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Abstract

Transactional memory is often advocated as an easier-
to-use replacement for locks that avoids any possibility
of deadlock. Recently, as more care has been exercised
in precisely specifying its semantics, a number of re-
searchers have observed that probably the most attractive
semantics for transactional memory systems is based on
“single global lock atomicity”, i.e. on the semantics of
a single global lock. We argue that this should be taken
one step further: The synchronization operations seen by
the programmer should really just be locks, possibly with
some syntactic sugar for easier programming with a sin-
gle global lock.

Use as a deadlock-free lock replacement does not re-
quire any rollback primitive, or any other constructs that
expose properties of the implementation. And it ap-
pears that such extensions add considerable complex-
ity. Instead, the implementation should strive to optimize
coarse-grain locks, for example by implementing them
using transactional techniques.

1 Introduction

Probably the most widely used approach to paralleliz-
ing applications in shared memory environments is to
write programs as multiple threads, sharing a complete
address space. This approach is neither universally opti-
mal, nor likely to disappear from the scene. It is probably
unique in allowing relatively painless incremental paral-
lelization of hot sections of existing sequential code.

Existing multithreaded applications typically use
locks to ensure mutual exclusion during access to con-
current data structures. There is a fairly simple way
to view threads and shared variables in this environ-
ment [2, 8, 5]:

1. We define a sequentially consistent execution in the
usual way [20], essentially as an interleaving of

steps from the threads. Lock acquisitions and re-
leases of a given lock must start with an acquisition,
and then alternate in the interleaved sequence, the
subsequence of steps corresponding to each thread
must reflect the sequential semantics of that thread,
and each shared variable reference must “see” the
last preceding assignment in this interleaving. For
example, if counter variable c were initially zero,
two threads T1 and T2 each acquired lock l, in-
cremented counter c, and then released the lock, a
sequentially consistent execution might be:

T1: lock(l);
T1: tmp1 = c; (sees 0)
T1: c = tmp1 + 1; (stores 1)
T1: unlock(l);
T2: lock(l);
T2: tmp2 = c; (sees 1)
T2: c = tmp2 + 1; (stores 2)
T2: unlock(l);

If instead T2 did not acquire the lock, but simply in-
cremented c, a possible sequentially consistent exe-
cution would be

T1: lock(l);
T1: tmp1 = c; (sees 0)
T2: tmp2 = c; (sees 0)
T1: c = tmp1 + 1; (stores 1)
T2: c = tmp2 + 1; (stores 1)
T1: unlock(l);

2. We define two steps performing memory operations
to conflict if they access the same memory location
and one of them is a write.

3. A program allows a data race (on a particular in-
put) if there is a sequentially consistent execution
(i.e. interleaving of steps) in which two conflicting
steps performing memory operations on ordinary



data (i.e. not synchronization objects) correspond-
ing to different threads appear next to each other, i.e.
could occur in parallel. The first version of our par-
allel counter increment program above does not al-
low a data race, since accesses to c in the interleav-
ing must be separated by locking operations, while
the second one (without the lock acquisition in T2)
does. In fact the sequentially consistent execution
we gave above contains two conflicting operations
from different threads as the third and forth step.

4. We then require that a program that does not allow a
data race exhibits the behavior of one of its sequen-
tially consistent executions.

5. For the purposes of this paper, we consider pro-
grams that allow data races to be erroneous. This
is consistent with Ada [30], Posix [18] threads, and
the current draft of C++0x1, the next C++ stan-
dard [19, 8]. Some languages, notably Java, at-
tempt to provide stronger properties [23], but these
attempts have been only partially successful [3, 28].

We repeat this presentation here to emphasize that it is
surprisingly simple, especially in light of the confusion
that has historically surrounded the basic programming
rules for threads and locks. [6, 7, 4, 8] All mainstream
language specifications now appear to be converging on
this approach2 [30, 23, 8, 18].

In spite of its relative simplicity, it appears to be
widely believed that this model is already pushing the
complexity envelope for the kind of mainstream paral-
lel programming we will need with ubiquitous multicore
processors, and our emphasis should be on simplifying it
further, rather than complicating it.

1.1 Atomic sections and transactional
memory

The use of locks for mutual exclusion unfortunately has
a well-known down side. If two threads acquire the same
two locks in opposite order, they can cause a deadlock,
with each thread holding exactly one of the locks. Al-
though, at first glance, this may appear easily avoidable
by insisting on a fixed lock ordering, this is hard to do in
practice.

