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Abstract

This paper takes a renewed look at the problem of
managing intermediate data that is generated during
dataflow computations (e.g., MapReduce, Pig, Dryad,
etc.) within clouds. We discuss salient features of this
intermediate data and outline requirements for a solu-
tion. Our experiments show that existing local write-
remote read solutions, traditional distributed file sys-
tems (e.g., HDFS), and support from transport protocols
(e.g., TCP-Nice) cannot guarantee both data availabil-
ity and minimal interference, which are our key require-
ments. We present design ideas for a new intermediate
data storage system.

1 Introduction

Dataflow programming frameworks such as MapRe-
duce [5], Dryad [7], and Pig [8] are gaining popularity
for large-scale parallel data processing. For example, or-
ganizations such as A9.com, AOL, Facebook, The New
York Times, Yahoo!, and many others use Hadoop, an
open-source implementation of MapReduce, for various
data processing needs [9]. Dryad is currently deployed
as part of Microsoft’s AdCenter log processing [6].

In general, a dataflow program consists of multiple
stages of computation and a set of communication pat-
terns that connect these stages. For example, Figure 1
shows an example dataflow graph of a Pig program. A
Pig program is compiled into a sequence of MapRe-
duce jobs, thus it consists of multiple Map and Reduce
stages. The communication pattern is either all-to-all
(between a Map stage and the next Reduce stage) or one-
to-one (between a Reduce stage and the next Map stage).
Dryad allows more flexible dataflow graphs, though we
do not show an example in this paper.

Thus, one common characteristic of all the dataflow
programming frameworks is the existence ofintermedi-
ate data produced as an output from one stage and used
as an input for the next stage. On one hand, this in-
termediate data shares some similarities with the inter-
mediate data from traditional file systems (e.g., tempo-
rary .o files) – it is short-lived, used immediately, written
once and read once [3, 11]. On the other hand, there are
new characteristics – the blocks are distributed, large in
number, large in aggregate size, and a computation stage
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Fig. 1: An example of Pig executing a linear sequence of MapRe-
duce stages. The Shuffle phase involves all-to-all data transfers,
while local data is used between each Reduce and the next Map.

cannot start until all its input intermediate data has been
generated by the previous stage. This large-scale, dis-
tributed, short-lived, computational-barrier nature of in-
termediate data firstly creates network bottlenecks be-
cause it has to be transferred in-between stages [5].
Worse still, it prolongs job completion times under fail-
ures (as we show later).

Despite these issues, we observe that the intermediate
data management problem is largely unexplored in cur-
rent dataflow programming frameworks. The most pop-
ular approach to intermediate data management is to rely
on the local filesystem. Data is written locally on the
node generating it, and read remotely by the next node
that needs it. Failures are handled by the frameworks
themselves without much assistance from the storage
systems they use. Thus, when there is a failure, affected
tasks are typically re-executed to generate intermediate
data again. In a sense, this design decision is based on
the assumption that intermediate data is temporary, and
regeneration of it is cheap and easy.

Although this assumption and the design decision
may be somewhat reasonable for MapReduce with only
two stages, it becomes unreasonable for more general
multi-stage dataflow frameworks as we detail in Sec-
tion 2.2. In a nutshell, the problem is that a failure can
lead to expensivecascaded re-execution; some tasks in
every stage from the beginning have to be re-executed
sequentially up to the stage where the failure happened.
This problem shows that efficient and reliable handling
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of intermediate data can play a key role in optimizing
the execution of dataflow programs.

Reported experiences with dataflow frameworks in
large-scale environments indicate that transient and per-
manent failures are prevalent, and will only exacerbate
as more organizations process larger data with multiple
stages. For example, Google reports 5 average worker
deaths per MapReduce job in March 2006 [4], and at
least one disk failure in every run of a 6-hour MapRe-
duce job with 4,000 machines [2]. Yahoo! reports their
Web graph generation (calledWebMap) has grown to a
chain of 100 MapReduce jobs [1]. In addition, many
organizations such as Facebook and Last.fm report their
usage of MapReduce and Pig, processing hundreds of
TBs of data already with a few TBs of daily increase [1].

