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Abstract 

 
Parallel programming is hard. We present a new approach called Concurrent Collections (CnC). This paper briefly 
explains why writing a parallel program is hard in the current environment and introduces our new approach based 
on this perspective. In particular, a CnC program doesn’t explicitly express the parallelism. It expresses the con-
straints on parallelism. These constraints remain valid regardless of the target architecture.  
 

1. Why is parallel programming hard? 
Many parallel languages embed parallel language con-
structs within the text of the serial code. Examples in-
clude MPI, OpenMP, PThreads, Ct etc. This embedding 
is the source of some unnecessary difficulties: 

• Serial code requires a serial ordering. If there 
is no semantically required ordering among some 
blocks of code, an arbitrary ordering must be speci-
fied.1   

• Serial code modifies and refers to variables 
(locations), not values.  Variables can be overwritten. 
This overwriting over-constrains the possible orderings. 

• Serial code tightly couples the question of if 
we will execute code from when we will execute it. 
Arriving at some point in the control flow indicates 
both that, yes, we will execute this code and also that 
we will execute it now. This is true for loop iterations, 
recursive calls and invocations of other subroutines. 
These also constitute arbitrary ordering. 

Converting serial code to parallel code involves uncov-
ering alternate valid executions either by manually or 
automatically. In the presence of arbitrary ordering, this 
process requires a complex analysis (human or ma-
chine). Embedding parallel language constructs or 
pragmas in the midst of this problem again requires 
uncovering alternate valid executions. This is difficult 
to get right in the first place and to modify later.  In 
addition, of course, the parallelism constructs might  

• be for a constrained class or architectures (say, 
shared memory)  

• focus on a limited type of parallelism (say, 
data parallelism) 

So when the architecture changes, so must the code. 
For these reasons, embedding parallelism in serial code 
                                                 
1 It not hard to find an ordering but it can be complicated for a 
program or a compiler to undo the ordering. 

can limit both the language’s effectiveness and its ease 
of use. In addition, these constraints might assume arbi-
trary constraints such as barriers after each loop or sin-
gle-program-multiple-data (SPMD). Although this is 
not the focus of this paper, notice that these assump-
tions can also inhibit performance. 

2. The essence of parallel execution  
What does a runtime system need to know in order to 
execute a program in parallel? We are not yet asking 
how to specify the parallelism, how to optimize for any 
specific target, etc.  We are just asking: What are the 
inputs to this decision? 

We need to identify the semantically required schedul-
ing constraints. These are: 

• Data dependences (producer/consumer rela-
tions): One computation produces data consumed by 
another. Data is explicitly produced by a producer com-
putation and explicitly consumed by (possibly multiple) 
consumer computations. 

• Control dependences (controller/controllee re-
lations): One computation determines if another will 
execute. To eliminate the tight coupling of the if and 
when control flow questions, control tags will be ex-
plicitly produced by a controller computation and will 
control the execution of a controllee computation. This 
puts the control and data dependences on the same level 
as in intermediate forms such as program dependence 
graphs [5]. 

The types of objects that need to be identified are: 

• The computations, i.e., the high-level opera-
tions, in the application.  

• The data structures that participate in data de-
pendences among these high-level operations.  

• The control tags that participate in control de-
pendences among these high-level operations. 



The relationships among these objects that need to be 
identified are: 

• producer/consumer relations  
• controller/controllee relations  

As we see below, these three types of objects and rela-
tions among them is exactly what Concurrent Collec-
tions provides. 

3. What is Concurrent Collections? 

CnC relies on a combination of ideas from tuple-space 
[6], streaming [7] and dataflow [8] languages. CnC 
programs are written in terms of high-level application-
specific operations. These operations are partially or-
dered according to their semantically required schedul-
ing constraints only. The data that flows among these 
operations is by value, not by location. There is no 
overwriting and no arbitrary serialization among the 
high-level operations. The high-level operations them-
selves are implemented in a serial language. 

