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Abstract

Multicore architectures have become so complex and di-
verse that there is no obvious path to achieving good per-
formance. Hundreds of code transformations, compiler
flags, architectural features and optimization parameters
result in a search space that can take many machine-
months to explore exhaustively. Inspired by successes
in the systems community, we apply state-of-the-art ma-
chine learning techniques to explore this space more intel-
ligently. On 7-point and 27-point stencil code, our tech-
nique takes about two hours to discover a configuration
whose performance is within 1% of and up to 18% bet-
ter than that achieved by a human expert. This factor of
2000 speedup over manual exploration of the auto-tuning
parameter space enables us to explore optimizations that
were previously off-limits. We believe the opportunity for
using machine learning in multicore autotuning is even
more promising than the successes to date in the systems
literature.

1 Introduction

Multicore architectures are becoming increasingly com-
plex due to higher core counts, varying degrees of mul-
tithreading, and memory hierarchy complexity. This
rapidly evolving landscape has made it difficult for com-
pilers to keep pace. As a result, compilers are unable
to fully utilize system resources and hand-tuning is nei-
ther scalable nor portable. Auto-tuning has emerged as
a solution that can be applied across platforms for per-
formance optimization. Auto-tuning first identifies a set
of useful optimizations and acceptable parameter ranges
using hardware expertise and application-domain knowl-
edge. Then it searches the parameter space to find the best
performing configuration. In the last decade, auto-tuning
has been successfully used to tune scientific kernels for
both serial [9, 11] and multicore processors [8, 12].
Auto-tuning is scalable, automatic, and can produce
high-quality code that is several times faster than a naive
implementation [6]. Unfortunately it suffers from two
major drawbacks. The first is the size of the parameter
space to explore: state-of-the-art auto-tuners that consider

only a single application, a single compiler, a specific
set of compiler flags, and homogeneous cores may ex-
plore a search space of over 40 million configurations [8].
This search would take about 180 days to complete on
a single machine. If the auto-tuner considers alterna-
tive compilers, multichip NUMA systems, or heteroge-
neous hardware, the search becomes prohibitively expen-
sive. Even parallel exploration of multiple configurations
(e.g. in a supercomputing environment) achieves only lin-
ear speedup in the search, so most auto-tuners prune the
space by using heuristics of varying effectiveness.

The second drawback is that most auto-tuners are only
trying to minimize overall running time. Given that
power consumption is a proximate cause of the multi-
core revolution, and a vital metric for tuning embedded
devices, it is important to tune for energy efficiency as
well. A performance-optimal configuration is not neces-
sarily energy-optimal and vice versa.

We propose to address both these drawbacks using
statistical machine learning (SML). SML algorithms al-
low us to draw inferences from automatically constructed
models of large quantities of data [10]. The advantage
of SML-based methodologies is that they do not rely on
application or micro-architecture domain knowledge. Ad-
ditionally, several SML methodologies allow us to simul-
taneously tune for multiple metrics of success [3]. We
are able to reduce the half-year long search to two hours
while achieving performance at least within 1% of and up
to 18% better than a that achieved by a human expert.

We are inspired by the success of the systems com-
munity in using SML techniques to detect and diagnose
failures and to predict performance [3, 14, 15]. The sys-
tems community has had to overcome hurdles to applying
SML [10] that may be absent in the multicore/architecture
domain. In contrast to the difficulty of collecting sys-
tems data, the architecture community has the advantage
that real data can be obtained quickly using commodity
hardware. Furthermore, the architecture community has
a long-established culture of designing for testability and
measurability via programmer-visible performance coun-
ters, making it is easier to find “ground truth”. Lastly,
since the architecture community tends to optimize appli-
cations with exclusive access to hardware, the SML mod-



els need not adapt to varying machine usage patterns and
externally-imposed load conditions. As a result of these
advantages, we see a great opportunity for using SML.