Thus, it is our position that we must design a new
storage system that treats intermediate data as a first-
class citizen. We believe that a storage system (not the
dataflow frameworks) is the natural and right abstrac-
tion to efficiently and reliably handle intermediate data,
regardless of the failure types. In the following sections,
we discuss the characteristics of this type of data, the re-
quirements for a solution, the applicability of candidate
solutions, and finally our design ideas.

2 Why Study Intermediate Data?

In this section, we discuss some salient characteristics
of intermediate data, and outline the requirements for an
intermediate data management system.

2.1 Characteristics of Intermediate Data

Persistent data stored in distributed file systems ranges
in size from small to large, is likely read multiple times,
and is typically long-lived. In comparison, intermedi-
ate data generated in cloud programming paradigms has
uniquely contrasting characteristics. Through our study
of MapReduce, Dryad, Pig, etc., we have gleaned three
main characteristics that are common to intermediate
data in all these systems. We discuss them below.
Size and Distribution of Data: Unlike traditional file
system data, the intermediate data generated by cloud
computing paradigms potentially has: (1) a large num-
ber of blocks, (2) variable block sizes (across tasks, even
within the same job), (3) a large aggregate size between
consecutive stages, and (4) distribution across a large
number of nodes.
Write Once-Read Once: Intermediate data typically
follows a write once-read once pattern. Each block of
intermediate data is generated by one task only, and read
by one task only. For instance, in MapReduce, each
block of intermediate data is produced by one Map task,
belongs to a region, and is transmitted to the unique Re-
duce task assigned to the region.
Short-Lived and Used-Immediately: Intermediate

Topology 1 Core Switch Connecting
4 LANs (5 Nodes Each)

Bandwidth 100 Mbps
# of Nodes 20
Input Data 36GB

# of Maps Finished 760
# of Reduces Finished 36

Workload Sort
Table 1: Emulab Experimental Setup Used in All Plots

data is short-lived because once a block is written by
a task, it is transferred to (and used immediately by) the
next task. For instance, in Hadoop, a data block gen-
erated by a Map task is transferred during the Shuffle
phase to the block’s corresponding Reduce task.

The above three characteristics morph into major
challenges at runtime when one considers the effect of
failures. For instance, when tasks are re-executed due
to a failure, intermediate data may be read multiple
times or generated multiple times, prolonging the life-
time of the intermediate data. In summary, failures lead
to additional overhead for generating, writing, reading,
and storing intermediate data, eventually increasing job
completion time.

2.2 Effect of Failures

We discuss the effect of failures on dataflow computa-
tions. Suppose we run the dataflow computation in Fig-
ure 1 using Pig. Also, suppose that a failure occurs on a
node running taskt at stagen (e.g., due to a disk failure,
a machine failure, etc.). Note that, since Pig (as well as
other dataflow programming frameworks) relies on the
local filesystem to store intermediate data, this failure
results in the loss of all the intermediate data from stage
1 to (n − 1) stored locally on the failed node. When
a failure occurs, Pig will reschedule the failed taskt to
a different node available for re-execution. However,
the re-execution oft cannot proceed right away, because
some portion of its input is lost by the failed node. More
precisely, the input of taskt is generated by all the tasks
in stage(n − 1) including the tasks run on the failed
node. Thus, those tasks run on the failed node have to
be re-executed to regenerate the lost portion of the input
for taskt. In turn, this requires re-execution of tasks run
on the failed node in stage(n − 2), and this cascades
all the way back to stage 1. Thus, some tasks in every
stage from the beginning will have to be re-executed se-
quentially up to the current stage. We call thiscascaded
re-execution. Although we present this problem using
Pig as a case study, any dataflow framework with multi-
ple stages will suffer from this problem as well.