This approach supports an important separation of con-
cerns. There are two roles involved in implementing a 
parallel program. One is the domain expert, the devel-
oper whose interest and expertise is in the application 
domain, e.g., finance, genomics, etc. The other is the 
tuning expert, whose interest and expertise is in per-
formance, possibly performance on a particular plat-
form. These may be distinct individuals or the same 
individual at different stages in application develop-
ment. The tuning expert may in fact be software (static 
compiler analysis or dynamic runtime analysis). The 
Concurrent Collections programming model separates 
the expression of the semantics of the computation (by 
the domain expert) from the expression of the actual 
parallelism, scheduling and distribution for a specific 
architecture (by the tuning expert). This separation sim-
plifies the work of the domain expert. Writing in this 
language does not require any reasoning about parallel-
ism or any understanding of the target architecture. The 
domain expert is concerned only with her area of exper-
tise (the semantics of the application).  The tuning ex-
pert is given the maximum possible freedom to map the 
computation onto his target architecture. In this docu-
ment we will focus on topics relevant to the domain 
expert. 

3.1. Language concepts via an example 

We will use face detection as an example application to 
describe the language. Detection is performed on a se-
quence of images.  Each image is further subdivided 

into square sub-images (called windows) of any size 
and at any position within the image. Each window is 
processed by a sequence of classifiers. If any classifier 
in the sequence fails, the window does not contain a 
face and the remainder of the classifiers need not proc-
ess that window. The goal of this approach is to rapidly 
reject any window not containing a face.  This example 
is chosen because it relies heavily on control-
dependences which enable Concurrent Collections to 
support more than pure streaming applications. 

A program is specified by a graph with three types of 
nodes (computation steps, data items and control tags) 
and three types of edges (producer relations, consumer 
relations and prescription relations). We will introduce 
the language by showing the process one might go 
through to create a version of the face detector in this 
language. This discussion refers to Figure 3-1 which 
shows a simplified graphical representation of our face 
detection application.  

  
Figure 3-1 Face detection: graphical form 

3.1.1. Creating a CnC graph  
1. What are the high-level operations in the application? 

The computation is partitioned into high-level opera-
tions called step collections.  Step collections are repre-
sented as ovals.  In this application, the step collections 
are the classifiers C1, …, Cn. We use the term step 
collection to indicate that it is a collection composed of 
distinct step instances which are the unit of scheduling, 
distribution and execution. 
2. What data is produced/consumed by these operations?  

Similarly, the user data is partitioned into data struc-
tures called item collections. Item collections are repre-
sented by rectangles. Again we use the term collection 
to indicate that it is a collection composed of distinct 
item instances. In this application there is only one item 
collection, image. Item instances are the units of stor-
age, communication and synchronization. The producer 



and consumer relationships between step collections 
and item collections are explicit.  The consumer rela-
tionships are represented as directed edges into steps. 
Producer relations are represented as directed edges out 
from steps. The image items are consumed by the clas-
sifier steps. There are no items produced in this appli-
cation.2  

The environment (the code that invokes the graph) may 
produce and consume items and tags. These relation-
ships are represented by directed squiggly edges. In our 
application, for example, the environment produces 
Image items.  

At this point we have a description that is typical of 
how people communicate informally with one another 
at a whiteboard. The next two phases are required to 
make this informal description precise enough to exe-
cute. 
3. What distinguishes instances of data and operations? 

The computations represented by circles are not long-
lived computations that continually consume input and 
produce output. This would constitute another arbitrary 
ordering. Instead, scheduling and distribution is on step 
instances. Synchronization and communication is on 
item instances.   

We need to distinguish among the instances of a step 
collection and instances of an item collection. Each 
dynamic instance of a step or an item is uniquely identi-
fied by an application-specific tag. A tag component 
might indicate a node identifier in a graph, a row num-
ber in an array, an employee number, a year, etc. A 
complete tag might be composed of several compo-
nents, for example, employee number and year or 
maybe xAxis, yAxis, and zAzis. 

