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Abstract
We argue for space-time partitioning (STP) in many-

core operating systems. STP divides resources such as
cores, cache, and network bandwidth amongst interact-
ing software components. Components are given un-
restricted access to their resources and may schedule
them in an application-specific fashion, which is critical
for good parallel application performance. Components
communicate via messages, which are strictly controlled
to enhance correctness and security. We discuss proper-
ties of STP and ways in which hardware can assist STP.
We introduce Tessellation, a new operating system built
on top of STP, which restructures a traditional operating
system as a set of distributed interacting services. In Tes-
sellation, parallel applications can efficiently coexist and
interact with one another.

1 Introduction
All major vendors have ceased the relentless pursuit of
individual CPU performance and have instead started
doubling the number of CPUs per chip with each gen-
eration. Highly parallel manycore systems will soon be
the mainstream, not just in large machine room servers
but also in small client devices, such as laptops, tablets,
and handhelds. This emergence of ubiquitous multipro-
cessing presents both a challenge and an opportunity. On
the one hand, multiprocessing has achieved only limited
success for general computing; the challenge is to find
innovative and compelling ways in which to use an ever
increasing number of CPUs. On the other hand, the pres-
ence of vast CPU resources presents an opportunity to
fundamentally change the assumptions and structure of
systems software.

Unlike servers, which exploit parallelism across in-
dependent transactions from multiple users, single-user
clients will require parallelized applications to benefit
from a manycore platform. Future client devices will run
a mix of interactive, real-time, and batch applications si-
multaneously; a user may run multiple web applications,
such as Gmail and Facebook, while listening to MP3 mu-
sic files and video chatting with friends. In addition, bat-
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Figure 1: Space-Time Partitioning in Tessellation: a
snapshot in time with four spatial partitions.

tery life is a critical issue for client devices, requiring en-
ergy to be a first-class resource that is actively managed
by the operating system.

This paper argues that space-time partitioning (STP)
is crucial for manycore client operating systems. A spa-
tial partition (or “partition” for short) is an isolated unit
containing a subset of physical machine resources such
as cores, cache, memory, guaranteed fractions of mem-
ory or network bandwidth, and energy budget. Space-
time partitioning virtualizes spatial partitions by time-
multiplexing whole partitions onto available hardware,
but at a coarse-enough granularity to allow efficient user-
level scheduling within a partition.

Space-time partitioning leads to a restructuring of sys-
tems services as a set of interacting distributed compo-
nents. We propose a new “exploded OS” called Tes-
sellation, structured around space-time partitioning and
two-level scheduling between the global and partition
runtimes. Tessellation, shown in Figure 1, implements
scheduling and resource management at the partition
granularity. Applications and OS services run within
their own partitions and have exclusive control of the
scheduling of resources (e.g. cores, cache, memory)
within their partitions. Partitions are lightweight, and
can be resized or suspended with similar overheads to
a process context switch.

2 A Case For Space-Time Partitioning
In this section, we make the case for space-time parti-
tioning as a central component of a manycore operating
system. One of the key tenets of our approach is that
resources given to a partition are either exclusive (such
as cores or private caches) or guaranteed via a quality-



of-service (QoS) contract (such as a minimum fraction
of network or memory bandwidth). During a scheduling
quantum, components within a partition are given unre-
stricted access to their resources via a standardized API
that provides a thin abstraction layer, sufficient for porta-
bility and ease of programming. This API includes op-
erations to configure the execution context of an applica-
tion, such as setting up virtual memory translations and
assigning threads to specific cores. It also includes mech-
anisms for constructing secure, restricted channels with
other partitions, a topic we will explore in Section 3.

Effectively, components within a partition run as close
as possible to the “bare metal” hardware with minimal
OS interference. They flexibly control their resources
by scheduling them in whatever way they choose. Thus,
we expect that application runtimes and access to OS ser-
vices will be provided as libraries (similar to a libOS [8]).

2.1 Partitioning for Performance
The need for space-time partitioning becomes clear as we
consider the diverse application workload on a manycore
client. Unlike high-performance computing (HPC) envi-
ronments, where a single large application executes at a
time, typical client environments will have many parallel
applications interacting with one another and competing
for shared resources.

The challenge of exploiting parallelism for client
manycore environments is daunting. Successful paral-
lelism strategies, e.g., bulk-synchronous data parallelism
or streaming pipeline parallelism, work best when the
performance of components is predictable to enable load
balancing. If co-scheduled applications or services gen-
erate interrupts that cause unpredictable resource avail-
ability, performance will suffer. Also, the variety of ap-
plications on a client will exhibit different forms of paral-
lelism and incompatible performance goals (e.g., interac-
tive response vs. guaranteed throughput). Consequently,
a single monolithic scheduler is unlikely to be sufficient
for this diverse environment.