2 Statistical Machine Learning for
Performance Optimization

Statistical machine learning has been used by the high-
performance computing (HPC) community in the past to
address performance optimization for simpler problems:
Brewer [2] used linear regression over three parameters to
select the best data partitioning scheme for parallelization;
Vuduc [16] used support vector machines to select the best
of three optimization algorithms for a given problem size;
and Cavazos et al [5] used a logistic regression model to
predict the optimal set of compiler flags. All three exam-
ples carve out a small subset of the overall tuning space,
leaving much of it unexplored. In addition, the above re-
search was conducted prior to the multicore revolution,
thus ignoring metrics of merit like energy efficiency.

Auto-tuning in the context that we are proposing ex-
plores a much larger search space than the previous work,
thereby exercising the full potential of newer SML al-
gorithms. Recast from a SML perspective, auto-tuning
leverages relationships between a set of optimization pa-
rameters and a set of resultant performance metrics to
explore the search space. Kernel Canonical Correla-
tion Analysis (KCCA) [4] is a recent SML algorithm
that effectively identifies these relationships. Specifically,
KCCA finds multivariate correlations between optimiza-
tion parameters and performance metrics on a training set
of data. We can then use these statistical relationships to
optimize for performance and energy efficiency.
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Figure 1: The KCCA methodology discovers relationships
between configurations and performance.

For the training set data, KCCA first takes the vector
representations of the configuration parameters (X) and

the corresponding performance metrics (Y). Next, we
construct a matrix K, that captures the similarity of each
configuration vector to every other configuration vector,
and a matrix K, that compares each performance vector
to every other performance vector. Given K, and K,
KCCA produces a matrix A of basis vectors onto which
K, can be projected, and a matrix B of basis vectors onto
which K, can be projected, such that K, A and K, B are
maximally correlated. That is, neighborhoods in KA
correspond to neighborhoods in Ky 5. We compute matri-
ces A and B by solving the generalized eigenvector equa-
tion shown in Figure 1.

There are several design decisions to be considered
when customizing KCCA for auto-tuning:

1. Representing optimization parameters as configura-
tion feature vectors and performance metrics as per-
formance feature vectors

2. Quantifying the similarity between any pair of con-
figurations (using kernel functions)

3. Using the output of the KCCA algorithm to identify
optimal configurations

In the following section, we present an example of op-
timizing a scientific code using a customized version of
the KCCA algorithm.

3 Case Study: Stencil Code Opti-
mization

Stencil (nearest-neigbor) computations are used exten-
sively in partial differential equation (PDE) solvers in-
volving structured grids [1]. In a typical stencil code, each
grid point updates its value based on the values of its near-
est neighbors. These neighbors define the stencil shape,
which will be constant for every point in the grid.

3.1 Experimental Setup

System Intel AMD
Clovertown | Barcelona

Clock (GHz) 2.66 2.30

# Sockets x # Cores per Socket 2 x4 2 x4

Peak DP GFLOPs/second 10.7 9.2

Peak DRAM BW (GB/s) 85.3 73.6

Compiler icc 10.1 gcc4.1.2

Table 1: Architectural comparison.

Our work utilizes 3D 7-point and 27-point stencils aris-
ing from finite difference calculations. For each stencil



run, we perform a single sweep over a 256 grid where
the read and write arrays are distinct. The 27-point stencil
performs significantly more FLOPs per byte transferred
than the 7-point stencil (1.25 vs. 0.33 FLOPs/byte) and
thus is more likely to be compute-bound.

We conduct our experimental runs on two superscalar
out-of-order machines: the Intel Clovertown and the
AMD Barcelona, which Table 1 details. For each plat-
form, we compile appropriate code variants for the 7-point
and 27-point stencils. See [8] for details on each opti-
mization and its corresponding parameters.