In our example, the instances of the image collection 
are distinguished by image#. The classifier step in-
stances are distinguished by image# and window# pair.  
In this example, a classifier step inputs the whole image 
even though it operates only on one window within the 
image. 
4. What are the actual instances of data and operations? 

Knowing the tag components that allow us to distin-
guish among instances is not quite precise enough to 
execute. Knowing that we distinguish instances of clas-
sifier1 by values of image# and window# doesn’t tell us 
if classifier1 is to be executed for image#2873, win-
dow#56. We have already introduced item collections 

                                                 
2 The directed edges from steps to the triangles are discussed 
below. 

for data and step collections for computation. Now we 
introduce tag collections for control to specify exactly 
which instances will execute.  

Tag collections, sets of tag instances, provide the con-
trol mechanism. Tag collections are shown in triangles. 
The tag collections in this graph are T1, … , Tn . A 
prescriptive relation may exist between a tag collection 
T and a step collection S. The meaning of such a rela-
tionship is this: if a tag instance t, say image# 2873, 
window# 56, is in collection T, then the step instance s 
in S with tag value t, image# 2873, window# 56, will 
execute. A prescriptive relation is shown as a dotted 
edge between a tag collection and a step collection.  A 
step collection S prescribed by a tag collection T must 
have tags of the same form as tags in T. Thus we know 
the form of the tags for the classifiers. 

Usually control flow indicates not only if code executes 
but also when. In CnC, the control via tags only indi-
cates if code executes. When it executes is up to a sub-
sequent scheduler.  

When we add a tag collection to our specification, we 
have to add the corresponding producer relation.  For 
example, the environment produces T1 which indicates 
all the windows for all the images. The point of step 
collection C1 is to determine which of these windows 
definitely do not contain a face and which might con-
tain a face. An instance of C1, say with tag image# i 
and window# w, will either produce tag T2 with tag 
image# i and window# w (indicating that it might be a 
face) or it will produce nothing (indicating that it is 
definitely not a face). So step collection C1 produces 
tag collection T2. The tag instances in T2 determine 
which instances of C2 will execute. Similarly other step 
collections and tag collections have producer relation-
ships. 
5. What are the relationships among instances? 

To understand the constraints on parallelism we need 
more specifics about the relations among instances. Tag 
functions provide this information. In our example, the 
producer tag function that maps the tag of a classifier 
step, say  (C1) to  the tag of the tag collection <T2> is 
the identity function, e.g., (C1: i, w) can only produce 
<T2: i, w> not <T2: i+1, w> for example. Other appli-
cations, for example nearest neighbor computations, 
have more interesting tag functions. What is important 
is that tag functions require only domain knowledge, 
not understanding of parallelism. 

At this point the importance of tag collections and tag 
instances should be clear.  Tags make this language 



more flexible and more general than a streaming lan-
guage. In addition, the tag mechanism separates the 
question of if a step will execute from when a step will 
execute. The domain-expert determines if a step will 
execute. The tuning-expert determines when it will exe-
cute. This separation not only allows for more effective 
tuning, it makes the job of the domain expert easier. 

3.1.2. Textual representation 

Concurrent Collections can be represented in a variety 
of distinct forms. A textual form of the graph represents 
each relationship in a separate statement using parens, 
square brackets and angle brackets instead of ovals, 
rectangles and triangles.  For example,  
(C1: image#, window#) • <T2: image#, window#>; 

A translator converts this form to use a CnC class li-
brary. One can specify the graph directly in the CnC 
class library. We are currently investigating a graphical 
form that looks more like Figure 3-1. 

3.1.3. Coding the high-level operators 

In addition to specifying the graph, we need to code the 
steps in a serial language. The step has access to the 
values of its tag components. It uses get operations to 
consume items and put operations to produce items 
and tags. An example of step code showing the API for 
the current implementation is shown below. 

