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Abstract

Computer systems are undergoing significant change: to
improve performance and efficiency, architects are ex-
posing more microarchitectural details directly to pro-
grammers. Software that exploits specialized accelera-
tors, such as GPUs, and specialized processor features,
such as software-controlled memory, exposes limitations
in existing compiler and OS infrastructure. In this pa-
per we propose a pragmatic approach, motivated by our
experience with Merge [3], for building applications that
will tolerate changing hardware. Our approach allows
programmers to leverage different processor-specific or
domain-specific toolchains to create software modules
specialized for different hardware configurations, and it
provides language mechanisms to enable the automatic
mapping of the application to these processor-specific
modules. We show this approach can be used to manage
computing resources in complex heterogeneous proces-
sors and to enable aggressive compiler optimizations.

1 Introduction

Heterogeneous computer systems, which may integrate
GPUs, FPGAs and other accelerators alongside conven-
tional CPUs, offer significantly better performance and
efficiency. However, they often do so by exposing to pro-
grammers architectural mechanisms, such as low-latency
scratchpad memories and inter-processor interconnect,
that are either hidden or unavailable in general-purpose
CPUs. The software that executes on these accelera-
tors often bears little resemblance to its CPU counterpart:
source languages and assembly differ, and often entirely
different algorithms are needed to exploit the capabilities
of the different hardware.

The ISAs of commodity general-purpose processors
have changed remarkably little during the past 30 years.
Decades old software still runs correctly, and fast, on
modern processors. Unlike their ISAs, processor mi-
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Figure 1: Sketch of Merge framework

croarchitectures and system architectures have changed
significantly. As modern architectures expose more mi-
croarchitectural and system details to software to im-
prove performance and efficiency, programmers are no
longer insulated from the evolution of the underlying
hardware. Programming models need to be inclusive of
different processor architectures, and tolerant of contin-
ual, often radical, changes in hardware.

To exploit these new and different hardware resources,
a diverse set of vendor-specific, architecture-specific and
application-specific programming models have and are
currently being developed. The rapid evolution of hard-
ware ensures that programming models will continue
to be developed at a torrid pace. Integrating different
toolchains, whether from different vendors or using dif-
ferent high-level semantics, remains a challenge. How-
ever, integrating many narrowly-focused tools is more ef-
fective than attempting to craft a single all-encompassing
solution; consequently, that is the approach we take.

In this paper, we present a methodology, motivated
by our experiences with the Merge framework [3], for
building programs that target diverse and evolving het-
erogeneous multicore systems. Our approach, summa-
rized in Figure 1, automatically maps applications to
specialized software modules, implemented with dif-
ferent processor-specific or domain-specific toolchains.
Specialized domain-specific languages and accelerator-



specific assembly are encapsulated in C/C++ functions
to provide a uniform interface and inclusive abstraction
for computations of any complexity. Different imple-
mentations of a function are bundled together, creating
a layer of indirection between the caller and the imple-
mentation that facilitates the mapping between applica-
tion and implementation.

Section 2 motivates the use of encapsulation and
bundling, summarizing and updating the techniques first
described in [3]. Sections 3 and 4 present our most recent
work, in which we show how encapsulation and bundling
can be used to effectively manage computing resources
in complex heterogeneous systems and enable aggressive
compiler optimizations.

2 An Extensible Programming Model

The canonical compiler reduces a computation expressed
in some high-level language to a small, fixed set of prim-
itive operations that abstract the capabilities of the tar-
get hardware. Compilation and optimization strategies
are biased by the choice of primitive operations. Opti-
mizations developed for one set of primitives are often of
limited use when the primitive operations fail to abstract
important aspects of the target hardware or application.

Unfortunately, no one set of primitive operations can
effectively abstract all of the unique and specialized ca-
pabilities provided by modern hardware. For instance,
the capabilities of scalar processors are represented well
by three-address operations on scalar operands; the ca-
pabilities of SIMD processors, such as Cell, GPUs and
SSE units, are better represented by short-vector oper-
ations; and the capabilities of FPGAs are better repre-
sented by binary decision diagrams and data flow graphs
with variable-precision operands. Much as the limita-
tions of scalar primitives motivated the adoption of short-
vector primitives in compilers targeting SIMD architec-
tures, compilers that target complex accelerators such as
FPGAs will find representations based on simple scalar
and short-vector primitives limiting and ineffective.

