 3: Linux ready queue length for different workloads in
OMAP2420 based hardware.

5 Challenges

5.1 The programmability walls

From the view point of a software developer, program-
ming for parallel hardware is challenging – especially,
when heterogeneous hardware and tightly coupled asym-
metric execution environments are considered. On one
hand, there are obvious possibilities of improving per-
formance and energy-efficiency, e.g., by proper alloca-
tion of computational tasks and the related data on the
units. On the other hand, the novel architectures bring a
high risk of significantly degrading the performance and
energy-efficiency (e.g., by bad allocation). Automated
methods for increasing the parallelism of workloads have
been proposed, e.g., thread-level speculation [8]. How-
ever, the reliance on statistical properties of workloads
makes the exact run-time behavior increasingly hard to
predict.

For mobile devices, a crucial aspect requiring special
attention is theobservability wallrelated to performance
and energy consumption effects. The simulation tools
that are an integral part of the mobile software develop-
ment process usually employ only functional simulation
in order to maintain the high simulation speeds required
by interactive debugging. Therefore, performance and
energy aspects remain virtually unobservable during the
normal edit-compile-debug cycle.

Parallelism introduces additional challenges for per-
formance analysis. At high level, the performance be-
havior of a uniprocessor system is reasonably straight
forward and subtle performance anomalies are rare.
However, the performance behavior of multiprocessing
systems is significantly more complex. A simple ex-
ample of the subtleness of performance effects is false
sharing. With false sharing parallelized code can show
full utilization while performance of parallel execution

3



can be lower than the performance of the same code ex-
ecuted sequentially. Diagnosing such situations can be
quite challenging with traditional debugging tools.

Energy consumption effects can also be quite subtle
and hard to debug even with current mobile platforms.
For rough analysis, on-target measurement can be invalu-
able [9]. For detailed analysis, more elaborate hardware
instrumentation is usually employed, but these measure-
ment setups are generally not suitable for large scale
adoption.

5.2 Heterogeneous systems

While increase in programmability is continually sought
for, mobile devices are likely to require hardware ac-
celeration also in future. From performance estimation
point of view, the hardware accelerators are an especially
challenging topic. The software development kits might
in the best case implement functional emulation of the
accelerators. This enables operating system device driver
development without the actual hardware. However, of-
ten the accelerators are simply short-circuited by using
development host resources to provide similar function-
ality. This means that it is impossible to observe the per-
formance effects of the acceleration within the simulator.

6 Discussion

The observability wall in mobile software development is
related to the ubiquitous use of simulators. In the advent
of many-cores, the need for increasing the visibility of
performance and energy consumption effects within the
natural software development-flow is obvious.

Fast and accurate simulation is a challenging topic.
For example, traditional cache simulation [10] is slow,
because it is based on explicit simulation of the memory
traffic and maintaining accurate information about mem-
ory system status. However, immediacy of feedback is
often much more important than accuracy, because of
product process issues, development flows, etc. Also, the
overall performance of software can often be explained
by high-level metrics. This makes it appealing to use
simple approximative methods that are based on empiri-
cally adjusted abstract models. Such abstract models can
be connected to the compiler technology that is used in
typical functional simulators.

Figure 4 shows the cumulative data access distribu-
tions for three different traces from a mobile browser.
Several observations can be made. The most immediate
one is the relatively low MIPS metric for all the cases
(the CPU frequency was locked to 330 MHz during the
traces). Another observation can be read from the max-
imum value reached by the curves, which tells that the
data to instruction ratios for all the traces are quite high.

Figure 4: Cumulative counts of data accesses to unique ad-
dresses for three one-second traces from the Mozilla based
browser in Nokia N800.

Finally we can observe that the wider the accesses are
spread, the lower the achieved MIPS metric, i.e., the
larger the memory footprint, the lower the performance.
In our experience, this kind of behavior is typical.