Spatial partitions with exclusive access to resources
can provide a stable environment in which application-
specific runtimes tailored to different parallel program-
ming models and resource management techniques can
execute without interference from incompatible OS
scheduling policies. Further, space-time partitioning can
provide both functional and performance isolation be-
tween simultaneously running applications with different
performance goals.

2.2 Partitioning for Energy
Energy is a crucial resource for the client environment.
Spatial partitioning provides an operating system’s ana-
log of clock gating (used for power reduction at the hard-
ware level). With proper hardware support, whole par-

titions could exist in low power states until requests are
made of them, at which point they could become enabled
only long enough to satisfy a set of incoming requests.

Further, by carefully allocating resources to partitions,
the kernel can control the power consumption of each
software component. For instance, a portable device en-
countering a low-energy condition could choose to de-
vote a minimal fraction of available memory and com-
pute bandwidth to a crucial function such as cellphone
service, while greatly restricting the resources available
to non-crucial functions. Consequently functions such as
background email synchronization would slow down or
stop while continuing to support reception of calls.

2.3 Partitioning for QoS
A system with space-time partitioning can enforce QoS
guarantees through performance isolation and strict con-
trol of inter-partition communication.

For instance, an IP network component could receive
sufficient CPU and memory resources to guarantee its
ability to handle external network traffic at line speed
while performing intrusion detection, packet classifica-
tion, and demultiplexing. Resources allocated to this par-
tition are dedicated, ensuring that it can achieve its per-
formance goals.

Another example is a file system service that receives
a guaranteed resource allocation to provide service-level
QoS guarantees to other partitions. The file system ex-
presses these service-level QoS guarantees to other par-
titions in terms of the number of incoming requests that
can be satisfied per unit time. This request bandwidth
can be enforced by the controlled communication mech-
anisms, exported by an OS kernel, to limit message traf-
fic across partition boundaries.

2.4 Partitioning for Correctness
Isolation of resources and inter-partition communication
leads to enhanced security and correctness. Partitions are
vulnerable at their boundaries. By enforcing predeter-
mined communication patterns, the kernel can prevent
many classes of attack and incorrect behaviors. Even if
dynamic inter-partition communication patterns are de-
sired, the partitioning mechanism can require each new
connection to be vetted and approved by the kernel be-
fore communication is possible.

Further, the isolation properties of a partition could be
exploited for fast restart of software components. Fast
restart would be achieved by making sure that each parti-
tion has persistent state that is undo-able through logging
or transaction support. Since partitions are isolated from
one another, it is conceivable that a faulty service par-
tition could be rapidly rebooted and restored to a func-
tioning state without revoking its resources or disturbing
other partitions.



2.5 Partitioning for Hybrid Behavior
An efficient inter-partition communication mechanism
would enable the splitting of applications into multi-
ple sub-application partitions. For instance, a parallel
web browser [11] might utilize auxiliary partitions to
hold untrusted plugins, thereby gaining additional secu-
rity. Or, an application such as a virtual-reality game or
music synthesis program might isolate realtime compo-
nents from background model-building components via
partitioning. Separating such components would sim-
plify scheduling since each component can be config-
ured/scheduled independently. Realtime sub-partitions
can be given higher priority with stronger resource allo-
cation guarantees than best-effort sub-partitions. A ker-
nel API would provide support for application runtimes
to configure sub-partition resource allocation, priority,
and scheduling.

For heterogeneous architectures, partitions can en-
compass components with different computational ca-
pacity; for instance, some partitions may consist of “fat”
cores while others include cores best adapted for SIMD
computation. In this case, application partitioning can
reflect the computational needs of an application.

3 Interaction Between Partitions
The simplest view of a partition is an isolated set of com-
putational resources, but STP becomes particularly inter-
esting when we consider partitions as interacting compo-
nents within a larger system. In this section, we elaborate
on three important mechanisms for selectively relaxing
partition-level isolation: inter-partition communication,
cross-partition quality-of-service guarantees, and parti-
tion virtualization.

3.1 Inter-Partition Channels
Partitions provide a natural framework for encapsulating
major components of applications and the operating sys-
tem. However, splitting an application across multiple
partitions requires that these partitions be able to com-
municate with one another. If poorly designed, cross-
partition communication could become a weak point in
the security or QoS guarantees provided by the system
as a whole. We believe that a misbehaving or compro-
mised partition should not affect the QoS or correctness
of other partitions, except in a very restricted fashion
along previously-established inter-partition communica-
tion channels.