We argue that nascent parallel programming systems
should allow software that uses different programming
models and primitives to be integrated simply and ef-
ficiently. These systems require variable and inclusive
primitives, primitives that can abstract computational
features of any complexity (variable) and for any archi-
tecture, or using any programming model (inclusive).

2.1 Encapsulating Specialized Code
Fortunately, programming languages already provide
variable and inclusive primitives: functions. Program-
ming systems such as EXOCHI [7] and CUDA [5] al-
low programmers to inline domain-specific languages
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Figure 2: Encapsulation of inline accelerator-specific as-
sembly or domain-specific languages

(DSLs) and accelerator-specific assembly into C-like
functions, thereby creating a uniform interface, compati-
ble with existing software infrastructure, that is indepen-
dent of the actual implementation. Figure 2 shows an ex-
ample in which kmeans is implemented using combina-
tions of standard C, a DSL, and GPU-specific assembly.
All versions present the same interface and all appear to
the caller to execute in the CPU memory space. The
proxy layer (e.g., EXOCHI, CUDA) provides the data
transfer and other runtime infrastructure needed to sup-
port the interaction between the CPU and the accelerator.

These enhanced functions, which we term function-
intrinsics, are conceptually similar to existing compiler
intrinsics, such as those used to represent SSE opera-
tions. Unlike conventional intrinsics, programmers are
not limited to a small fixed set of operations; instead,
programmers can create intrinsics for operations of any
complexity, for any architecture and using any program-
ming model supported by a proxy interface. When pro-
grammers use a non-C language, such as GPU assem-
bly, the appropriate compiler is invoked and the resulting
machine code (or an intermediate language and a just-in-
time compiler or interpreter) is packaged into the binary.

2.2 A Concurrent Function Call ABI

Using the function call interface to integrate specialized
implementations is actually common. For example, most
systems ship with a version of the C standard library that
is optimized for that particular platform. Often the opti-
mized implementation includes machine-specific assem-
bly and operating system specific system calls. We ex-
tend this approach to more than just a few standardized
libraries. We believe programmers will need to extend
and specialize many different APIs to exploit different
hardware efficiently.

The simple and complete definition of the C func-
tion call ABI provides a reasonable starting point, but
must be enhanced to provide guarantees needed for cor-
rect concurrent execution. Additional restrictions are re-
quired to ensure different implementations of the same
function can be invoked interchangeably, independently
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Figure 3: Relationship between different accelerators
and the CPU, which acts as a hub.

and potentially concurrently. Thus, we require that all
function-intrinsics be independent and potentially con-
current; only access data passed as arguments; execute
atomically with regards to each other; and limit direct
communication to call and return operations.

From the perspective of the function caller on the
CPU, the computation starts and completes on the CPU,
and all communication occurs through the CPU. Accord-
ingly, we make the CPU and its memory space of the hub
of the system (Figure 3). This organization reflects the
typical construction of computer systems, in which the
CPU coordinates activities throughout the system.

2.3 Bundling Function Intrinsics
Since any one implementation of a function may not be
the most efficient for all inputs, multiple implementa-
tions should be allowed to coexist. Dynamically select-
ing which implementation to use allows an application
to perform well across different workloads and different
platforms. Conventional systems use combinations of
static and dynamic techniques (#ifdef, dynamic/static
linking, if-else blocks) to select implementations. For
example, the C standard library is specialized through
system-specific linking. However, as the diversity of het-
erogeneous systems increases and systems with multiple
accelerators become commonplace, the number of avail-
able implementations will make such approaches im-
practical. The problem is particularly acute if program-
mers must manually select implementations.

We replace the current ad-hoc use of static and dy-
namic selection process with a unified approach built
around predicate dispatch [4, 6]. Predicate dispatch sub-
sumes single and multiple dispatch, conditioning invoca-
tion on a boolean predicate function that may include the
argument types, values, and system configuration. A pro-
grammer supplies a set of annotations with each function
implementation. These annotations provide a common
mechanism for describing invariants for a given function,
and are independent of the programming model used to
implement the particular function intrinsic.