To demonstrate that even simple models can provide
quite accurate estimates for performance, Figure 5 shows
estimated and measured MIPS metrics for the deflate
compression algorithm. The cycle and instruction counts
were collected from the RealView Instruction Set Simu-
lator with a memory model calibrated with micro bench-
marks against real hardware. The estimated MIPS met-
ric was calculated with a simple linear model from data
cache line fetch rate. The coefficients for the model were
obtained by least squares fit to the data collected from
the ASCII compression case. As can be seen, the es-
timate for the ASCII case is almost perfect. When the
input data is changed from ASCII to JPEG, a visible sys-
tematic error in the estimate can be seen, but the mean
square error for the estimate is still below 1%.

Figure 5: Actual and estimated MIPS metric for the deflate
compression algorithm.

4



Accurate energy consumption estimation is also a
challenging task, and like accurate timed simulation,
continues to be a relevant research topic [11]. However,
e.g., for contemporary CPUs, activity time seems to be a
good first-order estimate for the consumed energy. Even
though individual instructions can have clear differences
in their energy cost, the differences tend to average out
during execution.

Figure 6: Energy consumption as function of execution time
for various workloads on OMAP5912.

To demonstrate the feasibility of simple models for
energy consumption estimation, Figure 6 presents vari-
ous workloads compiled with various optimization lev-
els as function of their relative execution time. As can
be seen, the CPU energy consumption depends quite lin-
early on the execution time. This allows rough estima-
tion of the CPU energy consumption to be based on the
activity times obtained by performance estimation mod-
els and the explicit modelling of the power behavior of
the hardware can be avoided.

For current hardware platforms this kind of simple
models could be integrated into the functional simula-
tors used for mobile software development. These pro-
duction simulators are typically based on dynamic binary
translation, which translates fragments of target code into
development host code and executes the fragments on-
the-fly by using a small code buffer [12]. Further, more
advanced methods are emerging for simulation that are
better suitable for parallel software.

Performance of simulating parallel hardware targets
can be significantly improved with unsynchronized ex-
ecution and direct use of simulation host shared memory
[2]. The unsynchronized execution means that the sim-
ulation is non-deterministic, but the consistency of host
shared memory ensures functionally correct execution.
We propose augmenting such an approach with simula-
tion of non-functional behavior (see Figure 7). However,
it is not obvious that approximate models can expose per-
formance phenomena specific to parallel execution, e.g.,

false sharing. Clearly further research is needed to find
the balance between high simulation speed and meaning-
ful estimates for e.g., timing and memory traffic when
simulating parallel execution.

Figure 7: Applying empirically adjusted abstract models in
mobile software development with a setup similar to [4].

Memory behavior is essential with respect to energy-
efficiency. Abstract models can be used to speed-up sim-
ulation of memory behavior [13]. In such an approach,
abstract models are used to partially resolve the memory
traffic during static compilation. The remaining memory
traffic is resolved during run-time along the dynamic bi-
nary translation for the functional emulation. According
to our previous experience with such compiled simula-
tion methods, the majority of cache hits and misses will
be resolved during static compilation.

The use of abstract models during the dynamic phase
means that the simulation will not be accurate, but we
expect it to be sufficient for embedded software devel-
opment based on other studies (e.g., [4]). We anticipate
that the accuracy of the performance estimates provided
by the abstract models could be improved by optimiz-
ing the composition of the training set programs used for
calibrating the models. Also the choice of metrics that
are exported from the functional simulator could be opti-
mized, e.g., based on static analysis of the software under
development.

For parallel software and hardware, it is necessary to
model the effects of synchronization and sharing. Mem-
ory, being the most common sharing mechanism, rep-
resent the main challenge for performance and energy
estimation. We advocate further studies on modelling
the performance and energy consumption effects of the
memory subsystem in parallel platforms for the purpose
of combining static analysis with simulators utilizing dy-
namic compilation and light weight run-time data collec-
tion suitable for rapid feedback during software develop-
ment.

5



7 Conclusions

While parallelism has tremendous potential especially
for mobile devices, already the current platforms are
suffering from severe observability challenges related
to performance and energy consumption. The indus-
try standard tools and practices are fundamentally lack-
ing in this area especially considering the trends towards
increasingly complex parallel architectures employing
asymmetric multiprocessing coupled with hardware ac-
celerators.