Consider a piece of C++ code that performs a pointer
assignment x = y while holding a lock l. It is increas-
ingly common to use reference counted shared point-
ers, such as shared ptr [10] from the Boost library
or the committee draft for C++0x, the next C++ stan-
dard [19]. In that case, the assignment operator invokes
user-defined destructor operations on the old value of x.
These in turn may recursively invoke further destructors
for objects indirectly referenced from the old value of

x. The code containing the original pointer assignment
generally has no knowledge of the types of these objects
or the locks their destructors may acquire. Yet it must
somehow ensure that all of these locks follow l in the
lock ordering.

A more elaborate Java-based illustration of the prob-
lem is the observer pattern example from [21].3

It is well-known that this problem can be avoided by
replacing lock-based mutual exclusion with atomic sec-
tions that ensure that code inside atomic sections cannot
interfere with atomic section code in other threads. Un-
like lock-based synchronization, the programmer does
not specify a specific lock object to use; mutual exclu-
sion is provided across all atomic sections in the pro-
gram. In Java, one might write “atomic { S }” instead
of “synchronized ( lock obj ) { S }”.

Constructs along these lines can be implemented with
widely different techniques. They have been studied pri-
marily in the context of transactional memory systems
(cf. [17, 29, 16, 1]) that allow multiple threads to pro-
ceed concurrently into atomic sections, possibly rolling
back one or more of them when conflicting accesses are
discovered.

But atomic sections may also be implemented in
other ways. For example, they could be implemented
in Java simply by declaring a globally accessible ob-
ject the lock, shared by all code in a program, and
then replacing all atomic sections “atomic { S }”
by “synchronized (the lock) { S }”. This is
of course not likely to result in a scalable implemen-
tation, and there has been significant amount of re-
search on either semi-automatically [24] or fully au-
tomatically [13, 31, 9] assigning distinct finer-grained
locks to atomic sections. Although it is not always
easy to reproduce the scalability of transactional mem-
ory techniques with these approaches, they do reduce the
contention-free cost back down to that of locks.

2 Remaining Problems with Atomic Sec-
tions

Although atomic sections address an important problem
with locks, they so far have enjoyed only minimal use in
real applications. The fundamental reasons for this are:

1. We do not fully understand their semantics. In spite
of the long history of transactional memory, many
of the fundamental issues were not really exposed
until recently (cf. [14]). Most of the issues that pre-
viously arose for locks also apply in a transactional
setting. Unlike with locks, it is unclear whether we
are approaching a consensus on its resolution. A
number of very recent papers [25, 26, 15, 12], often
postdating our original submission, take a position
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similar to ours. But, for example, [22] expresses a
position that is almost opposite.

2. Depending on the resolution of the semantics issues,
it may be difficult to reuse existing code in a trans-
actional setting.

3. We do not yet understand how to consistently obtain
performance similar to, or better than, that obtained
with locks, particularly in low contention situations
such as SPECjbb [32], which we all hope are com-
mon in real applications. Performance is again in-
fluenced substantially by decisions about the under-
lying semantics.

Here we focus on the first issue, though we are clearly
also motivated by the other two.

3 Preserving Simple Semantics for Atomic
Sections

Since our goal is to introduce atomic sections as a sim-
plification of locks, it makes little sense to significantly
complicate the semantic model in the process.

The “sequential consistency for data-race-free pro-
grams” approach appears to be fundamentally as simple
as possible. Sequential consistency has long been viewed
as the most natural model of parallel program execu-
tion [20]. Any attempt to extend it to programs contain-
ing data races (as [20] originally proposed) imposes ex-
pensive constraints on both hardware and compiler, since
they must ensure that memory references to possibly-
non-local locations must be performed in order, requir-
ing memory fence instructions, and inhibiting common
compiler optimizations, such as common subexpression
elimination. [5, 8]. These restrictions are rarely useful
to portable code, in part because the resulting language
semantics depends on hardware access granularity.

If we view an atomic section as the acquisition of a
single global lock, i.e. as having “single global lock
atomicity” semantics (cf. [32, 25]), then it is trivial to ex-
tend this model to atomic sections. Effectively, we apply
the same rules as above, with the following additional
restriction on the interleaving of steps in a sequentially
consistent execution: An atomic section entry may not
appear in the interleaving until all prior atomic section
entries by other threads also have matching exits in the
interleaving. This is essentially the same rule we would
use for a single global reentrant lock.

