
Exceptions and Transactions in C++∗

Ali-Reza Adl-Tabatabai2 Victor Luchangco3 Virendra J. Marathe3

Mark Moir3 Ravi Narayanaswamy2 Yang Ni2 Dan Nussbaum3

Xinmin Tian2 Adam Welc2 Peng Wu1

1IBM Research 2Intel Corporation 3Sun Microsystems Laboratories

{ali-reza.adl-tabatabai,ravi.narayanaswamy,yang.ni,xinmin.tian,adam.welc}@intel.com
{victor.luchangco,virendra.marathe,mark.moir,dan.nussbaum}@sun.com

pengwu@us.ibm.com

Abstract
There has been significant discussion—and significant
disagreement—on the issue of how exceptions should
interact with atomic blocks implemented using transac-
tions. We present a proposal that offers a significant con-
tribution towards resolving this issue, at least for C++,
and we raise remaining areas of disagreement for discus-
sion at the workshop and in the community in general.

1. Introduction
Transactional memory(TM) [4] is a promising technol-
ogy for making concurrent programming of multicore
computers tractable for everyday programmers. With
TM, a thread can execute atransaction, consisting of
multiple memory accesses that are performedatomi-
cally (i.e., the accesses appear to happen all at once, or
not at all). A programmer specifieswhatshould happen
atomically, by enclosing it in anatomic block, and the
system (designer) is responsible forhowthis is achieved,
relieving programmers of a significant burden.

To transition from research to practice, TM must be
integrated into real, widely used languages. Recogniz-
ing this need, TM researchers at IBM, Intel, and Sun
have been discussing how to integrate TM into C++. To
date these discussions have aimed to agree to the extent
we can on a specification, and to understand positions
on issues that are difficult to resolve.

We have largely agreed on basic features. Two fea-
tures used in this paper areatomic blocks, which demar-
cate blocks of code to be executed atomically, and the
ability to explicitly abort an atomic block. The follow-
ing example executes the code in<stmts> atomically,
but if cond evaluates to true, the atomic block is aborted
and thus has no effect:

∗ Copyright is held by authors, 2009. All rights reserved.

__tm_atomic {
<stmts>
if (cond) {

__tm_abort;
}

}

How exceptions should interact with atomic blocks
has been the subject of active debate among TM re-
searchers, with problems raised for every proposed so-
lution [1,2,7]. Although we have not yet reached agree-
ment on this issue, we have developed a proposal for in-
tegrating exceptions and atomic blocks in C++ that rep-
resents significant progress towards agreement. In this
paper, we describe this proposal and highlight for dis-
cussion some of the remaining issues.

Exception handling is an error-prone aspect of C++
programs, requiring carefully defined and documented
programming conventions. Exceptions prevent a code
block from executing completely and thus a thrown ex-
ception may leave the program in an indeterminate state.
Good C++ programming practices dictate that if an ex-
ception crosses the interface of a component, the pro-
grammer should strive to provide anexception safety
guaranteeon the state of that component: Ano-throw
guarantee means that the code will never throw an ex-
ception. Astrongguarantee means that the code will ap-
pear to have no effect if it throws an exception, typically
implemented via catch clauses that explicitly undo side
effects. And abasicguarantee means that the code still
maintains invariants and leaks no resources if it throws
an exception that prevents it from executing completely.

C++ conventions encourage programmers to docu-
ment exception safety guarantees and to provide at least
the basic guarantee. For example, in the standard tem-
plate library (STL) each interface function provides and
requires certain levels of exception safety (e.g., destruc-
tors andswap() operations should have no-throw guar-
antees).



The same exception safety issues arise for atomic
blocks when an exception propagates out of an atomic
block. Moreover, concurrency exacerbates exception
safety issues as the programmer must now preserve in-
variants in the presence of concurrent accesses. Consider
the following simple example:

__tm_atomic {
X++;
foo();
Y++;

}

In this example, the programmer wants to maintain
the invariantX==Y as pre- and post-condition of the
atomic block. But what iffoo() throws an exception?
The exceptionescapesthe atomic block, so we must
determine the fate of the atomic block. One simple an-
swer is that it commits: exceptions are merely an alter-
nate mechanism that causes control to exit a block. This
commit-on-escapesemantics is easy to specify, and the
behavior it allows is a restriction of the behavior allowed
for the same program without atomic blocks.