Our current model of inter-partition communication is
via message passing. Message passing makes it easier to
reason about the security of the system because messages
are read-only and explicitly relinquished by the sender at
the time of transmission. Message channels (that may
be encrypted) must be authorized by a trusted code base
(e.g., as with partition tagging in HiStar [18]) before they
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Figure 2: Request messages to shared service partitions
must be tracked and controlled to meet QoS guarantees.

can be used. The efficient implementation of message
channels including hardware support is an ongoing topic
of research, as is the channel interface; we may even-
tually relax our inter-partition communication model to
include restricted forms of shared memory.

Each unidirectional message channel consists of a
source endpoint and a destination endpoint. Since the
destination partition of a message may be descheduled at
the time that a message is sent, each destination endpoint
must consist of resources (e.g., a queue in memory) that
persist at all times. There may be a variety of semantics
for what happens upon a message enqueue depending on
the scheduling policy for destination endpoints. For in-
stance, if the partition is not currently running, the ker-
nel scheduler could schedule the destination partition at
some future (or the next) time quantum, or immediately
schedule the destination partition. To notify the desti-
nation partition of the message, the kernel could either
generate an interrupt to the destination partition (once it
is running), or the destination partition could periodically
poll for new messages. We are experimenting with batch-
ing most application and OS events in hopes of eliminat-
ing many of the traditional uses for interrupts.

3.2 Cross-Partition Quality of Service
Partitions only communicate with one another or the out-
side world through messaging. Consequently, monitor-
ing and restricting the flow of messages provides an im-
portant mechanism for enforcing QoS.

For instance, suppose that applications A and B are
granted equal quantities of some global resource (e.g.,
energy, network bandwidth, or execution time). In the
presence of a shared service (see Figure 2), two things
must be accomplished to enforce QoS: First, the shared
service must be profiled or otherwise analyzed to ascer-
tain a relationship between incoming request rate and
resource usage. Second, requests from applications A
and B must be monitored and potentially suppressed at
the source to prevent either application from denying the
other its fair share of the shared service. Such source
suppression is an analog of mechanisms that have been
proposed to guarantee QoS for network bandwidth [12].



3.3 Partition Virtualization
Partitions can be virtualized and multiplexed on phys-
ical hardware by a global partition manager. Parti-
tion resources must be gang scheduled to provide ap-
plication runtimes with full knowledge and control over
their resources to enable them to implement optimized
scheduling and resource allocation internally. To allow
application-level scheduling, the time quantum at which
partitions are run should be much longer than that for
traditional OS processes. Some partitions with strict re-
source demands, e.g., highly utilized services or hard
realtime applications, may be pinned to cores or multi-
plexed at a predictable rate. Other partitions may only be
scheduled in response to messages sent to that partition.
For example, rarely used services could be ready to run
but only scheduled when an application makes a request.

When starting, an application that requires resource
guarantees must express its resource and QoS require-
ments to a global partition manager in charge of actually
allocating out those resources; such requirements may
be discovered through profiling, analysis, or online tun-
ing. If the demands can be met without violating other
applications’ guarantees, then the new application can
start (it is admitted). However, if admitting the applica-
tion would cause oversubscription—resulting in failure
to meet all of the current QoS contracts—then the appli-
cation must be denied. The user will be informed that
the new application can not be admitted without chang-
ing the current set of running applications.

4 Space-Time Partitioning in Tessellation
The Tessellation Kernel (shown in Figure 3) is a thin,
trusted layer that implements resource allocation and
scheduling at the partition granularity. Tessellation ex-
ploits a combination of hardware and software mecha-
nisms to perform space-time partitioning and provides a
standardized API for applications to configure resources
and construct secure restricted communication channels
between partitions. The Tessellation Kernel is much
thinner than traditional monolithic kernels or even hy-
pervisors, and avoids many of the performance issues
with microkernels by providing OS services in spatially-
distributed active partitions through secure messaging
(thus avoiding context switches).

4.1 Hardware Partitioning Mechanisms
In this section, we discuss hardware mechanisms (exist-
ing and proposed) to aid in partitioning and reduce the
overhead of time-multiplexing a partition. The Partition
Mechanism Layer (next section) combines these mecha-
nisms to provide a uniform partitioning API.