There are three classes of annotations: input restric-
tions, which are boolean restrictions on the input argu-

ments (e.g. data set size < 10000); configuration restric-
tions, which specify the necessary compute resources
(e.g. availability of a suitable GPU); and traits, which
describe properties that are useful to users of the func-
tion (e.g. associativity). At compile time, when function
variants implementing the same computation are bundled
together, the annotations are analyzed and translated into
a set of dispatch wrapper functions that implement the
generic function interface and provide introspection into
the variants available in the bundle.

The dispatch wrappers can be used to automatically
select an implementation, freeing the programmer from
having to manually map an application to particular
function-intrinsics. A particular variant is selected by
evaluating the annotations for each function-intrinsic un-
til a variant whose annotation predicates evaluate to
true is found. In addition to ensuring that only appli-
cable function variants are invoked, the dispatch wrap-
pers provide basic load balancing. The dispatch sys-
tem checks the dynamic availability of the requested re-
sources before invoking a variant. Thus, it will not, for
example, invoke a function-intrinsic that targets the GPU
if the GPU is being used by the graphics subsystem. Vari-
ants are ordered by annotation specificity, performance,
and programmer-supplied hints [3].

In its simplest use, the dispatch system transparently
selects a particular function intrinsic. The objective func-
tion used in the scheduling algorithm, greedy selection
based on the ordering described above, is implicit in the
implementation of the meta wrappers. The tradeoff is
that the compiler and runtime must infer a “good” ob-
jective function for a particular application and set of
machine configurations. However, the results presented
in [3] show that good performance can be achieved us-
ing these very simple inferred objective functions. For
those programmers and programs that require more con-
trol, alternate scheduling approaches could be used. One
such example is described below. However, by mak-
ing automatic and transparent selection the default, non-
expert programmers are not obligated to immerse them-
selves in the details of the particular specialized function-
intrinsics that might be available.

In more advanced usage, the programmer might ex-
plicitly uses the introspection capabilities offered by the
dispatch wrappers to implement additional functionality,
such as more sophisticated schedulers, on top of the core
bundling infrastructure. For example, the Harmony pro-
gramming model [1] implements first-to-finish schedul-
ing of different kernels onto heterogeneous compute re-
sources. Presently, at scheduling time, the Harmony run-
time computes the intersection between the implementa-
tions available and the installed processors to determine
the set of kernels over which the computation can be
scheduled. Using the Merge bundle system, a system



like Harmony could provide more comprehensive spe-
cialization. Instead of a single predicate, processor ar-
chitecture, the intersection can include an arbitrary set
of conditions on the input or machine configuration. In
this usage model, the Harmony-like runtime would ex-
plicitly query the function bundles for all applicable im-
plementations, and then choose among based on its own
scheduling algorithm.

3 Managing Resource Sets

Extensive resource virtualization in commodity general-
purpose processors has allowed programmers to largely
ignore resource management. However, the hardware re-
quired for virtualization, such as TLBs, is expensive and
rarely implemented in accelerators, such as GPUs. For
example, CUDA programmers must explicitly manage
the GPU’s scratchpad memory. For the same efficiency
reasons, embedded systems often do not virtualize hard-
ware resources; programmers must explicitly allocate re-
sources, such as memory and bandwidth, in modern het-
erogeneous SoCs. However, for a number of embedded
applications, notably cell phones, market pressures favor
opening systems to third-party application programmers,
bringing issues of resource protection and allocation to
the forefront.

General-purpose processor-like virtualization is inef-
fective for heterogeneous systems. In the current model,
the programmer can only control a virtualized time-slice
on a single core, which is insufficient for managing small
software controlled memories or bandwidth to a shared
resource, such as a crypto accelerator. To efficiently ex-
ploit diverse hardware resources, programmers need to
be able to assemble more complex resource sets. For ex-
ample, two processors, shown in Figure 4, that share a
dedicated communication link and can be scheduled and
managed as a single resource. However, allocation can-
not be all-or-none if resources are to be shared among
multiple clients. For example, allocating an entire accel-
erator, such as the GPU, to a single process is wasteful
if the process cannot fully utilize it. Flexible resource
sets, a compromise between current general-purpose and
embedded approaches, can address this problem.