Committing this atomic block on an exception, how-
ever, may expose broken invariants to other threads. To
avoid this, the programmer must catch exceptions and
restore invariants within the atomic block, before an ex-
ception propagates out of the block.

Commit-on-escape semantics undermines one of the
key advantages of TM: It impedes the programmer’s
ability to reason about an atomic block as if it exe-
cutes atomically, in anall-or-nothing fashion. This di-
minishes TM’s value proposition of simplifying concur-
rent programming. Commit-on-escape also does not ex-
ploit TM’s inherent ability to rollback a transaction, a
capability that’s clearly useful for implementing strong
exception safety guarantees.

Because of these issues, some have advocated abort-
ing an atomic block when an exception escapes it, ex-
ploiting the transactional mechanism to restore all in-
variants by rolling back any changes made by the atomic
block. With this abort-on-escapesemantics, the pro-
grammer need not worry about partial execution of
atomic blocks: the system automatically provides strong
exception safety guarantees for atomic blocks. Atomic
blocks now have all-or-nothing semantics.

Abort-on-escape poses some tricky semantic ques-
tions, however, because the effects of the code that
caused the exception are rolled back. In particular, if
the exception being thrown was allocated or initialized
within the atomic block, then naively aborting it would
roll back the allocation and the values written into the
exception, leaving the question of what exception would
be caught outside the block. While some possibilities ex-
ist to attempt to address this issue, even those of us who

had favored abort-on-escape have found them unsatisfy-
ing.

We could exclude the exception from rollbacks caused
by aborting the atomic block, so that the exception could
be thrown with the contents written into it by the atomic
block. But if the exception contained pointers to other
memory that was allocated or modified by the atomic
block, would thoseallocations and modifications also
be retained? Determining what additional state should
be preserved is not feasible because, for example, the
type unsafe nature of C++ precludes determining ex-
actly what data is referred to by pointers, array indices,
and so on in the exception object.

Semantic issues aside, abort-on-escape might be
overkill in some cases. Consider, for example, using
atomic blocks to make a sequential library thread-safe.
If the library already provides strong exception safety
guarantees then commit-on-escape is more efficient and
avoids the semantic issues with abort-on-escape.

The lack of a precise and reasonable answer to the
question of what to do with exceptions when aborting
makes it difficult to make a compelling case for abort-
on-escape semantics, and yet we find commit-on-escape
semantics unacceptable, as explained above. The debate
in the community has gone around these issues and
found no comfortable resolution.

Recently, we have realized thatboth “sides” are right
in their objections to the other: some programs have
surprising behavior under commit-on-escape semantics,
while others have surprising behavior under abort-on-
escape semantics. This led us to conclude thatanysitu-
ation in which an exception can escape an atomic block
without this being clear when examining the atomic
block’s code is potentially dangerous. Furthermore, dif-
ferent behavior may be appropriate in different circum-
stances, and only the programmer can hope to determine
when the atomic block should be committed, when it
should be aborted, and what exception should be thrown
if it is aborted.

The proposal outlined in this paper enables program-
mers to explicitly indicate which types of exception may
escape the atomic block and commit it; if an exception
of a different type escapes the atomic block, the program
is required to terminate, just as is already required in
C++ if an exception escapes frommain() without being
caught. It further supports explicitly aborting an atomic
block and throwing an exception out of it.

We believe that this approach addresses the main crit-
icisms of each of the commit-on-escape and abort-on-
escape approaches. First, a programmer is much less
likely to overlook the fact that an atomic block may
be committed without completing if it must be explicit
that this can happen. And second, as a result of making
the programmer explicitly choose the abort-on-escape



approach, it becomes easier to define a set of rules de-
termining when it is safe for an exception to leave the
scope of a transaction being aborted, and have program-
mers obey these rules.