Note that this addresses all of the other semantic is-
sues normally discussed in connection with transactional
memory semantics. For example it addresses all of the
safety properties cataloged in [32], without requiring
them to be specifically addressed, or even mentioning
them. It provides no guarantees for those properties that

make assertions about programs with data races (“re-
peatable reads”, “intermediate updates”, “intermediate
reads”). It does provide the other guarantees, such as
“publication safety”, and “privatization safety”, since we
promise sequential consistency in those cases.

This approach also has the advantage (also enjoyed
by and pointed out by [32]) that the interaction be-
tween atomic sections and conventional synchroniza-
tion mechanisms such as locks, condition variables, Java
volatiles and C++0x atomic<T> variables are per-
fectly well defined, and combinations are useful.

4 What about explicit rollback?

Most transactional memory systems (e.g. [16] or the In-
tel STM [1, 26]) provide additional facilities that lever-
age the ability of traditional transactional memory imple-
mentations to roll back partially executed transactions.
Typically these take the form of a retry and/or explicit
abort statement. We argue here that although they are
undoubtedly useful at times, they do not appear to belong
in an interface designed to provide basic mutual exclu-
sion.

We basically see two kinds of applications for these
facilities, which we address in turn:

4.1 Providing failure atomicity
It appears to be fairly common to use explicit transaction
aborts to recover from failure conditions detected during
the transaction. Rolling back the transaction is an easy
way to, for example, restore data structure invariants. Ef-
fectively the transaction rollback facility provides a con-
venient mechanism for “exception safety”.

Although it is useful to roll back a computation in the
event of failure, this use appears completely unrelated to
the use of transactions for isolation between threads, i.e.
as a lock replacement. In particular, it is clearly equally
useful, and implementable at less cost, in single-threaded
environments, or when operating on data structures pri-
vate to a thread. Roll-back for failure atomicity also in-
troduces a number of other tricky issues:

1. Rollback for failure atomicity does not interact well
with with “irrevocable” actions, as used, for exam-
ple, in [26]. A computation that, even under very
exceptional conditions, performs an irreversible I/O
action or thread communication, such as the exam-
ple in the next section, cannot be reliably rolled
back past that point. Even when a computation
never performs an irreversible action, it is not clear
how to make that information available to the pro-
grammer and/or compiler when cross-module calls
are involved.
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2. It is unclear how to reliably report the cause of a
failure when a computation is rolled back, since the
state leading to the failure, including objects that are
likely to be of use describing it, will be rolled back
(cf. [16, 11]).

Although we agree that it would be nice to provide
failure atomicity by allowing rollback initiated with an
explicit abort action, it appears sufficiently distinct from
the concurrency control aspects of transactional memory,
and introduces enough added difficulties, that we do not
consider it further here.4

4.2 Thread Communication

Some transactional memory systems (e.g. [16]) provide
a retry construct that allows transactions to be used for
thread communications. When retry is executed, the
transaction is aborted, and re-executed once one of the
previously read values changes. This effectively allows a
thread to wait until a condition is satisfied as a result of
actions by another thread.

This facility effectively provides a replacement for
the condition variables normally used with locks. Un-
fortunately, it does so in a way that appears to destroy
the composition properties that are often used to justify
transactional memory to start with.

For example, a call to a function f() may need to per-
form such communication when it needs to log an error.
In a lock-based program, it is usually acceptable to call
f() while an unrelated lock is held. In a system based
on atomic sections, it is unclear how this can work. If we
were to write

atomic {
f();

}

f() {
do_something();
if (error) {

request_logging_by_other_thread();
wait_for_other_thread();

}
}

the other thread should not see the request until the
atomic section completes. But the atomic section can’t
complete until the other thread sees and processes the
request. The communication here fundamentally violates
the notion that atomic sections should appear indivisible,
and no other thread should see an intermediate state.

Interestingly, if we use the single global lock
interpretation of atomic sections, but implement
request logging by other thread() using
conventional locks and condition variables, with a

different lock, such code continues to work correctly, as
it does in a purely lock-based environment.

Thus it appears to us that retry is of limited utility:
It is essentially only useful for code that “knows” it will
never be executed inside a transaction. This is at odds
with normal coding practices, in which most code is part
of data abstractions that can be used for either thread-
private data, or shared data for which the client ensures
isolation/mutual exclusion.

We expect that more general purpose code requiring
explicit thread communication will continue to be writ-
ten with locks and condition variables. We see the pri-
mary benefit of atomic sections as simplifying the large
amounts of code, often written by less experienced pro-
grammers, that do not directly perform this kind of inter-
thread communication, though they may rely on a library
to do so.