For each stencil, we randomly choose 1500 configura-
tions to build our training data sets. We limit our sample
size to 1500 datapoints as the KCCA algorithm is expo-
nential with respect to the number of datapoints. We run
the stencil code variant reflecting each chosen configu-
ration and collect low-level performance counter data as
detailed in Section 3.2. Then we use kernel functions (de-
scribed in Section 3.3) to compare the similarity of ev-
ery pair of stencil runs in our training set, generating two
matrices that are input to our KCCA algorithm. KCCA
projects these two matrices onto subspaces such that the
projections are maximally correlated. However, by the
nature of KCCA, it is difficult to reverse-engineer which
features of the data contribute to a dimension of correla-
tion. Thus we look up the projection of the best perform-
ing datapoint in our training set and use a genetic algo-
rithm in that neighborhood, as described in Section 3.4.
The result of this step is a new set of configurations that
we run to find an optimal configuration.

Next, we consider several design decisions to cus-
tomize KCCA for stencil code optimization.

3.2 Constructing Feature Vectors

For each stencil code run, we construct one configuration
vector and one performance vector. The configuration fea-
ture vector is built using parameters for the optimizations
listed in Table 2. See [8] for details. Similarly, the perfor-
mance feature vector uses the counters listed in Table 3 as
features and the measurements of these counters as values.
We also measure Watts consumed using a power meter at-
tached to our machines.

Using N=1500 runs per stencil, the N configuration
vectors of K=16 features are combined into a N x K con-
figuration matrix; the N performance vectors of L features
(L=8 for Clovertown and L=6 for Barcelona) produce a
N x L performance matrix. The corresponding rows in
each of the two matrices describe the same stencil run.

3.3 Defining Kernel Functions

A useful aspect of the KCCA algorithm is that it produces
neighborhoods of similar data with respect to configura-

l Optimization Parameters | Total Configs
Thread Count 1 4
Domain Decomposition 4 36
Software Prefetching 2 18
Padding 1 32
Inner Loop 8 480
Total 16 4 x 107

Table 2: Code optimization categories.

Counter Description Clovertown | Barcelona
Cycles per thread v v

L1 data cache misses v v

L2 data cache misses v v

L3 total cache misses v
TLB misses v v
Accesses to shared cache lines v

Accesses to clean cache lines v

Cache interventions v

Power meter (Watts/sec) v v

Table 3: Measured counters on the Clovertown architecture.

tion features as well as performance features. However, to
achieve this result, KCCA uses kernel functions™ to define
the similarity of any two configuration vectors or any two
performance vectors.

Since our performance vector contains solely numeric
values, we use the Gaussian kernel function [17] below:

kGaussian(yi7 yj) = exp{_”y’b - yJHQ/TlI}

where |ly; — y;|| is the Euclidian distance and 7, is cal-
culated based on the variance of the norms of the data
points. We derive a symmetric matrix K, such that
Kyli,j] = kGaussian(¥i,y;). If y; and y; are identical,
then K¢, j] = L.

Since the configuration vectors contain both numeric
and non-numeric values, we construct a kernel function
using a combination of two other kernel functions. For
numeric features, we use the Gaussian kernel function.
For non-numeric features we define:

1 ifx; ==,

kb' (fL‘ X ) — ' 2 J°

ATy 0 ifz; #ay

We define our symmetric matrix K, such that
Kx [Za ]} = average(kbinary (gjh Ij) + kGaussian(Ii, -T]))

Thus, given the N x K configuration matrix and the
N x L performance matrix, we form a N x N matrix K,
and a N x N matrix K, which are used as input to the
KCCA algorithm.

*Qur use of the term kernel refers to the SML kernel function and not
HPC scientific kernels.



3.4 Identifying Optimal Configurations

Upon running KCCA on K, and K, we obtain projec-
tions K, A and KB that are maximally correlated. We
leverage these projections to find an optimal configura-
tion. We first identify the best performing point in our
training set, called P;. We look up its coordinates on the
K, B projection, and find its two nearest neighbors, called
P; and P4, on the projected space. We then construct new
configuration vectors using all combinations of the opti-
mizations in P;, P, and Ps. We do not vary the parame-
ters within each optimization. We run these new configu-
rations to identify the best performing configuration.