Despite the progress this proposal represents, there
are still different opinions on what thedefault behav-
ior should be in case there is no explicit treatment of
an exception. Some of us are strongly in favor of mak-
ing it an error, while others favor a default commit-on-
escape semantics. Thus, in some sense, the “big” dif-
ference of opinion remains. Interestingly, however, the
syntactic proposal outlined in this paper is acceptable to
supporters of both positions, and allows programmers
to determine whichever behavior is appropriate for their
circumstances, rather than having it imposed on them
by a language design decision. This allows us to move
forward on the issue, to implement the proposed syntax,
and to gain experience that will help inform the debate
about the eventual decision on default behavior.

We introduce the basic elements of our proposal in
Section 2, and discuss remaining unresolved issues in
Section 3. We conclude in Section 4.

2. Our proposal
In this section we discuss our proposal in detail. The
proposal has the following central principles:

• Programmers should be able to explicitly state which
exceptions can escape the scope of an atomic block
in order to avoid silent errors when an exception is
overlooked;

• the language should provide the programmer with
the flexibility to commitor abort an atomic block
when an exception escapes its scope; and

• the state of an exception thrown out of an aborted
atomic block should be preserved; however, it is the
programmer’s responsibility to ensure that the excep-
tion makes sense after the block is aborted

2.1 Exception specifications for atomic blocks

Our proposal builds on C++exception specifications[5]
to support explicit declaration of which exceptions may
escape an atomic block. A C++ function definition (or
declaration) can be augmented with an exception spec-
ification, which lists exception types the function is al-
lowed to throw. An attempt to throw any other excep-
tion type from a function thus adorned results in a call
to std::unexpected(), which normally terminates the
program. The following example declares thatf1() may
throw an exception of typeint andf2() will not throw
any exception:

void f1() throw(int);
void f2() throw();

As with functions, attaching an exception specifica-
tion to an atomic block makes it explicit that exceptions
may escape the atomic block. The following example il-
lustrates the use of an exception specification to declare
that an exception of type X or Y may escape this atomic
block:

__tm_atomic throw(X, Y) {<stmts>}

If an exception of any other type escapes the scope of
this atomic block, this will result in a call to
std::unexpected(). The following example similarly
declares thatnoexception will escape this block:

__tm_atomic throw() {<stmts>}

We further propose syntax to declare that an excep-
tion of anytype may escape this atomic block:

__tm_atomic throw(...) {<stmts>}

Exception specifications attached to an atomic block
alert programmers that the block may not execute in its
entirety, hopefully reducing erroneous reasoning such as
in the example in Section 1.

2.2 Commit-on-escape

Our concerns surrounding committing an atomic block
when an exception escapes it are not about semantics,
which are natural and simple, but that programmers can
easily overlook the fact that it may happen and therefore
incorrectly reason about the semantics of a given atomic
block. Therefore, we feel it is sufficient to require ex-
plicit acknowledgment that this may occur, so that it
is not so easily overlooked. Adding exception specifica-
tions to atomic blocks as described above achieves this.

On the other hand, if the atomic block is to be aborted,
there are semantic issues regarding the exception to
be thrown, and different behavior will be desirable in
different circumstances, so the language should allow
the programmer to determine behavior in this case.

For these reasons, our proposal commits an atomic
block when an exception that is listed in the exception
specification escapes the atomic block, unless the pro-
grammer explicitly specifies that it should abort. So in
the following example, any exception thrown by the call
to f1() (which can only throw exceptions of typeint)
will commit the transaction:

__tm_atomic throw(int) {
f1(); // may throw int per prior declaration

}

The programmer can use the following idiom to al-
low any exception to commit a transaction unless the
programmer has explicitly specified that it aborts:

__tm_atomic throw(...) {
f1() // any exception thrown by f1() commits

}



2.3 Abort-on-escape

Programmers specify that a given exception should
abort the atomic block it escapes as follows:

__tm_abort throw x;

Thisabort-and-throwsyntax combines the__tm_abort
statement—which is used to explicitly abort an atomic
block—with the throw statement. It simultaneously
specifies that the atomic block should be aborted, and
that the given exception should be thrown from the
aborted atomic block. In some cases the exception
thrown may be one that has been thrown by some code
in (or called from) the atomic block, and in other cases
it may be more appropriate to construct a different ex-
ception based on state observed from within the atomic
block before it is aborted.