Cores (CPUs) are controlled by restricting the abil-
ity of applications to run threads on the cores. Physical
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Figure 3: Components of a Tessellation system. The Tes-
sellation Kernel utilizes a combination of hardware and
software mechanisms to enforce partition boundaries.

memory is partitioned using conventional mechanisms
such as page tables and TLBs.

We need hardware support to partition shared re-
sources, e.g., caches and network/memory bandwidth, in
order to provide performance isolation. Performance iso-
lation enables the operating system to run arbitrary appli-
cations simultaneously (spatially distributed), while pro-
viding a simple performance model to each application.
Shared caches should be partitionable flexibly and dy-
namically for efficient utilization. Previous works sug-
gest some possible mechanisms to partition caches such
as [17] or [9]. Similarly, hardware support is needed
to partition interconnect bandwidth. Lee et. al. describe
one possible solution for providing QoS in on-chip net-
works [12]. Such mechanisms can be extended to pro-
vide QoS for off-chip memory usage.

Ideally, we also envision having hardware support to
secure message channels between partitions. Mecha-
nisms such as message tagging would allow partitions to
initiate communication without the intervention of privi-
leged software. Support to track and regulate the volume
of inter-partition communication would enable efficient
implementations of service-level QoS.

So far, we have described mechanisms for enforcing
spatial partitions. Tessellation also uses hardware per-
formance counters to monitor application performance,
resource usage, and energy consumption. Performance
information can be collected for all resources within a
partition to determine the runtime behavior of an appli-
cation during its different phases. This information can
then be used to adjust resource allocations for better uti-
lization. Ideally, future hardware would support gather-
ing and reporting statistics at the partition granularity.



4.2 The Partition Mechanism Layer
The lowest layer of the Tessellation Kernel is called the
Partition Mechanism Layer, as shown in Figure 3. This
thin, machine-dependent layer is responsible for con-
figuring available hardware mechanisms to enforce dy-
namic hardware partitions. When mechanisms are not
available directly in hardware, the Partition Mechanism
Layer implements them (a form of paravirtualization).
It provides a machine-independent interface to the pol-
icy layer (next section). By separating mechanisms from
policy, we can easily verify the correctness of the mech-
anism layer, which is critical to functional and perfor-
mance isolation.

In our current experimental platform, cores are parti-
tioned in software by controlling the ability of applica-
tion runtimes to place a thread onto a particular core; the
kernel proceeds only if the core belongs to the request-
ing partition. Lacking hardware support for messaging,
message channels are constructed by mapping message
FIFOs in protected shared memory between partitions.

4.3 The Partition Manager
The heart of the Tessellation Kernel is a policy layer,
called the Partition Manager. The Partition Manager
schedules and allocates resources to applications and ser-
vice partitions, while balancing system performance with
energy consumption, to achieve high-level objectives,
such as battery life or system responsiveness. Resource
allocation, scheduling of partitions, and partition virtual-
ization is described more in Section 3.3.

To determine which resources and how much of those
resources should be allocated to each partition, the
Partition Manager needs an abstract understanding of
the machine topology; the Partition Mechanisms Layer
should provide this abstract specification in a machine-
independent way. Fortunately, future single-chip many-
cores will have lower communication latencies than ex-
isting symmetric multiprocessors (SMPs) which simpli-
fies the tradeoff of either minimizing the latency of pri-
vate data access per thread or minimizing communica-
tion latency between threads. Consequently, to first or-
der, the Partition Manager will only need to determine
how much of a resource to allocate rather than which re-
source to allocate.

Since the optimal number of partition resources re-
quired by an application can vary over time, the Parti-
tion Manager should dynamically adjust allocations to
optimize system efficiency. The partition resizing API
implemented by application runtimes (shown in Figure 3
and described further in Section 4.4) permits the Partition
Manager to resize running application partitions. Appli-
cations that do not implement this interface prevent the
Partition Manager from dynamically changing the size of
a spatial partition to improve performance or reduce en-

ergy consumption (although such partitions can still be
time-multiplexed).

The Partition Manager uses hardware performance
counters, as described in Section 4.1, to determine the
best resource allocation for each partition. The Parti-
tion Manager uses these counters to dynamically build
a model correlating resource allocation with estimated
performance on a partition basis; This is in the spirit of
Quereshi’s work [14], however, our goal is to speed up
an entire parallel application, not just one of its threads
(which may not improve application performance). We
are currently exploring policies for resource allocation
trading off system performance with energy consump-
tion.