4 Results

The first metric of success for our stencil code configu-
rations is performance, measured in GFLOPs per second.
Our performance counters inform us of cycles used for
each run; we convert this number to GFLOPs/sec using
the following equation:

(ClockRate x 2563pts x FLOPs/pt)
Cycles

GFLOPs/sec =

Note that the clock rate is 2.66 GHz for Clovertown
and 2.30 GHz for Barcelona. Furthermore, the number of
FLOPs per point is 8 for the 7-point stencil and 30 for the
27-point stencil. Figures 2(a) and 2(b) show a breakdown
of the GFLOP rate our SML methodology achieves for
Clovertown and Barcelona respectively. They also com-
pare our results to the no-optimization configuration and
an expert optimized configuration [8].

On Clovertown, our technique provides performance
within .02 GFLOPs/sec (1%) of expert optimized for the
7-point stencil and 1.5 GFLOPs/sec (18%) better for the
27-point stencil. Because the 7-point stencil is bandwidth
bound on the Clovertown, none of the techniques show
significant performance gains. The significant perfor-
mance gain for the 27-point can be attributed to two fac-
tors: (i) our domain decomposition parameters more effi-
ciently exploit the 27-point stencil’s data locality; (ii) we
likely use registers and functional units more efficiently
as a result of our inner loop parameter values.

On Barcelona, our performance is 0.6 GFLOPs/sec
(16%) better than that achieved by expert optimized for
the 7-point stencil and within 0.35 GFLOPs/sec (2%) for
the 27-point stencil. For the 7-point stencil, our inner
loop optimization parameters unroll along a different di-
mension than expert optimized. We also prefetch further
ahead than the expert optimized configuration. For the
27-point stencil on Barcelona, the dominant factor caus-
ing the performance gap is the smaller padding size in the
unit stride dimension used by the expert optimized config-

uration. Furthermore, the expert’s configuration use more
efficient domain decomposition.

The second metric of success is energy efficiency.
Based on power meter wattage readings, we calculate en-
ergy efficiency with the following formula:

MFLOPs/sec

Energy Efficiency = Watt
atts

As seen in Figure 2(c), on Clovertown we achieve
within 1% of the expert optimized energy efficiency for
the 7-point stencil and 13% better than expert optimized
for the 27-point stencil. For both our stencil codes on
Clovertown and the 27-point stencil code on Barcelona,
the best performing configuration is also the most energy
efficient. For the 7-point stencil on Barcelona, the energy
efficiency of our fastest run differs from the most energy
efficient run by a mere 0.3%. As a result, we have omitted
the Barcelona energy efficiency graph.

Figure 2(d) compares performance against energy effi-
ciency on the Clovertown. The slope of the graph repre-
sents Watts consumed, and since marker shape/color de-
note thread count, we see that power consumption is dic-
tated by the number of threads used. We observe config-
urations with identical performance but differing energy
efficiency and vice versa, as highlighted by the red oval.
In environments with real-time constraints (e.g., portable
devices), there is no benefit to completing well before
the real-time deadline; but there is significant benefit to
conserving battery power. In such environments, perfor-
mance can be sacrificed for energy efficiency, and thus we
expect a wider gap between the two metrics.

5 Discussion

5.1 How long does our methodology take?

The last row in Table 2 shows the total number of config-
urations in the exhaustive search space. At 5 trials per
configuration and about 0.08 seconds to run each trial,
the total time amounts to 180 days. Our case study only
requires running 1500 randomly chosen configurations.
Given our previous assumptions, our runs would complete
in 400 seconds; however, we must add the time it takes
to build the model (approximately 2 hours for the 1500
data points) and the time to compute the heuristic and run
the suggested configurations (under one minute) - adding
up to just over two hours! Obviously, domain knowledge
would help eliminate areas of the search space, which is
reflected by our expert-optimized results. However, our
methodology is easier to scale to other architectures as
well as other optimization problems, such as FFTs and
sparse matrix multiplication [12].
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Figure 2: (a) Stencil performance on Intel Clovertown (b) Stencil performance on AMD Barcelona (c) Energy efficiency on
Clovertown (d) Performance vs. energy efficiency for the 7-point stencil training data on Clovertown. Note that the slope
indicates Watts consumed. The red oval highlights configurations with similar performance but different energy efficiencies.