We believe an exception should only be so “blessed”
to escape an atomic block from lexically within that
block, again making it more difficult to overlook the
possible interaction of exceptions with an atomic block
when examining the code for that block. Therefore, an
abort-and-throw statement only permits the exception to
escape the inner-most atomic block. If the exception is
to be thrown through additional enclosing atomic blocks,
these blocks must catch and “re-bless” the exception
with an abort-and-throw statement.

We note that the following simple idiom can be used
if the desired behavior is thatany exception aborts the
atomic block it escapes and propagates to a catch block
higher up the stack.

__tm_atomic throw(...) {
try {
<stmts>

} catch (...) {
__tm_abort throw;

}
}

2.4 Exceptions thrown from aborted blocks

We have not yet addressed the semantic issues regarding
the exception itself in the case that the atomic block is
aborted. If the exception was allocated and/or modified
within the atomic block, then it may contain or refer to
state that will not be meaningful after the atomic block
is aborted. As explained earlier, we do not believe a one-
size-fits-all answer to this question is feasible. Instead,
we describe a mechanism that gives natural default be-
havior for many simple cases, but can be overridden by
the programmer when appropriate.

The first concern is that aborting the atomic block
may destroy the exception object or roll back changes
made to it within the atomic block. However, this issue
exists already in C++ for exceptions that are allocated on
the stack (which is about to be unwound), and the prob-
lem is already addressed. Specifically, when an excep-

tion is thrown, the C++ runtime typically clones it into
a special “exception area” (using the exception’s copy
constructor).

By preventing the rollback from undoing the copies
made in the special area, we ensure that there is no
issue for simple exceptions. Programmers can provide
copy constructors for more complicated ones that refer
to additional state that may be rolled back. Programmers
may also opt to replace the thrown exception with a
new one, perhaps of a different type, indicating that an
exception was thrown from an aborted atomic block.

We note that, while our approach is convenient and
flexible, it does not prevent all possible mistakes. In
particular, a programmer may overlook the fact that
an object whose pointer is copied by a complicated
copy constructor is destroyed as a result of a transaction
being aborted, which would result in a dangling pointer.
Consequently, it is the programmer’s responsibility to
ensure that the exception object is meaningful after the
atomic block is aborted; otherwise unexpected behavior
is possible.

Additionally, some subtle issues arise if an exception
is rethrown inside an atomic block, particularly related
to inheritance. Consider the following example:

__tm_atomic throw(x) {
try {

foo();
} catch (x& e) {

__tm_abort throw; // rethrows exception
}

}

If foo() throws an exception that is a subtype ofx the
abort-and-rethrow statement will rethrow that exception
after aborting the transaction. In this example, the pro-
grammer may think that the re-thrown object is of type
x and after inspecting the type ofx (including its copy
constructor) conclude that it’s safe to abort and rethrow
it. In reality, however, the rethrow may throw an object
that is a subclass ofx that is not safe in the presence of
abort. One can make this code safer by explicitly nam-
ing the thrown exception (e.g.,__tm_abort throw e;)
so that the programmer specifies the exact type of the
thrown exception.

3. The debate over default behavior
The syntax described in the previous section leaves the
following question unanswered: What behavior is re-
quired when an exception escapes an atomic block that
is unadorned by an exception specification?

This seemingly minor question captures the essence
of the main remaining disagreement amongst the au-
thors and others. The two dominant positions are that
the absence of athrow clause should be interpreted as



if a throw() clause were present, and that it should be
interpreted as if athrow(...) clause were present.

In other words, some people would like all excep-
tions that escape such an atomic block to commit the
atomic block, and others would like them to cause the
program to terminate. We discuss both options below.