Although a large body of research exists on simula-
tion, further research is needed on the interaction be-
tween cross-platform simulation and many-core platform
implementation, especially considering memory-related
developments such as transactional memory [14] and
hardware interconnection structures [15].

Advanced simulation methods, modern compiler tech-
nology and empirically tuned models show promise for
providing tools to seamlessly integrate performance and
energy consumption estimation into the software devel-
opment flow used to target mobile hand-held devices. In
the context of contemporary software development prac-
tices, e.g., test-driven development, rapid feedback will
be crucial for creating efficient software for the highly
parallel platforms of the future. Considering software de-
velopment, viability of the design decisions by software
developers are more important than absolute precision of
the tools used by them.

8 Acknowledgments

For support and review work we thank Kimmo
Kuusilinna, Eero Aho and Jussi Ruutu at Nokia Research
Center. For our tools of the trade we are indebted to
numerous people in Nokia product development units,
including Igor Stoppa, Sakari Poussa, Ari Aho, Rolf
Kühnis, Stephen Wade and Andrew Baldwin. We are
also grateful for Juhani Peltonen for rigorous measure-
ment work supporting our research.

References

[1] Symbian Symmetric Multiprocessing description,
http://www.symbian.com/symbianos/
os_smp.html

[2] B. Lanz, Parallel SimOS: Performance and Scala-
bility for Large System Simulation, Ph.D. Disserta-
tion. Stanford University, Stanford, CA (2007).

[3] L. T. Yang, X. Ma and F. Mueller,Cross-Platform
Performance Prediction of Parallel Applications

Using Partial Execution, Proc. ACM/IEEE Conf.
Supercomputing (2005).

[4] B. Franke,Fast cycle-approximate instruction set
simulation, Proc. int. Workshop on Software &
Compilers For Embedded Systems (2008).

[5] Y. Neuvo, Cellular phones as embedded systems,
Digest of Technical Papers, IEEE Int. Solid-State
Circuits Conf. (2004) pp. 32–37.

[6] K. Flautner, S. Reinhardt and T. Mudge,Automatic
Performance Setting for Dynamic Voltage Scaling,
Wirel. Netw., vol. 8, no. 5 (2002) pp. 507–520.

[7] Maemo Software Platform,http://maemo.
org/intro/platform/

[8] T. Ohsawa, M. Takagi, S. Kawahara, S. Mat-
sushita,Pinot: Speculative Multi-threading Pro-
cessor Architecture Exploiting Parallelism over a
Wide Range of Granularities, Proc. IEEE/ACM Int.
Symposium on Microarchitecture (2005) pp. 81–92

[9] Nokia Energy Profiler,http://www.forum.
nokia.com/main/resources/user_
experience/power_management/nokia_
energy_profiler/

[10] J. Edler and M. D. Hill, Dinero IV Trace-Driven
Uniprocessor Cache Simulator,http://pages.
cs.wisc.edu/ ˜ markhill/DineroIV/

[11] D. Brooks, V. Tiwari, M. Martonosi,Wattch: A
Framework for Architectureal-Level Power Anal-
ysis and Optimizations, Proc. Int. Symposium on
Computer Architecture (2000) pp. 83–94.

[12] F. Bellard, QEMU, a fast and portable dynamic
translator, Proc. USENIX Annual Technical Conf.
(2005).

[13] V. Hirvisalo, Using Static Program Analysis to
Compile Fast Cache Simulators, Doctoral Disser-
tation, Helsinki University of Technology, Espoo
(2004).

[14] J. Larus, C. Kozyrakis,Transactional Memory,
Commun. ACM, vol. 51, no. 7 (2008), pp. 80–88.

[15] V. Narayanan,Network-on-Chip for 3D Architec-
tures, Mini keynote, Int. Forum on Appliation-
Specific Multi-Processor SoC (2008).

6