5.2 Can we measure success without com-
paring to an expert?

Human experts incorporate architectural and application-
specific domain knowledge to identify a good configu-
ration. However, the expert’s configuration may not re-
flect the system’s true performance upper bound. The
Roofline model [13] uses architectural specifications and
microbenchmarks to calculate peak performance. We can
use this model to gauge how close we are to fully exhaust-
ing system resources.

For instance, the Roofline model considers memory
bandwidth as a potential bottleneck. Considering only
compulsory misses in our stencil codes, we achieve 95.4%
of Stream bandwidth for the 7-point stencil and 13.8%
more than the Stream bandwidth for the 27-point sten-
cil on the Clovertown platform. We exceed Stream band-

width for the 27-point stencil because the Stream bench-
mark is unoptimized. On Barcelona, we achieve 89.2%
of Stream bandwidth for the 7-point stencil and 80.1% for
the 27-point stencil. Since Barcelona has a lower FLOP
to byte ratio than Clovertown, the stencils are more likely
to be compute bound on this platform. As a result, we are
unable to achieve a higher fraction of stream bandwidth.

5.3 Do simpler algorithms work?

One of the common criticisms of our methodology is that
a simpler algorithm would have worked just as well. To
address this concern, Figures 2(a)-(c) include results for
two simpler alternatives. The Random Raw Data column
shows the best performing point in our training data set.
The Genetic on Raw Data column shows the best case
performance achieved by using a genetic algorithm (com-
binations) on the top three best-performing points in our



training data set. We do not vary the parameters within
each optimization. While these two techniques are build-
ing blocks of our methodology, individually they do not
perform as well as our SML optimized results. In the fu-
ture, we plan to explore conjugate gradient descent algo-
rithms in the best-performing KCCA neighborhood as an
alternative to the genetic algorithm we currently use.

6 Conclusions and Future Work

We have shown that SML can quickly identify configura-
tions that simultaneously optimize running time and en-
ergy efficiency. SML based auto-tuning methodologies
are agnostic to the underlying architecture as well as the
code being optimized, resulting in a scalable alternative to
human expert-optimization.

As an example, we optimized two stencil codes on two
multicore architectures, either matching or outperforming
a human expert by up to 18%. The optimization process
took about two hours to explore a space that would take
half a year to explore exhaustively on a single computer
by conventional techniques. This result gives us reason
to believe that SML effectively handles the combinatorial
explosion posed by the optimization parameters, poten-
tially allowing us to explore some previously-intractable
research directions:

¢ Fine-grained power profiling We can improve en-
ergy efficiency by considering each component’s in-
dividual power consumption rather than only consid-
ering whole-machine power consumption. Architec-
tures with dynamic voltage and frequency scaling of
either the whole chip or individual cores would also
increase the number of tunable parameters.

e Scientific motif composition While we optimized a
single scientific motif, complex problems often con-
sist of a composition of these motifs; Asanovic et
al [7] have identified thirteen motifs common in par-
allel computing, of which seven are fundamental to
HPC. Optimal configurations for a particular mo-
tif may not correspond to optimal configurations for
composing that motif with others. We can explore
the composition space using the techniques in this
paper by merely changing the training data set.

e Tuning applications for multi-chip servers We can
tune applications for multi-chip servers, optimizing
both computation on individual (possibly heteroge-
neous) nodes as well as communication efficiency
across the network.

Our results to date, and the promise of mapping difficult
research problems such as those above onto approaches
similar to our own, give us confidence that SML will open
up exciting new opportunities to advance the state-of-the-
art in multicore performance optimization.
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