3.1 Commit by default

This option is supported by people who say that ex-
ception propagation is just a non-local control trans-
fer in some environments, particularly in managed lan-
guages [8], so the atomic block should be committed
just as it would be if control left it in some other way.
This provides an appealing property that adding atomic
blocks to a program does not change its single-threaded
semantics. Furthermore, it fits naturally with simple pro-
posals for specifying TM semantics, such as the Single
Global Lock Atomicity (SGLA) model [6].

Those opposing this option point out, as described
in more detail in Section 1, that silently committing an
atomic block whenever an exception escapes its scope
violates the atomicity property of this block.

3.2 Error by default

Those supporting this option believe that any time an ex-
ception escapes from an atomic block without the pro-
grammer being explicitly aware of this possibility, there
is likely a bug. Silently ignoring the bug will lead to un-
predictable behavior and difficulty diagnosing the bug.
Therefore, they consider it better to cause a runtime er-
ror in this case, which will draw attention to the bug
immediately. Furthermore, this approach will encourage
programmers to think carefully about the interaction be-
tween exceptions and atomic blocks, eliminating errors
caused by a default approach behaving unexpectedly.

An argument against this choice is that it is at odds
with the choice made for exception specifications for
functions, where no specification means any exception
can be thrown; this difference may be confusing.

3.3 Resolving the debate

Although significant differences remain between sup-
porters of the two options mentioned above, we con-
sider our proposal to be a valuable contribution towards
resolving the issue. It establishes significant common
ground, such that implementations can proceed, expe-
rience can be gained, and debates on the issues can be
made more concrete. In particular, it would be a triv-
ial amount of additional work to support both options,
perhaps with compiler switches to select between them,
allowing the two proposals to be easily compared.

4. Concluding remarks
Almost all prior proposals for integrating exceptions
with atomic blocks favor a default behavior—either
commit [8] or abort [3]—when an exception escapes an
atomic block, based on opinions about “normal” usage
of exceptions. Harris [2] proposes an intermediate so-
lution with commit-on-escape by default, but abort-on-
escape for specialAtomicAbortException exceptions.
Like us, Crowl et al. [1] point out that both commit/abort
semantics may lead to surprising program behavior in
different circumstances, thus compromising the promise
of TM to simplify concurrent programming.

We believe we have made significant progress to-
wards a reasonable way to integrate exceptions and
atomic blocks, at least in the context of C++. Our
approach gives the programmer flexibility to achieve
the behavior most appropriate to the given situation,
and requires explicit treatment of potentially danger-
ous cases, making them harder to overlook. We hope
that our proposal will encourage useful and interesting
discussions—which can provide input for resolving re-
maining issues—at HotPar and beyond.

Acknowledgments: This proposal has benefitted from
our discussions with many people, including but not lim-
ited to Steve Clamage, Lawrence Crowl, Robert Geva,
Dan Grossman, Tim Harris, Clark Nelson, Tatiana Sh-
peisman, and Douglas Walls.

References
[1] L. Crowl, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-

baum. Integrating Transactional Memory into C++. In
TRANSACT, 2007.

[2] T. Harris. Exceptions and side-effects in atomic blocks.
In CSJP, 2004.

[3] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy.
Composable memory transactions. InPPoPP, 2005.

[4] M. Herlihy and E. Moss. Transactional memory:
Architectural support for lock-free data structures. In
ISCA, 1993.

[5] International Organization for Standardization.ISO/IEC
14882:2003(E) Programming Languages – C++, Second
Edition. 2003.

[6] V. Menon, S. Balensiefer, T. Shpeisman, A. Adl-Tabatabai,
R. Hudson, B. Saha, and A. Welc. Practical weak-
atomicity semantics for Java STM. InSPAA, 2008.

[7] Y. Ni, A. Welc, A. Adl-Tabatabai, M. Bach, S. Berkowits,
J. Cownie, R. Geva, S. Kozhukow, R.Narayanaswamy,
J. Olivier, S. Preis, B. Saha, A. Tal, and X. Tian. Design
and implementation of transactional constructs for C/C++.
In OOPSLA, 2008.

[8] M. Ringenburg and D. Grossman. AtomCaml: First-class
atomicity via rollback. InICFP, 2005.