Figure 2 shows the effect of a single failure on the
runtime of a Hadoop job (i.e., a two-stage job). The fail-
ure is injected at a random node immediately after the
last Map task completes. The leftmost bar is the runtime
without failures. The middle bar shows the runtime with
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Fig. 2: Effect of a Failure on a Hadoop Job. All Experiments Per-
formed on Emulab (Table 1)
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Fig. 3: Behavior of a Hadoop Job
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Fig. 4: Behavior of a Hadoop Job under 1 Failure

1 failure, when Hadoop’s node failure detection timeout
is 10 minutes (the default) –a single failure causes a
50% increase in completion time. Further reducing the
timeout to 30 seconds does not help much – the runtime
degradation is still high (33%).

To understand this further, Figures 3 and 4 show the
number of tasks over time for two bars of Figure 2 (0f-
10min and 1f-30sec). Figure 3 shows clearly the barrier
– Reduce tasks do not start until the Shuffles are (almost)
done around t=925 sec. We made several observations
from the experiment of Figure 4: (1) a single node fail-
ure caused several Map tasks to be re-executed (starting
t=925 sec), (2) a renewed Shuffle phase starts after these
re-executed Maps finish (starting t=1100 sec), and (3)
Reduces that were running on the failed node and that
were not able to Shuffle data from the failed node, get
re-executed as well towards the end (t=1500 sec). While
this experiment shows cascaded re-execution within a
single stage, we believe it shows that in multi-stage
dataflow computations, a few node failures will cause
far worse degradation in job completion times.

2.3 Requirements

Based on the discussion so far, we believe that the prob-
lem of managing intermediate data generated during
dataflow computations, deserves deeper study as a first-
class problem. Motivated by the observation that the
main challenge is dealing with failure, we arrive at the

following two major requirements that any effective in-
termediate storage system needs to satisfy:availability
of intermediate data, andminimal interference on fore-
ground network traffic generated by the dataflow com-
putation. We elaborate below.
Data Availability: A task in a dataflow stage cannot be
executed if the intermediate input data is unavailable. A
system that provides higher availability for intermedi-
ate data will suffer from fewer delays for re-executing
tasks in case of failure. In multi-stage computations,
high availability is critical as it minimizes the effect of
cascaded re-execution (Section 2.2).
Minimal Interference: At the same time, data avail-
ability cannot be pursued over-aggressively. In partic-
ular, since intermediate data is used immediately, there
is high network contention for foreground traffic of the
intermediate data transferred to the next stage (e.g., by
Shuffle in MapReduce) [5]. An intermediate data man-
agement system needs to minimize interference on such
foreground traffic, in order to keep the job completion
time low, especially in the common case of no failures.

3 Candidate Solutions
In this section, we explore the solution space of can-
didates to satisfy the requirements given above. Our
first candidate is current dataflow frameworks, which we
find are oblivious to the availability of intermediate data.
Our second candidate, a distributed file system (HDFS),
provides data availability but does not minimize inter-
ference. Our third candidate, replication support from
a transport protocol (TCP-Nice), attempts to minimize
interference but has no strategy for data availability and
has low network utilization. This naturally leads to a
presentation of our new design ideas in the next section.

3.1 Current Approaches

Current dataflow frameworks store intermediate data lo-
cally at the outputting node and have it read remotely.
They use purelyreactive strategies to cope with node
failures or other causes of data loss. Thus, in MapRe-
duce the loss of Map output data results in the re-
execution of those Map tasks, with the further risk of
cascaded re-execution (Section 2.2).

3.2 Distributed File Systems

Distributed file systems could be used to provide data
availability via replication. In this section, we experi-
mentally explore the possibility of using one such file
system especially designed for data-intensive environ-
ments. We choose HDFS, which is used by Hadoop to
store the input to the Map phase and the output from the
Reduce phase. We modify Hadoop so that HDFS can
store the intermediate output from the Map phase.