Flexible resource sets allow programmers to assemble
multiple, otherwise independent resources into a single
unit when needed. We can consider each resource set
to be a unique hardware resource, and sometimes even
a different class of processor that might favor a differ-
ent programming model. For example, tiled architec-
tures might be treated as many independent tiles and
programmed using existing threading frameworks (e.g.,
POSIX threads), or might be treated as a single coordi-
nated systolic array and programmed using a streaming
language [2]. And between these extremes, there are

CPU

Integration Logic
(Direct Connect /

Chipset)

DRAM

(a) (b)

Integration Logic
(Direct Connect /

Chipset)

CPU DRAM

Figure 4: Combining accelerators (a) to create new re-
source sets to achieve performance guarantees, or exploit
dedicated communication resources (b).

usage models that blend the high-level streaming lan-
guage with custom-implemented kernels that use low-
level threading primitives. The flexible encapsulation,
annotations and function overloading provides the neces-
sary compiler infrastructure to support flexible resource
sets.

Different programming models, possibly targeting dif-
ferent resource sets, can be encapsulated in C/C++ func-
tions. The proxy layer, shown in Figure 2, allows re-
sources that an OS normally considers independent to be
grouped into a single OS resource in which most of the
resources are explicitly managed by the programmer [8].
For example, n cores appear to the OS as one, with sys-
tem calls for the n− 1 cores proxied through the one ex-
posed to the OS. The configuration annotations al-
lows programmers to tell the compiler and runtime what
resources are required for each function intrinsic.

Without virtualization, resource allocations requests
are more likely to fail. Applications must include te-
dious and error-prone boiler-plate code to test the avail-
ability, allocate and recover from the failure to allocate,
heterogeneous resources. Predicate dispatch, controlled
by the configuration annotations, replaces the current ad-
hoc approach to resource management. The compiler
translates the annotations into calls into the appropriate
driver to query availability and allocate resources. If any
part of the request fails, the runtime can automatically
invoke alternate implementations provided in the func-
tion bundles. New or different fallback implementations
can be integrated as new function-intrinsics; no changes
to existing code, such as adding if-else statements to
explicitly control fallback on failure, are required.

Flexible resource sets will be hidden from most pro-
grammers behind library APIs. For those programmers
that need more control, the Merge approach provides
a framework for integrating implementations that target
more specific sets of resources. By collecting other-
wise independent resources together to create units that
are allocated and scheduled as a single resource, sys-
tems can preserve the conventional CPU-centric archi-



matrix H(matrix A, matrix B, matrix C) {
matrix T1 = F(A, B);
matrix T2 = G(T1, C);
return T2;

}

Figure 5: Example function that could benefit from inter-
procedural optimization

tecture shown in Figure 3 and leverage existing software
infrastructure, such as the OS, while exploiting inter-
accelerator interconnect and other difficult to virtualize
resources. The combination of configuration annotations
and runtime function variant selection provides a limited
form of OS-like resource protection and allocation until
more sophisticated OS-infrastructure is developed.

4 Compiler Optimizations

Successfully exploiting complex heterogeneous systems
requires the programmer assemble appropriate resource
sets (described in Section 3) and smartly structure the
computation to take advantage of those resources. For
example, to profit from offloading a computation to a
discrete GPU, the computation must have enough arith-
metic intensity to amortize the latency of transferring
data between the CPU and GPU. Identifying an appro-
priate granularity at which to offload computation to spe-
cialized accelerator is one of the key challenges of het-
erogeneous systems.

Consider the pseudo-code in Figure 5, in which two
functions are called in sequence. In the simplest use
of Merge, the F and G function calls could be inde-
pendently mapped to different hardware resources, with
data copied between the CPU and accelerator memory
spaces as needed. For some inputs, the overhead of the
data copying will be adequately amortized, and this ap-
proach will be satisfactory. Dispatch annotations, sup-
plied by the programmer or generated through execution-
profiling, can be used to limit the invocation of a partic-
ular implementation to just those inputs for which it will
be beneficial. The H function is no different; it can also
be mapped to different implementations. If programmers
desire better performance, they can create a new opti-
mized implementation of H, in effect inter-procedurally
optimizing across F and G, that can be bundled alongside
the version in Figure 5.

When there is little or no sophisticated compiler sup-
port, there is no other option than for the programmer
to manually build up optimized implementations. Many
of the function-intrinsics developed for the Intel X3000
integrated GPU in [3] were implemented this way. Func-
tions were fused together until the function-intrinsic per-
formed enough computation to amortize the data transfer
latency. As compiler support improves these optimiza-

tions will be automated. The encapsulation and bundling
in Merge can facilitate these inter-procedural optimiza-
tions. Encapsulated languages provide the input for the
optimization, with the product, and its associated dis-
patch annotations, integrated into the function bundles
as an alternate implementation.