 
  

void c1(facedetector_graph_t& graph, 

     const Tag_t& step_tag) { 

   // Retrieve the image 

   image_t x = graph.image.Get(step_tag); 

   // Check the image 

   if (isFace(x)) 

     // Add the tag for next classifier 

     graph.T2.Put(step_tag); 

   return; 

 } 

 

3.1.4. Semantics and Parallelism 

The vision expert going through the process above 
needs to know a lot about vision but nothing in the 
process involves any reasoning about parallelism.  The 
resulting program makes the constraints on parallelism 
explicit, but not the parallelism itself. The constraints 
are either data dependences (steps produce items that 
are consumed by other steps) or control dependences 

(steps produce tags that prescribe other steps). This 
simple example only contains control dependences.  

The semantics ensure the constraints on the schedule by 
maintaining attributes for each instance. As the pro-
gram executes, item and tag instances become avail-
able. A step is prescribed, when its prescribing tag is 
available. A step may execute when it is prescribed and 
its input items are available. Attributes are only added 
so the process is monotonic. The execution frontier is 
the set of instances that have some attribute but are not 
yet dead/executed. The program is valid if, when it 
terminates, all its prescribed steps have executed. Note 
that this is a description of the semantics and not of any 
particular implementation. Some of the implementa-
tions of CnC are actually quite different from this de-
scription. 

Consider the possible schedules for our example. There 
are no constraints among images and there are no con-
straints among windows in an image. The only con-
straint is that for a given window w of a given image i, 
the classifiers are executed in order. This ordering con-
straint arises because of the control-dependences, for 
example, we don’t know if classifier (C2: i, w) will 
execute until (C1: i, w) completes. 

3.1.5. Key aspects of the language 

Concurrent Collections is a way of expressing a pro-
gram:  
• In terms of higher-level operators and data structures 

appropriate to the application.  

This allows the programmer to continue to express the 
high-level operators of the program in any familiar se-
rial programming language. 
• In dynamic single assignment form.   

The computation is expressed in terms of values, not 
locations. Each high-level operation is functional. The 
only side-effects are explicitly producing values. There 
is no overwriting so there are no race conditions and 
the results are deterministic regardless of schedule. 
• In terms of ordering constraints based on the flow of data 

and control.  

The operations of the computation are partially ordered, 
based only on the data flow among them. There is no 
need for analysis to undo an overly-constrained order-
ing.  
• CnC isolates the question of if code will execute from 

when it will execute.  

This provides ease and flexibility for scheduling. 



• CnC acts as an interface. 

Parallel constructs are not embedded with serial source.  
The details of the application are on one side of this 
interface. The mapping to a parallel platform is on the 
other.  Because these are isolated, it is easier to modify 
one or the other independently.  

This model delivers to the domain expert computation 
that  

• is based on how people actually communicate 
with one another about their application,  

• is deterministic and therefore gets identical re-
sults regardless of the schedule, distribution, configura-
tion or architecture 

• requires no reasoning about parallelism and  
• is neutral with respect to target platform. 

and delivers to the tuning expert (person or program)  

• maximal flexibility for tuning. This flexibility 
comes about because only the constraints are explicit. 
There is no overwriting or arbitrary serialization to con-
strain scheduling and distribution decisions.  

4. Mapping CnC to a parallel target 

Given the objects specified in your CnC specification, 
there are a variety of ways to execute it in parallel.  
First it supports task parallelism, pipeline parallelism 
and data parallelism. The three things that need to be 
determined are: grain, distribution across processors, 
scheduling within processors. Unlike other languages 
that are designed with a fairly specific execution style 
in mind, CnC is designed to support many.  The follow-
ing distinct systems have been implemented: 

5. Applications 

We have built a variety of runtime systems.  The cur-
rent system (see [1] for download and documentation) 
is built on Intel’s TBB [2]. The set of applications in 
CnC is small but growing. It includes body tracking, 
Black-Scholes, game of life, Dedup, Cholesky factori-
zation, Eigansolver, matrix inversion, conjugate gradi-
ent. Some are complete. Others are on the way. They 
show speedup comparable to TBB itself. More impor-

tantly they show good scalability.  When we incorpo-
rate tools for the tuning expert, we anticipate even bet-
ter performance. 
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