Figure 5 shows average completion times of MapRe-
duce in four experimental settings. The purpose of
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Fig. 5: Asynchronous Replication with HDFS

the experiment is (1) to examine the performance of
MapReduce when the intermediate output is replicated
using HDFS, and (2) to understand where the sources of
interference are. Thus, the four bars are presented in the
order of increasing degree of interference.

In the left-most experiment (labeled asHadoop), we
use the original Hadoop that does not replicate the inter-
mediate data, hence there is no interference due to repli-
cation. In the right-most experiment (labeled asRep.),
we use HDFS to asynchronously replicate the interme-
diate data to a remote node. Using HDFS for replication,
performance degrades to the point where job completion
time takes considerably longer.

The middle two experiments help to show the source
of the performance hit by breaking down HDFS repli-
cation into its individual operations. In the second ex-
periment (labeled asRead), we take only the first step
of replication, which is to read the Map output. This in-
curs a local disk read. In the next experiment (labeled
asRead-Send), we use HDFS to asynchronously repli-
cate the intermediate datawithout physically writing to
the disks. This involves a local disk read and a network
transfer, but no disk writes.

When we only read the intermediate data, there is
hardly any difference in the overall completion time
(Hadoop vs. Read). However, when the replication
process starts using the network (Read vs. Read-Send),
there is a significant overhead that results in doubling
the completion time. This is primarily due to the in-
crease in the Shuffle phase.1 The increase in the Map
finish time inRead-Send is also due to the network inter-
ference, since some Maps need to fetch their inputs from
remote nodes. Finally, we notice that the interference of
disk writes is very low (Read-Send vs. Rep.).

Hence, we conclude that pursuing aggressive replica-
tion will not work due to the network contention with
foreground traffic (Shuffle and Map remote-reads). This
observation leads us to the next candidate solution.

3.3 Background Replication

We qualitatively explore the use of a background trans-
port protocol to replicate intermediate data without af-

1The figure shows the finish time of each phase, but does not show
the initial start time for Shuffle and Reduce; the phases in fact overlap
as seen in Figure 3 and 4.

fecting foreground traffic. We focus our discussion
around TCP-Nice [10], a well-known background trans-
port protocol.

TCP-Nice allows a flow to run in the “background”
with little or no interference to normal flows. These
background flows only utilize “spare” bandwidth un-
used by normal flows. This spare bandwidth exists be-
cause there is local computation and disk I/O performed
in both Map and Reduce phases. Thus, we could put
replication flows in the background using TCP-Nice, so
that they would not interfere with the foreground traffic
such as Shuffle. However, since TCP-Nice is designed
for the wide-area Internet, it does not assume (and is
thus unable to utilize) the knowledge of which flows are
foreground and which are not. This results in two draw-
backs for our dataflow programming environment.

First, TCP-Nice minimizes interference at the ex-
pense of network utilization.2 This is because a back-
ground flow reacts to congestion by aggressively reduc-
ing its transfer rate. Thus, applications cannot predict
the behavior of TCP-Nice in terms of bandwidth utiliza-
tion and transfer duration. This is not desirable for in-
termediate data replication, where timely replication is
important. Second, TCP-Nice gives background flows
lower priority than any other flow in the network. Thus
a background replication flow will get a priority lower
than Shuffle flows, as well as other flows unrelated to
the dataflow application, e.g., any ftp or http traffic go-
ing through the same shared core switch of a data center.

We observe that these disadvantages of TCP-Nice
arise from its application-agnostic nature. This moti-
vates the need to build a background replication pro-
tocol that is able to utilize spare bandwidth in a non-
aggressive, yet more controllable manner.

4 Ongoing Work and Challenges
We are building an intermediate storage system (ISS)
that satisfies the requirements of Section 2. In this sec-
tion, we briefly discuss our architecture, and three dif-
ferent replication policies we would like to study: (1)
replication using spare bandwidth, (2) a deadline-based
approach, and (3) replication based on a cost model.