The compiler can implement effective optimizations
with only a basic understanding of the target architec-
ture. For example, for sequentially invoked functions,
like F and G in Figure 5, we are developing tools to
eliminate intermediate data transfers on CUDA-enabled
GPUs. The optimizer queries the F and G function bun-
dles for CUDA implementations. If they are found, the
optimizer creates a new implementation of H in which F
and G are inlined and the intermediate copies eliminated.
This tool does not need to understand the GPU-code, it
just needs to be able to identify data transfers and inline
calls to CUDA device functions (similar to inlining C++
function calls).

With a deeper understanding of the target architecture
more sophisticated optimizations are possible. However,
specialized implementations, such as those written in as-
sembly or a low-level language and intended for direct
execution on particular processor, are rarely a good start-
ing point for optimization. In these cases, we can exploit
the encapsulation and bundling capabilities to integrate
implementations using high-level DSLs, such as stream-
ing languages, that better support aggressive optimiza-
tions. These encapsulated DSLs are particularly useful
for established multicore systems that have sophisticated
compiler support, but are nonetheless challenging to pro-
gram using only low-level tools.

The Merge framework includes a DSL, based on the
map-reduce pattern, that provides an expressive and flex-
ible way for programmers to expose parallelism. How-
ever, executing unoptimized map-reduce code can im-
pose a significant performance penalty; directly exe-
cuting the map-reduce implementation of the k-means
clustering algorithm on a single core is 5× slower than
the C reference implementation. The compiler support
for the map-reduce DSL presented in [3] was limited
to simple intra-procedural optimizations, and as result,
the map-reduce function-intrinsics were primarily used
for coarse-grain task-level parallelism (distributed across
heterogeneous processors). We are currently develop-
ing more advanced, inter-procedural optimizers, target-
ing x86 processors with SSE extensions and CUDA-
enabled GPUs. Preliminary results for the most aggres-
sive optimizations, including inlining, algebraic simplifi-
cation and automatic vectorization using SSE extensions,
show a 1.56× speedup of k-means relative to the C ref-
erence implementation on a single processor core.

Optimization of encapsulated DSLs is most useful in
the broad middle ground between traditional uniproces-



sors and bleeding-edge accelerators. Uniprocessor sys-
tems are readily targeted using conventional program-
ming tools, while new accelerators invariably lack so-
phisticated compiler support and must be programmed
using accelerator-specific assembly or other low-level
tools. Function bundling enables implementations tar-
geting both systems to coexist; applications can ex-
ploit the newest and most powerful computing resources
without compromising performance on legacy architec-
tures. By also including DSL-based function-intrinsics,
programmers can leverage steadily improving compiler
technology to improve productivity and application per-
formance for established heterogeneous systems. Func-
tions written in the map-reduce DSL, for instance, now
benefit from support for SIMD extensions, with support
for GPUs forthcoming.

The product of an optimizer, a new function-intrinsic,
will just be one of possibly several different implemen-
tations for a computation. An optimizer does not need
to generate the one best implementation for all scenar-
ios. Instead it can focus of generating a great imple-
mentation for a particular input or hardware configura-
tion. Tasks that would be common to many optimiz-
ers, such as eliminating unneeded implementations and
performance ranking function variants, are provided as
part of the bundling infrastructure using static analysis,
heuristics and profiling [3]. With a focused mission and
powerful supporting infrastructure, optimizers are sim-
pler and easier to build, accelerating the development
of sophisticated compiler support for new and evolving
hardware.

5 Conclusion

Computer systems will change in significantly the com-
ing decade and beyond. Although steadily improving
compiler technology will enable programmers to target
more and more different architectures using the same
high-level source code, there will always be important
accelerators with little or no sophisticated compiler sup-
port that require expert-created low-level modules. En-
abling the easy integration of different programming
models and different processors, and the efficient reuse
of expert-developed code will be key to navigating this
ongoing transition. In this paper we have presented a
pragmatic approach to developing applications for com-
plex heterogeneous systems. We described how func-
tion encapsulation and bundling can be used to integrate

many different processors, or combination of processors,
while also supporting advanced optimization techniques;
ensuring that programmers can take advantage of state-
of-the-art hardware and compilers tools, as both become
available.
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