Thus we do not believe that it makes sense to com-
plicate an atomic section interface with a facility like
retry that is really intended to solve problems ad-
dressed by more expert programmers, but does not give
them the tools to produce a complete solution.

5 What about progress guarantees?

As is pointed out in [22], the atomic section semantics we
advocate differ from what transactional memory experts
might expect, in that they may block progress of a thread
where a transactional implementation of atomic sections
would not. Consider the following example, closely re-
lated to one in [22]:

Thread 1:
atomic {
while(1) {}

}

Thread 2:
atomic {}
print "Hello";

In our semantics, this is allowed to never print “Hello”,
since thread 1 may start running first, acquire the global
lock, and thus prevent thread 2 from ever completing its
atomic section.

Although this may be surprising, it actually reflects
an intentional lack of progress guarantees in the existing
Java memory model, which was motivated by completely
different considerations. A non-preemptive uniproces-
sor scheduler would also fail to make progress here, and
we concluded during the Java memory model discussions
that such implementations should be allowed.

There is no apparent way to modify the preceding ex-
ample to ensure that “Hello” can only be printed in a
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transactional, and not a lock-based implementation, un-
less we introduce either nested synchronization or have
some way to force a fair execution. In the absence of
those, it appears impossible to programmatically distin-
guish the two implementation styles. In our example,
thread 2 cannot test whether the infinite loop in thread
1 has started without accessing a variable set inside the
atomic section containing the loop. But if we introduced
such a variable, this access would introduce a data race,
nested synchronization, or a conflicting atomic section
that could be delayed indefinitely even with a transac-
tional implementation.

In the presence of nested synchronization, our seman-
tics do assign nontrivial meaning to empty atomic sec-
tions. Assume v is a synchronization variable, e.g. a
Java volatile variable, and x is an ordinary variable,
and both are initially zero in:

Thread 1:
atomic {
v = 1;
x = 1;

}

Thread 2:
while (!v) {}
atomic {}
x = 2;

Under our semantics, this does not contain a data race,
since x = 2 cannot be executed until after the atomic
section in thread 1 completes. And indeed a lock-based
implementation will guard against the race. However, a
transactional implementation that treats an empty atomic
section as a no-op would not prevent the race.

However, as we illustrated earlier, even transactional
implementations generally have to revert to locking in
the presence of nested thread communication, such as
here. This is done both by the Intel C++ STM, and in
[32]. We expect that this mechanism can be used to en-
sure lock-like semantics in such cases.

(Note that thread creation is viewed as synchroniza-
tion for this purpose. If a thread is created inside an
atomic section with single global lock semantics, an
empty atomic section in the child is guaranteed to wait
for the parent to leave its atomic section. This appears
to be a moderately common idiom with locks, which as-
signs nontrivial meaning to empty critical sections.)

Thus, in all cases, the single global lock semantics
seem fundamentally compatible with both lock-based
and transactional memory implementations.

However, all of this clearly needs further investigation,
and precise statements and proofs.

6 Where Does That Leave Transactional
Memory?

Atomic sections, as we have defined them here, add very
little to the interface seen by programmers. The same
code could have been written with an explicit global
reentrant lock. They effectively provide a convention and
a bit of “syntactic sugar”.

However, by encouraging a programming style that re-
lies on such a convention, essentially the ultimate coarse-
grain locking convention, we are clearly relying on clever
implementations to recover reasonable scalability. It’s
not yet clear to us what the best implementations will
look like, but certainly transactional implementations,
presumably with a fall-back to locks to handle IO and
nested synchronization, are likely to be part of the solu-
tion. To our knowledge, this is consistent with the ap-
proach taken by [27] or Azul Systems’ use of transac-
tional memory as an optimization for Java locks.
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Notes
1 The C++0x name is historical; it is actually expected to be ap-

proved in 2010 at the earliest.
2In most cases there are additional “wizards only” facilities that re-

lax sequential consistency guarantees. We ignore those in this paper,
since our primary goal is a simple programming model for mainstream
programmers.

3 Where it is credited to Mark Miller.
4 Since the original submission, discussions with others, notably

with Tatiana Shpeisman, pointed out that if rollback is provided, the
multithreaded version will probably also need to provide isolation, in
order to avoid rolling back multiple threads. Thus the two are not com-
pletely orthogonal. One of the reviewers provided a similar comment.
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