4.1 Master/Slave Architecture

Based on our previous discussion, we believe there is
a need to develop the ISS system with an architecture
that can tightly measure and control the network usage
within a single datacenter. The approach we are cur-
rently employing is a master/slave architecture, where
the master is essentially a controller that coordinates
the actions of slaves. This architecture is suitable for
a single data center environment because every physi-

2In fact, the original paper onTCP-Nice [10] makes clear that net-
work utilization is not a design goal.
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cal machine is in the same administrative domain. Al-
though this architecture might seem to have scalability
issues, dataflow programming frameworks typically em-
ploy a master/slave architecture to control job execution
in large-scale infrastructures. This shows that such an
architecture can in fact be made scalable.

4.2 Replication Policies

Given an architecture that can tightly measure and con-
trol network usage, the next challenge is to define suit-
able replication policies. We discuss three policies.
Replication Using Spare Bandwidth: As we discuss
in Section 3.3, a suitable policy could be a replica-
tion mechanism that leverages spare bandwidth and yet
achieves higher and more controllable network utiliza-
tion. With our master/slave architecture, we can tightly
measure the spare bandwidth and allow replication to
utilize the full amount possible. The master periodically
receives feedback from slaves regarding its current data
transfer rate. Then, it calculates the spare bandwidth and
notifies the slaves of the values. The slaves use this rate
for replication until the next feedback cycle.
Deadline-Based Replication: While the above ap-
proach should effectively utilize the spare bandwidth,
there is uncertainty about when data is finally repli-
cated. A different approach is to provide a guarantee
of when replication completes. Specifically, we can use
a stage-based replication deadline. Here, a replication
deadline ofN means that intermediate data generated
during a stage has to complete replication within the
nextN stages. This deadline-based approach can reduce
the cost of cascaded re-execution because it bounds the
maximum number of stages that any re-execution can
cascade over (N ). The challenge in this approach is how
to meet the deadline while minimizing the replication
interference to the intermediate data transfer.

In order to meet the deadline, the master has two re-
quirements: (1) the ability to control the rate at which
replication is progressing, and (2) the knowledge of the
rate at which a job execution is progressing. The first re-
quirement can be satisfied by controlling the bandwidth
usage. The second requirement can be satisfied by using
a progress monitoring mechanism used by the current
Hadoop or a more advanced mechanism used by LATE
scheduler [12]. Using this progress as feedback from
slaves, the master can dynamically adjust the bandwidth
allocation for replication to meet the deadline.
Cost Model Replication: Our final strategy is dynami-
cally deciding whether to replicate intermediate data or
not, by comparing the cost of replication to the cost of
cascaded re-execution. The thumb-rule is to minimize
the cost – at the end of each stage, if the cost of repli-
cation is cheaper than the cost of cascaded re-execution,
replication is performed. Otherwise, no replication is

performed and failures are handled by re-execution un-
til the decision is re-evaluated.

The challenge here is how to obtain the cost of repli-
cation and cascaded re-execution. A preferable way is
to model the cost in terms of job completion time be-
cause ultimately this is the metric users care about the
most. When successfully modeled, this approach can
lead to the best performance out of the three strategies
we discuss, because it tries to minimize job completion
time. However, this is a difficult problem to solve be-
cause there are many unknown factors. For example,
the cost of cascaded re-execution depends on the failure
probability of each machine and the actual time it takes
when there is a failure. In practice, both factors are diffi-
cult to model accurately. However, the potential benefits
of this approach make it worth exploring.

5 Summary
In this paper, we have argued for the need, and presented
requirements for the design, of an intermediate storage
system (ISS) that treats intermediate storage as a first-
class citizen for dataflow programs. Our experimental
study of existing and candidate solutions shows the ab-
sence of a satisfactory solution. We have described how
this motivates our current work on the design and imple-
mentation of the ISS project.
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