The Partition Manager time-multiplexes partitions
onto the machine. Partitions whose configurations fit on
the machine can be scheduled simultaneously. The per-
formance isolation provided by partitioning eliminates
the need to worry about how the applications may in-
terfere with each other. Unallocated resources can be left
in a low-power state, or used to run an application that
can make reasonable progress with only those resources.

4.4 Application Use of Partitions
Tessellation provides both fixed-sized partitions and
dynamically-sized partitions to applications. Applica-
tions written for fixed sized partitions query Tessellation
for available resources and request a certain amount. The
Partition Manager can choose to grant the original re-
quest or select a different allocation of resources. Once
created, a fixed-sized partition is guaranteed to have that
number of resources when scheduled. Applications that
support dynamically-sized partitions implement the par-
tition resizing API to allow the dynamic addition and
removal of resources during runtime. This protocol is
based on a callback mechanism, similar to scheduler ac-
tivations [3].

Tessellation exports three additional interfaces. One
allows applications to dynamically request and return re-
sources to the Partition Manager. Another allows ap-
plications to specify scheduling constraints such as real
time deadlines or priorities. A third allows applications
to initiate secure channels with other partitions.

The Tessellation effort includes work on user-level li-
braries for exporting traditional I/O and system call inter-
faces to applications running in partitions. We provide
a version of NewLibC [1] that implements system ser-
vices by sending messages to service partitions; initially,
these service partitions are running complete copies of
operating systems such as FreeBSD. We are also col-
laborating closely with efforts to provide frameworks for
constructing custom user-level runtime systems, such as
Lithe [13].



5 Related Work
Tessellation is influenced by virtual machines, exoker-
nels, and multiprocessor runtime systems. Similar to
Xen [5] and VMware ESX [2], Tessellation virtualizes
machine resources. Unlike these systems, Tessellation
virtualizes resources at the partition granularity, guar-
anteeing that CPUs within a partition are scheduled si-
multaneously. Similar to the Exokernel [8], Tessellation
implements system services extensibly at user-level, al-
lowing, for instance, applications to choose a user-level
runtime best suited for the application. However, Tes-
selation avoids the shortcomings of the Exokernel by
providing a thin abstraction layer that ensures portabil-
ity without restricting an application’s access to partition
resources. Further, Tessellation can support multiple het-
erogeneous runtimes simultaneously through isolation.

Unlike LPAR [6] and DLPAR [10], hardware par-
titioning within Tessellation is lightweight and flexi-
ble; the overhead of resizing or multiplexing partitions
is of the order of a process context switch. Space-
time partitioning complements threading runtimes such
as McRT [15]. The sequestered mode of McRT, which
runs directly on bare-metal resources and acts as a light
weight threading system, is exactly the type of environ-
ment that Tessellation’s spatial partitioning can provide.

Existing operating systems (e.g. Linux, BSD, or Win-
dows) operate at the granularity of individual CPUs, and
therefore use the thread abstraction to make resource al-
location and scheduling decisions. We claim that spatial
partitions provide a more natural abstraction for support-
ing multiple parallel applications within a client many-
core device. Further, spatial partitions act as a natural
abstraction for implementing resource allocation and ac-
counting frameworks such as resource containers [4] and
energy-aware scheduling policies such as [19].

Researchers have started to explore the space of many-
core operating systems. Corey OS [7] is a manycore
OS that achieves scaling by giving programmers con-
trol over the sharing of kernel data structures. We be-
lieve that Tessellation’s distributed OS services approach
combined with space-time partitioning helps with scal-
ing. Barrelfish OS [16] is geared towards manycore plat-
forms and shares our high-level goal of structuring the
OS as a distributed system.

6 Conclusions and Future Work
We argued for space-time partitioning (STP) as the pri-
mary abstraction for resource management on manycore
client devices, and presented a new OS, called Tessel-
lation, based on STP. We assert that STP is crucial for
the programmability and performance of parallel appli-
cations in a multi-application environment and serves as
a natural primitive for energy management, fault contain-
ment, security, and service-level QoS.

We are currently implementing Tessellation OS with
resource partitioning and secure channels; several com-
ponents exist already. Initially, device drivers and I/O
will be provided by FreeBSD running in a separate par-
tition. Soon thereafter, we will build partition-aware file
systems and TCP/IP interfaces. We are investigating ef-
ficient dynamic resource allocation policies, QoS mech-
anisms, and portable representations of resources and
communication topology. We will soon have several se-
cure channel designs, composable user-level scheduling,
and energy management. STP allows a restructuring of
traditional operating systems—an exciting prospect that
we look forward to reporting on at a future date.
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